1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/message_loop/message_pump_glib.h" 6 7 #include <fcntl.h> 8 #include <math.h> 9 10 #include <glib.h> 11 12 #include "base/logging.h" 13 #include "base/posix/eintr_wrapper.h" 14 #include "base/threading/platform_thread.h" 15 16 namespace base { 17 18 namespace { 19 20 // Return a timeout suitable for the glib loop, -1 to block forever, 21 // 0 to return right away, or a timeout in milliseconds from now. 22 int GetTimeIntervalMilliseconds(const TimeTicks& from) { 23 if (from.is_null()) 24 return -1; 25 26 // Be careful here. TimeDelta has a precision of microseconds, but we want a 27 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or 28 // 6? It should be 6 to avoid executing delayed work too early. 29 int delay = static_cast<int>( 30 ceil((from - TimeTicks::Now()).InMillisecondsF())); 31 32 // If this value is negative, then we need to run delayed work soon. 33 return delay < 0 ? 0 : delay; 34 } 35 36 // A brief refresher on GLib: 37 // GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize. 38 // On each iteration of the GLib pump, it calls each source's Prepare function. 39 // This function should return TRUE if it wants GLib to call its Dispatch, and 40 // FALSE otherwise. It can also set a timeout in this case for the next time 41 // Prepare should be called again (it may be called sooner). 42 // After the Prepare calls, GLib does a poll to check for events from the 43 // system. File descriptors can be attached to the sources. The poll may block 44 // if none of the Prepare calls returned TRUE. It will block indefinitely, or 45 // by the minimum time returned by a source in Prepare. 46 // After the poll, GLib calls Check for each source that returned FALSE 47 // from Prepare. The return value of Check has the same meaning as for Prepare, 48 // making Check a second chance to tell GLib we are ready for Dispatch. 49 // Finally, GLib calls Dispatch for each source that is ready. If Dispatch 50 // returns FALSE, GLib will destroy the source. Dispatch calls may be recursive 51 // (i.e., you can call Run from them), but Prepare and Check cannot. 52 // Finalize is called when the source is destroyed. 53 // NOTE: It is common for subsytems to want to process pending events while 54 // doing intensive work, for example the flash plugin. They usually use the 55 // following pattern (recommended by the GTK docs): 56 // while (gtk_events_pending()) { 57 // gtk_main_iteration(); 58 // } 59 // 60 // gtk_events_pending just calls g_main_context_pending, which does the 61 // following: 62 // - Call prepare on all the sources. 63 // - Do the poll with a timeout of 0 (not blocking). 64 // - Call check on all the sources. 65 // - *Does not* call dispatch on the sources. 66 // - Return true if any of prepare() or check() returned true. 67 // 68 // gtk_main_iteration just calls g_main_context_iteration, which does the whole 69 // thing, respecting the timeout for the poll (and block, although it is 70 // expected not to if gtk_events_pending returned true), and call dispatch. 71 // 72 // Thus it is important to only return true from prepare or check if we 73 // actually have events or work to do. We also need to make sure we keep 74 // internal state consistent so that if prepare/check return true when called 75 // from gtk_events_pending, they will still return true when called right 76 // after, from gtk_main_iteration. 77 // 78 // For the GLib pump we try to follow the Windows UI pump model: 79 // - Whenever we receive a wakeup event or the timer for delayed work expires, 80 // we run DoWork and/or DoDelayedWork. That part will also run in the other 81 // event pumps. 82 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main 83 // loop, around event handling. 84 85 struct WorkSource : public GSource { 86 MessagePumpGlib* pump; 87 }; 88 89 gboolean WorkSourcePrepare(GSource* source, 90 gint* timeout_ms) { 91 *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare(); 92 // We always return FALSE, so that our timeout is honored. If we were 93 // to return TRUE, the timeout would be considered to be 0 and the poll 94 // would never block. Once the poll is finished, Check will be called. 