Home | History | Annotate | Download | only in base
      1 /*
      2  * This code implements the MD5 message-digest algorithm.
      3  * The algorithm is due to Ron Rivest.  This code was
      4  * written by Colin Plumb in 1993, no copyright is claimed.
      5  * This code is in the public domain; do with it what you wish.
      6  *
      7  * Equivalent code is available from RSA Data Security, Inc.
      8  * This code has been tested against that, and is equivalent,
      9  * except that you don't need to include two pages of legalese
     10  * with every copy.
     11  *
     12  * To compute the message digest of a chunk of bytes, declare an
     13  * MD5Context structure, pass it to MD5Init, call MD5Update as
     14  * needed on buffers full of bytes, and then call MD5Final, which
     15  * will fill a supplied 16-byte array with the digest.
     16  */
     17 #include <string.h>	/* for memcpy() */
     18 #include "md5.h"
     19 
     20 #ifndef HIGHFIRST
     21 #define byteReverse(buf, len)	/* Nothing */
     22 #else
     23 void byteReverse(unsigned char *buf, unsigned longs);
     24 
     25 #ifndef ASM_MD5
     26 /*
     27  * Note: this code is harmless on little-endian machines.
     28  */
     29 void byteReverse(unsigned char *buf, unsigned longs)
     30 {
     31 	uint32 t;
     32 	do {
     33 		t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
     34 		            ((unsigned)buf[1]<<8 | buf[0]);
     35 		*(uint32 *)buf = t;
     36 		buf += 4;
     37 	} while (--longs);
     38 }
     39 #endif
     40 #endif
     41 
     42 /*
     43  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     44  * initialization constants.
     45  */
     46 void
     47 MD5Init(struct MD5Context *ctx)
     48 {
     49 	ctx->buf[0] = 0x67452301;
     50 	ctx->buf[1] = 0xefcdab89;
     51 	ctx->buf[2] = 0x98badcfe;
     52 	ctx->buf[3] = 0x10325476;
     53 
     54 	ctx->bits[0] = 0;
     55 	ctx->bits[1] = 0;
     56 }
     57 
     58 /*
     59  * Update context to reflect the concatenation of another buffer full
     60  * of bytes.
     61  */
     62 void
     63 MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
     64 {
     65 	uint32 t;
     66 
     67 	/* Update bitcount */
     68 
     69 	t = ctx->bits[0];
     70 	if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
     71 		ctx->bits[1]++;	/* Carry from low to high */
     72 	ctx->bits[1] += len >> 29;
     73 
     74 	t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
     75 
     76 	/* Handle any leading odd-sized chunks */
     77 
     78 	if ( t ) {
     79 		unsigned char *p = (unsigned char *)ctx->in + t;
     80 
     81 		t = 64-t;
     82 		if (len < t) {
     83 			memcpy(p, buf, len);
     84 			return;
     85 		}
     86 		memcpy(p, buf, t);
     87 		byteReverse(ctx->in, 16);
     88 		MD5Transform(ctx->buf, (uint32 *)ctx->in);
     89 		buf += t;
     90 		len -= t;
     91 	}
     92 
     93 	/* Process data in 64-byte chunks */
     94 
     95 	while (len >= 64) {
     96 		memcpy(ctx->in, buf, 64);
     97 		byteReverse(ctx->in, 16);
     98 		MD5Transform(ctx->buf, (uint32 *)ctx->in);
     99 		buf += 64;
    100 		len -= 64;
    101 	}
    102 
    103 	/* Handle any remaining bytes of data. */
    104 
    105 	memcpy(ctx->in, buf, len);
    106 }
    107 
    108 /*
    109  * Final wrapup - pad to 64-byte boundary with the bit pattern
    110  * 1 0* (64-bit count of bits processed, MSB-first)
    111  */
    112 void
    113 MD5Final(unsigned char digest[16], struct MD5Context *ctx)
    114 {
    115 	unsigned count;
    116 	unsigned char *p;
    117 
    118 	/* Compute number of bytes mod 64 */
    119 	count = (ctx->bits[0] >> 3) & 0x3F;
    120 
    121 	/* Set the first char of padding to 0x80.  This is safe since there is
    122 	   always at least one byte free */
    123 	p = (unsigned char*)(ctx->in) + count;
    124 	*p++ = 0x80;
    125 
    126 	/* Bytes of padding needed to make 64 bytes */
    127 	count = 64 - 1 - count;
    128 
    129 	/* Pad out to 56 mod 64 */
    130 	if (count < 8) {
    131 		/* Two lots of padding:  Pad the first block to 64 bytes */
    132 		memset(p, 0, count);
    133 		byteReverse(ctx->in, 16);
    134 		MD5Transform(ctx->buf, (uint32 *)ctx->in);
    135 
    136 		/* Now fill the next block with 56 bytes */
    137 		memset(ctx->in, 0, 56);
    138 	} else {
    139 		/* Pad block to 56 bytes */
    140 		memset(p, 0, count-8);
    141 	}
    142 	byteReverse(ctx->in, 14);
    143 
    144 	/* Append length in bits and transform */
    145 	((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
    146 	((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
    147 
    148 	MD5Transform(ctx->buf, (uint32 *)ctx->in);
    149 	byteReverse((unsigned char *)ctx->buf, 4);
    150 	memcpy(digest, ctx->buf, 16);
    151 	memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
    152 }
    153 
    154 #ifndef ASM_MD5
    155 
    156 /* The four core functions - F1 is optimized somewhat */
    157 
    158 /* #define F1(x, y, z) (x & y | ~x & z) */
    159 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    160 #define F2(x, y, z) F1(z, x, y)
    161 #define F3(x, y, z) (x ^ y ^ z)
    162 #define F4(x, y, z) (y ^ (x | ~z))
    163 
    164 /* This is the central step in the MD5 algorithm. */
    165 #define MD5STEP(f, w, x, y, z, data, s) \
    166 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
    167 
    168 /*
    169  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    170  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    171  * the data and converts bytes into longwords for this routine.
    172  */
    173 void
    174 MD5Transform(uint32 buf[4], uint32 const in[16])
    175 {
    176 	register uint32 a, b, c, d;
    177 
    178 	a = buf[0];
    179 	b = buf[1];
    180 	c = buf[2];
    181 	d = buf[3];
    182 
    183 	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
    184 	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
    185 	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
    186 	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
    187 	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
    188 	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
    189 	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
    190 	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
    191 	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
    192 	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
    193 	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
    194 	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
    195 	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
    196 	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
    197 	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
    198 	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
    199 
    200 	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
    201 	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
    202 	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
    203 	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
    204 	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
    205 	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
    206 	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
    207 	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
    208 	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
    209 	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
    210 	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
    211 	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
    212 	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
    213 	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
    214 	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
    215 	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
    216 
    217 	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
    218 	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
    219 	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
    220 	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
    221 	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
    222 	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
    223 	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
    224 	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
    225 	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
    226 	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
    227 	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
    228 	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
    229 	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
    230 	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
    231 	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
    232 	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
    233 
    234 	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
    235 	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
    236 	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
    237 	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
    238 	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
    239 	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
    240 	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
    241 	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
    242 	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
    243 	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
    244 	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
    245 	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
    246 	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
    247 	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
    248 	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
    249 	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
    250 
    251 	buf[0] += a;
    252 	buf[1] += b;
    253 	buf[2] += c;
    254 	buf[3] += d;
    255 }
    256 #endif
    257