1 $$ This is a pump file for generating file templates. Pump is a python 2 $$ script that is part of the Google Test suite of utilities. Description 3 $$ can be found here: 4 $$ 5 $$ http://code.google.com/p/googletest/wiki/PumpManual 6 $$ 7 8 $$ See comment for MAX_ARITY in base/bind.h.pump. 9 $var MAX_ARITY = 7 10 11 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 12 // Use of this source code is governed by a BSD-style license that can be 13 // found in the LICENSE file. 14 15 #ifndef BASE_CALLBACK_H_ 16 #define BASE_CALLBACK_H_ 17 18 #include "base/callback_forward.h" 19 #include "base/callback_internal.h" 20 #include "base/template_util.h" 21 22 // NOTE: Header files that do not require the full definition of Callback or 23 // Closure should #include "base/callback_forward.h" instead of this file. 24 25 // ----------------------------------------------------------------------------- 26 // Introduction 27 // ----------------------------------------------------------------------------- 28 // 29 // The templated Callback class is a generalized function object. Together 30 // with the Bind() function in bind.h, they provide a type-safe method for 31 // performing partial application of functions. 32 // 33 // Partial application (or "currying") is the process of binding a subset of 34 // a function's arguments to produce another function that takes fewer 35 // arguments. This can be used to pass around a unit of delayed execution, 36 // much like lexical closures are used in other languages. For example, it 37 // is used in Chromium code to schedule tasks on different MessageLoops. 38 // 39 // A callback with no unbound input parameters (base::Callback<void(void)>) 40 // is called a base::Closure. Note that this is NOT the same as what other 41 // languages refer to as a closure -- it does not retain a reference to its 42 // enclosing environment. 43 // 44 // MEMORY MANAGEMENT AND PASSING 45 // 46 // The Callback objects themselves should be passed by const-reference, and 47 // stored by copy. They internally store their state via a refcounted class 48 // and thus do not need to be deleted. 49 // 50 // The reason to pass via a const-reference is to avoid unnecessary 51 // AddRef/Release pairs to the internal state. 52 // 53 // 54 // ----------------------------------------------------------------------------- 55 // Quick reference for basic stuff 56 // ----------------------------------------------------------------------------- 57 // 58 // BINDING A BARE FUNCTION 59 // 60 // int Return5() { return 5; } 61 // base::Callback<int(void)> func_cb = base::Bind(&Return5); 62 // LOG(INFO) << func_cb.Run(); // Prints 5. 63 // 64 // BINDING A CLASS METHOD 65 // 66 // The first argument to bind is the member function to call, the second is 67 // the object on which to call it. 68 // 69 // class Ref : public base::RefCountedThreadSafe<Ref> { 70 // public: 71 // int Foo() { return 3; } 72 // void PrintBye() { LOG(INFO) << "bye."; } 73 // }; 74 // scoped_refptr<Ref> ref = new Ref(); 75 // base::Callback<void(void)> ref_cb = base::Bind(&Ref::Foo, ref); 76 // LOG(INFO) << ref_cb.Run(); // Prints out 3. 77 // 78 // By default the object must support RefCounted or you will get a compiler 79 // error. If you're passing between threads, be sure it's 80 // RefCountedThreadSafe! See "Advanced binding of member functions" below if 81 // you don't want to use reference counting. 82 // 83 // RUNNING A CALLBACK 84 // 85 // Callbacks can be run with their "Run" method, which has the same 86 // signature as the template argument to the callback. 87 // 88 // void DoSomething(const base::Callback<void(int, std::string)>& callback) { 89 // callback.Run(5, "hello"); 90 // } 91 // 92 // Callbacks can be run more than once (they don't get deleted or marked when 93 // run). However, this precludes using base::Passed (see below). 94 // 95 // void DoSomething(const base::Callback<double(double)>& callback) { 96 // double myresult = callback.Run(3.14159); 97 // myresult += callback.Run(2.71828); 98 // } 99 // 100 // PASSING UNBOUND INPUT PARAMETERS 101 // 102 // Unbound parameters are specified at the time a callback is Run(). They are 103 // specified in the Callback template type: 104 // 105 // void MyFunc(int i, const std::string& str) {} 106 // base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc); 107 // cb.Run(23, "hello, world"); 108 // 109 // PASSING BOUND INPUT PARAMETERS 110 // 111 // Bound parameters are specified when you create thee callback as arguments 112 // to Bind(). They will be passed to the function and the Run()ner of the 113 // callback doesn't see those values or even know that the function it's 114 // calling. 