95 return FALSE; 96 } 97 98 gboolean WorkSourceCheck(GSource* source) { 99 // Only return TRUE if Dispatch should be called. 100 return static_cast<WorkSource*>(source)->pump->HandleCheck(); 101 } 102 103 gboolean WorkSourceDispatch(GSource* source, 104 GSourceFunc unused_func, 105 gpointer unused_data) { 106 107 static_cast<WorkSource*>(source)->pump->HandleDispatch(); 108 // Always return TRUE so our source stays registered. 109 return TRUE; 110 } 111 112 // I wish these could be const, but g_source_new wants non-const. 113 GSourceFuncs WorkSourceFuncs = { 114 WorkSourcePrepare, 115 WorkSourceCheck, 116 WorkSourceDispatch, 117 NULL 118 }; 119 120 } // namespace 121 122 struct MessagePumpGlib::RunState { 123 Delegate* delegate; 124 MessagePumpDispatcher* dispatcher; 125 126 // Used to flag that the current Run() invocation should return ASAP. 127 bool should_quit; 128 129 // Used to count how many Run() invocations are on the stack. 130 int run_depth; 131 132 // This keeps the state of whether the pump got signaled that there was new 133 // work to be done. Since we eat the message on the wake up pipe as soon as 134 // we get it, we keep that state here to stay consistent. 135 bool has_work; 136 }; 137 138 MessagePumpGlib::MessagePumpGlib() 139 : state_(NULL), 140 context_(g_main_context_default()), 141 wakeup_gpollfd_(new GPollFD) { 142 // Create our wakeup pipe, which is used to flag when work was scheduled. 143 int fds[2]; 144 int ret = pipe(fds); 145 DCHECK_EQ(ret, 0); 146 (void)ret; // Prevent warning in release mode. 147 148 wakeup_pipe_read_ = fds[0]; 149 wakeup_pipe_write_ = fds[1]; 150 wakeup_gpollfd_->fd = wakeup_pipe_read_; 151 wakeup_gpollfd_->events = G_IO_IN; 152 153 work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource)); 154 static_cast<WorkSource*>(work_source_)->pump = this; 155 g_source_add_poll(work_source_, wakeup_gpollfd_.get()); 156 // Use a low priority so that we let other events in the queue go first. 157 g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE); 158 // This is needed to allow Run calls inside Dispatch. 159 g_source_set_can_recurse(work_source_, TRUE); 160 g_source_attach(work_source_, context_); 161 } 162 163 MessagePumpGlib::~MessagePumpGlib() { 164 g_source_destroy(work_source_); 165 g_source_unref(work_source_); 166 close(wakeup_pipe_read_); 167 close(wakeup_pipe_write_); 168 } 169 170 void MessagePumpGlib::RunWithDispatcher(Delegate* delegate, 171 MessagePumpDispatcher* dispatcher) { 172 #ifndef NDEBUG 173 // Make sure we only run this on one thread. X/GTK only has one message pump 174 // so we can only have one UI loop per process. 175 static PlatformThreadId thread_id = PlatformThread::CurrentId(); 176 DCHECK(thread_id == PlatformThread::CurrentId()) << 177 "Running MessagePumpGlib on two different threads; " 178 "this is unsupported by GLib!"; 179 #endif 180 181 RunState state; 182 state.delegate = delegate; 183 state.dispatcher = dispatcher; 184 state.should_quit = false; 185 state.run_depth = state_ ? state_->run_depth + 1 : 1; 186 state.has_work = false; 187 188 RunState* previous_state = state_; 189 state_ = &state; 190 191 // We really only do a single task for each iteration of the loop. If we 192 // have done something, assume there is likely something more to do. This 193 // will mean that we don't block on the message pump until there was nothing 194 // more to do. We also set this to true to make sure not to block on the 195 // first iteration of the loop, so RunUntilIdle() works correctly. 