115 // 116 // void MyFunc(int i, const std::string& str) {} 117 // base::Callback<void(void)> cb = base::Bind(&MyFunc, 23, "hello world"); 118 // cb.Run(); 119 // 120 // A callback with no unbound input parameters (base::Callback<void(void)>) 121 // is called a base::Closure. So we could have also written: 122 // 123 // base::Closure cb = base::Bind(&MyFunc, 23, "hello world"); 124 // 125 // When calling member functions, bound parameters just go after the object 126 // pointer. 127 // 128 // base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world"); 129 // 130 // PARTIAL BINDING OF PARAMETERS 131 // 132 // You can specify some parameters when you create the callback, and specify 133 // the rest when you execute the callback. 134 // 135 // void MyFunc(int i, const std::string& str) {} 136 // base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23); 137 // cb.Run("hello world"); 138 // 139 // When calling a function bound parameters are first, followed by unbound 140 // parameters. 141 // 142 // 143 // ----------------------------------------------------------------------------- 144 // Quick reference for advanced binding 145 // ----------------------------------------------------------------------------- 146 // 147 // BINDING A CLASS METHOD WITH WEAK POINTERS 148 // 149 // base::Bind(&MyClass::Foo, GetWeakPtr()); 150 // 151 // The callback will not be issued if the object is destroyed at the time 152 // it's issued. DANGER: weak pointers are not threadsafe, so don't use this 153 // when passing between threads! 154 // 155 // BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT 156 // 157 // base::Bind(&MyClass::Foo, base::Unretained(this)); 158 // 159 // This disables all lifetime management on the object. You're responsible 160 // for making sure the object is alive at the time of the call. You break it, 161 // you own it! 162 // 163 // BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS 164 // 165 // MyClass* myclass = new MyClass; 166 // base::Bind(&MyClass::Foo, base::Owned(myclass)); 167 // 168 // The object will be deleted when the callback is destroyed, even if it's 169 // not run (like if you post a task during shutdown). Potentially useful for 170 // "fire and forget" cases. 171 // 172 // IGNORING RETURN VALUES 173 // 174 // Sometimes you want to call a function that returns a value in a callback 175 // that doesn't expect a return value. 176 // 177 // int DoSomething(int arg) { cout << arg << endl; } 178 // base::Callback<void<int>) cb = 179 // base::Bind(base::IgnoreResult(&DoSomething)); 180 // 181 // 182 // ----------------------------------------------------------------------------- 183 // Quick reference for binding parameters to Bind() 184 // ----------------------------------------------------------------------------- 185 // 186 // Bound parameters are specified as arguments to Bind() and are passed to the 187 // function. A callback with no parameters or no unbound parameters is called a 188 // Closure (base::Callback<void(void)> and base::Closure are the same thing). 189 // 190 // PASSING PARAMETERS OWNED BY THE CALLBACK 191 // 192 // void Foo(int* arg) { cout << *arg << endl; } 193 // int* pn = new int(1); 194 // base::Closure foo_callback = base::Bind(&foo, base::Owned(pn)); 195 // 196 // The parameter will be deleted when the callback is destroyed, even if it's 197 // not run (like if you post a task during shutdown). 198 // 199 // PASSING PARAMETERS AS A scoped_ptr 200 // 201 // void TakesOwnership(scoped_ptr<Foo> arg) {} 202 // scoped_ptr<Foo> f(new Foo); 203 // // f becomes null during the following call. 204 // base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f)); 205 // 206 // Ownership of the parameter will be with the callback until the it is run, 207 // when ownership is passed to the callback function. This means the callback 208 // can only be run once. If the callback is never run, it will delete the 209 // object when it's destroyed. 210 // 211 // PASSING PARAMETERS AS A scoped_refptr 212 // 213 // void TakesOneRef(scoped_refptr<Foo> arg) {} 214 // scoped_refptr<Foo> f(new Foo) 215 // base::Closure cb = base::Bind(&TakesOneRef, f); 216 // 217 // This should "just work." The closure will take a reference as long as it 218 // is alive, and another reference will be taken for the called function. 219 // 220 // PASSING PARAMETERS BY REFERENCE 221 // 222 // void foo(int arg) { cout << arg << endl } 223 // int n = 1; 224 // base::Closure has_ref = base::Bind(&foo, base::ConstRef(n)); 225 // n = 2; 226 // has_ref.Run(); // Prints "2" 227 // 228 // Normally parameters are copied in the closure. DANGER: ConstRef stores a 229 // const reference instead, referencing the original parameter. This means 230 // that you must ensure the object outlives the callback! 231 // 232 // 233 // ----------------------------------------------------------------------------- 234 // Implementation notes 235 // ----------------------------------------------------------------------------- 236 // 237 // WHERE IS THIS DESIGN FROM: 238 // 239 // The design Callback and Bind is heavily influenced by C++'s 240 // tr1::function/tr1::bind, and by the "Google Callback" system used inside 241 // Google. 242 // 243 // 244 // HOW THE IMPLEMENTATION WORKS: 245 // 246 // There are three main components to the system: 247 // 1) The Callback classes. 248 // 2) The Bind() functions. 249 // 3) The arguments wrappers (e.g., Unretained() and ConstRef()). 250 // 251 // The Callback classes represent a generic function pointer. Internally, 252 // it stores a refcounted piece of state that represents the target function 253 // and all its bound parameters. Each Callback specialization has a templated 254 // constructor that takes an BindState<>*. In the context of the constructor, 255 // the static type of this BindState<> pointer uniquely identifies the 256 // function it is representing, all its bound parameters, and a Run() method 257 // that is capable of invoking the target. 258 // 259 // Callback's constructor takes the BindState<>* that has the full static type 260 // and erases the target function type as well as the types of the bound 261 // parameters. It does this by storing a pointer to the specific Run() 262 // function, and upcasting the state of BindState<>* to a 263 // BindStateBase*. This is safe as long as this BindStateBase pointer 264 // is only used with the stored Run() pointer. 265 // 266 // To BindState<> objects are created inside the Bind() functions. 267 // These functions, along with a set of internal templates, are responsible for 268 // 269 // - Unwrapping the function signature into return type, and parameters 270 // - Determining the number of parameters that are bound 271 // - Creating the BindState storing the bound parameters 272 // - Performing compile-time asserts to avoid error-prone behavior 273 // - Returning an Callback<> with an arity matching the number of unbound 274 // parameters and that knows the correct refcounting semantics for the 275 // target object if we are binding a method. 276 // 277 // The Bind functions do the above using type-inference, and template 278 // specializations. 279 // 280 // By default Bind() will store copies of all bound parameters, and attempt 281 // to refcount a target object if the function being bound is a class method. 282 // These copies are created even if the function takes parameters as const 283 // references. (Binding to non-const references is forbidden, see bind.h.) 284 // 285 // To change this behavior, we introduce a set of argument wrappers 286 // (e.g., Unretained(), and ConstRef()). These are simple container templates 287 // that are passed by value, and wrap a pointer to argument. See the 288 // file-level comment in base/bind_helpers.h for more info. 289 // 290 // These types are passed to the Unwrap() functions, and the MaybeRefcount() 291 // functions respectively to modify the behavior of Bind(). The Unwrap() 292 // and MaybeRefcount() functions change behavior by doing partial 293 // specialization based on whether or not a parameter is a wrapper type. 294 // 295 // ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium. 296 // 297 // 298 // WHY NOT TR1 FUNCTION/BIND? 299 // 300 // Direct use of tr1::function and tr1::bind was considered, but ultimately 301 // rejected because of the number of copy constructors invocations involved 302 // in the binding of arguments during construction, and the forwarding of 303 // arguments during invocation. These copies will no longer be an issue in 304 // C++0x because C++0x will support rvalue reference allowing for the compiler 305 // to avoid these copies. However, waiting for C++0x is not an option. 306 // 307 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the 308 // tr1::bind call itself will invoke a non-trivial copy constructor three times 309 // for each bound parameter. Also, each when passing a tr1::function, each 310 // bound argument will be copied again. 311 // 312 // In addition to the copies taken at binding and invocation, copying a 313 // tr1::function causes a copy to be made of all the bound parameters and 314 // state. 