196 bool more_work_is_plausible = true; 197 198 // We run our own loop instead of using g_main_loop_quit in one of the 199 // callbacks. This is so we only quit our own loops, and we don't quit 200 // nested loops run by others. TODO(deanm): Is this what we want? 201 for (;;) { 202 // Don't block if we think we have more work to do. 203 bool block = !more_work_is_plausible; 204 205 more_work_is_plausible = g_main_context_iteration(context_, block); 206 if (state_->should_quit) 207 break; 208 209 more_work_is_plausible |= state_->delegate->DoWork(); 210 if (state_->should_quit) 211 break; 212 213 more_work_is_plausible |= 214 state_->delegate->DoDelayedWork(&delayed_work_time_); 215 if (state_->should_quit) 216 break; 217 218 if (more_work_is_plausible) 219 continue; 220 221 more_work_is_plausible = state_->delegate->DoIdleWork(); 222 if (state_->should_quit) 223 break; 224 } 225 226 state_ = previous_state; 227 } 228 229 // Return the timeout we want passed to poll. 230 int MessagePumpGlib::HandlePrepare() { 231 // We know we have work, but we haven't called HandleDispatch yet. Don't let 232 // the pump block so that we can do some processing. 233 if (state_ && // state_ may be null during tests. 234 state_->has_work) 235 return 0; 236 237 // We don't think we have work to do, but make sure not to block 238 // longer than the next time we need to run delayed work. 239 return GetTimeIntervalMilliseconds(delayed_work_time_); 240 } 241 242 bool MessagePumpGlib::HandleCheck() { 243 if (!state_) // state_ may be null during tests. 244 return false; 245 246 // We usually have a single message on the wakeup pipe, since we are only 247 // signaled when the queue went from empty to non-empty, but there can be 248 // two messages if a task posted a task, hence we read at most two bytes. 249 // The glib poll will tell us whether there was data, so this read 250 // shouldn't block. 251 if (wakeup_gpollfd_->revents & G_IO_IN) { 252 char msg[2]; 253 const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2)); 254 if (num_bytes < 1) { 255 NOTREACHED() << "Error reading from the wakeup pipe."; 256 } 257 DCHECK((num_bytes == 1 && msg[0] == '!') || 258 (num_bytes == 2 && msg[0] == '!' && msg[1] == '!')); 259 // Since we ate the message, we need to record that we have more work, 260 // because HandleCheck() may be called without HandleDispatch being called 261 // afterwards. 262 state_->has_work = true; 263 } 264 265 if (state_->has_work) 266 return true; 267 268 if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) { 269 // The timer has expired. That condition will stay true until we process 270 // that delayed work, so we don't need to record this differently. 271 return true; 272 } 273 274 return false; 275 } 276 277 void MessagePumpGlib::HandleDispatch() { 278 state_->has_work = false; 279 if (state_->delegate->DoWork()) { 280 // NOTE: on Windows at this point we would call ScheduleWork (see 281 // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here, 282 // instead of posting a message on the wakeup pipe, we can avoid the 283 // syscalls and just signal that we have more work. 284 state_->has_work = true; 285 } 286 287 if (state_->should_quit) 288 return; 289 290 state_->delegate->DoDelayedWork(&delayed_work_time_); 291 } 292 293 void MessagePumpGlib::Run(Delegate* delegate) { 294 RunWithDispatcher(delegate, NULL); 295 } 296 297 void MessagePumpGlib::Quit() { 298 if (state_) { 299 state_->should_quit = true; 300 } else { 301 NOTREACHED() << "Quit called outside Run!"; 302 } 303 } 304 305 void MessagePumpGlib::ScheduleWork() { 306 // This can be called on any thread, so we don't want to touch any state 307 // variables as we would then need locks all over. This ensures that if 308 // we are sleeping in a poll that we will wake up. 309 char msg = '!'; 310 if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) { 311 NOTREACHED() << "Could not write to the UI message loop wakeup pipe!"; 312 } 313 } 314 315 void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { 316 // We need to wake up the loop in case the poll timeout needs to be 317 // adjusted. This will cause us to try to do work, but that's ok. 318 delayed_work_time_ = delayed_work_time; 319 ScheduleWork(); 320 } 321 322 MessagePumpDispatcher* MessagePumpGlib::GetDispatcher() { 323 return state_ ? state_->dispatcher : NULL; 324 } 325 326 } // namespace base 327