315 // 316 // Furthermore, in Chromium, it is desirable for the Callback to take a 317 // reference on a target object when representing a class method call. This 318 // is not supported by tr1. 319 // 320 // Lastly, tr1::function and tr1::bind has a more general and flexible API. 321 // This includes things like argument reordering by use of 322 // tr1::bind::placeholder, support for non-const reference parameters, and some 323 // limited amount of subtyping of the tr1::function object (e.g., 324 // tr1::function<int(int)> is convertible to tr1::function<void(int)>). 325 // 326 // These are not features that are required in Chromium. Some of them, such as 327 // allowing for reference parameters, and subtyping of functions, may actually 328 // become a source of errors. Removing support for these features actually 329 // allows for a simpler implementation, and a terser Currying API. 330 // 331 // 332 // WHY NOT GOOGLE CALLBACKS? 333 // 334 // The Google callback system also does not support refcounting. Furthermore, 335 // its implementation has a number of strange edge cases with respect to type 336 // conversion of its arguments. In particular, the argument's constness must 337 // at times match exactly the function signature, or the type-inference might 338 // break. Given the above, writing a custom solution was easier. 339 // 340 // 341 // MISSING FUNCTIONALITY 342 // - Invoking the return of Bind. Bind(&foo).Run() does not work; 343 // - Binding arrays to functions that take a non-const pointer. 344 // Example: 345 // void Foo(const char* ptr); 346 // void Bar(char* ptr); 347 // Bind(&Foo, "test"); 348 // Bind(&Bar, "test"); // This fails because ptr is not const. 349 350 namespace base { 351 352 // First, we forward declare the Callback class template. This informs the 353 // compiler that the template only has 1 type parameter which is the function 354 // signature that the Callback is representing. 355 // 356 // After this, create template specializations for 0-$(MAX_ARITY) parameters. Note that 357 // even though the template typelist grows, the specialization still 358 // only has one type: the function signature. 359 // 360 // If you are thinking of forward declaring Callback in your own header file, 361 // please include "base/callback_forward.h" instead. 362 template <typename Sig> 363 class Callback; 364 365 namespace internal { 366 template <typename Runnable, typename RunType, typename BoundArgsType> 367 struct BindState; 368 } // namespace internal 369 370 371 $range ARITY 0..MAX_ARITY 372 $for ARITY [[ 373 $range ARG 1..ARITY 374 375 $if ARITY == 0 [[ 376 template <typename R> 377 class Callback<R(void)> : public internal::CallbackBase { 378 ]] $else [[ 379 template <typename R, $for ARG , [[typename A$(ARG)]]> 380 class Callback<R($for ARG , [[A$(ARG)]])> : public internal::CallbackBase { 381 ]] 382 383 public: 384 typedef R(RunType)($for ARG , [[A$(ARG)]]); 385 386 Callback() : CallbackBase(NULL) { } 387 388 // Note that this constructor CANNOT be explicit, and that Bind() CANNOT 389 // return the exact Callback<> type. See base/bind.h for details. 390 template <typename Runnable, typename BindRunType, typename BoundArgsType> 391 Callback(internal::BindState<Runnable, BindRunType, 392 BoundArgsType>* bind_state) 393 : CallbackBase(bind_state) { 394 395 // Force the assignment to a local variable of PolymorphicInvoke 396 // so the compiler will typecheck that the passed in Run() method has 397 // the correct type. 398 PolymorphicInvoke invoke_func = 399 &internal::BindState<Runnable, BindRunType, BoundArgsType> 400 ::InvokerType::Run; 401 polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func); 402 } 403 404 bool Equals(const Callback& other) const { 405 return CallbackBase::Equals(other); 406 } 407 408 R Run($for ARG , 409 [[typename internal::CallbackParamTraits<A$(ARG)>::ForwardType a$(ARG)]]) const { 410 PolymorphicInvoke f = 411 reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_); 412 413 return f(bind_state_.get()[[]] 414 $if ARITY != 0 [[, ]] 415 $for ARG , 416 [[internal::CallbackForward(a$(ARG))]]); 417 } 418 419 private: 420 typedef R(*PolymorphicInvoke)( 421 internal::BindStateBase*[[]] 422 $if ARITY != 0 [[, ]] 423 $for ARG , [[typename internal::CallbackParamTraits<A$(ARG)>::ForwardType]]); 424 425 }; 426 427 428 ]] $$ for ARITY 429 430 // Syntactic sugar to make Callbacks<void(void)> easier to declare since it 431 // will be used in a lot of APIs with delayed execution. 432 typedef Callback<void(void)> Closure; 433 434 } // namespace base 435 436 #endif // BASE_CALLBACK_H 437