1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ 6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ 7 8 #include <windows.h> 9 10 #include <list> 11 12 #include "base/base_export.h" 13 #include "base/basictypes.h" 14 #include "base/memory/scoped_ptr.h" 15 #include "base/message_loop/message_pump.h" 16 #include "base/message_loop/message_pump_dispatcher.h" 17 #include "base/message_loop/message_pump_observer.h" 18 #include "base/observer_list.h" 19 #include "base/time/time.h" 20 #include "base/win/scoped_handle.h" 21 22 namespace base { 23 24 // MessagePumpWin serves as the base for specialized versions of the MessagePump 25 // for Windows. It provides basic functionality like handling of observers and 26 // controlling the lifetime of the message pump. 27 class BASE_EXPORT MessagePumpWin : public MessagePump { 28 public: 29 MessagePumpWin() : have_work_(0), state_(NULL) {} 30 virtual ~MessagePumpWin() {} 31 32 // Add an Observer, which will start receiving notifications immediately. 33 void AddObserver(MessagePumpObserver* observer); 34 35 // Remove an Observer. It is safe to call this method while an Observer is 36 // receiving a notification callback. 37 void RemoveObserver(MessagePumpObserver* observer); 38 39 // Give a chance to code processing additional messages to notify the 40 // message loop observers that another message has been processed. 41 void WillProcessMessage(const MSG& msg); 42 void DidProcessMessage(const MSG& msg); 43 44 // Like MessagePump::Run, but MSG objects are routed through dispatcher. 45 void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher); 46 47 // MessagePump methods: 48 virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } 49 virtual void Quit(); 50 51 protected: 52 struct RunState { 53 Delegate* delegate; 54 MessagePumpDispatcher* dispatcher; 55 56 // Used to flag that the current Run() invocation should return ASAP. 57 bool should_quit; 58 59 // Used to count how many Run() invocations are on the stack. 60 int run_depth; 61 }; 62 63 virtual void DoRunLoop() = 0; 64 int GetCurrentDelay() const; 65 66 ObserverList<MessagePumpObserver> observers_; 67 68 // The time at which delayed work should run. 69 TimeTicks delayed_work_time_; 70 71 // A boolean value used to indicate if there is a kMsgDoWork message pending 72 // in the Windows Message queue. There is at most one such message, and it 73 // can drive execution of tasks when a native message pump is running. 74 LONG have_work_; 75 76 // State for the current invocation of Run. 77 RunState* state_; 78 }; 79 80 //----------------------------------------------------------------------------- 81 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a 82 // MessageLoop instantiated with TYPE_UI. 83 // 84 // MessagePumpForUI implements a "traditional" Windows message pump. It contains 85 // a nearly infinite loop that peeks out messages, and then dispatches them. 86 // Intermixed with those peeks are callouts to DoWork for pending tasks, and 87 // DoDelayedWork for pending timers. When there are no events to be serviced, 88 // this pump goes into a wait state. In most cases, this message pump handles 89 // all processing. 90 // 91 // However, when a task, or windows event, invokes on the stack a native dialog 92 // box or such, that window typically provides a bare bones (native?) message 93 // pump. That bare-bones message pump generally supports little more than a 94 // peek of the Windows message queue, followed by a dispatch of the peeked 95 // message. MessageLoop extends that bare-bones message pump to also service 96 // Tasks, at the cost of some complexity. 97 // 98 // The basic structure of the extension (refered to as a sub-pump) is that a 99 // special message, kMsgHaveWork, is repeatedly injected into the Windows 100 // Message queue. Each time the kMsgHaveWork message is peeked, checks are 101 // made for an extended set of events, including the availability of Tasks to 102 // run. 103 // 104 // After running a task, the special message kMsgHaveWork is again posted to 105 // the Windows Message queue, ensuring a future time slice for processing a 106 // future event. To prevent flooding the Windows Message queue, care is taken 107 // to be sure that at most one kMsgHaveWork message is EVER pending in the 108 // Window's Message queue. 109 // 110 // There are a few additional complexities in this system where, when there are 111 // no Tasks to run, this otherwise infinite stream of messages which drives the 112 // sub-pump is halted. The pump is automatically re-started when Tasks are 113 // queued. 114 // 115 // A second complexity is that the presence of this stream of posted tasks may 116 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. 117 // Such paint and timer events always give priority to a posted message, such as 118 // kMsgHaveWork messages. As a result, care is taken to do some peeking in 119 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork 120 // is peeked, and before a replacement kMsgHaveWork is posted). 121 // 122 // NOTE: Although it may seem odd that messages are used to start and stop this 123 // flow (as opposed to signaling objects, etc.), it should be understood that 124 // the native message pump will *only* respond to messages. As a result, it is 125 // an excellent choice. It is also helpful that the starter messages that are 126 // placed in the queue when new task arrive also awakens DoRunLoop. 127 // 128 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin { 129 public: 130 // A MessageFilter implements the common Peek/Translate/Dispatch code to deal 131 // with windows messages. 132 // This abstraction is used to inject TSF message peeking. See 133 // TextServicesMessageFilter. 134 class BASE_EXPORT MessageFilter { 135 public: 136 virtual ~MessageFilter() {} 137 // Implements the functionality exposed by the OS through PeekMessage. 138 virtual BOOL DoPeekMessage(MSG* msg, 139 HWND window_handle, 140 UINT msg_filter_min, 141 UINT msg_filter_max, 142 UINT remove_msg) { 143 return PeekMessage(msg, window_handle, msg_filter_min, msg_filter_max, 144 remove_msg); 145 } 146 // Returns true if |message| was consumed by the filter and no extra 147 // processing is required. If this method returns false, it is the 148 // responsibility of the caller to ensure that normal processing takes 149 // place. 150 // The priority to consume messages is the following: 151 // - Native Windows' message filter (CallMsgFilter). 152 // - MessageFilter::ProcessMessage. 153 // - MessagePumpDispatcher. 154 // - TranslateMessage / DispatchMessage. 155 virtual bool ProcessMessage(const MSG& msg) { return false;} 156 }; 157 // The application-defined code passed to the hook procedure. 158 static const int kMessageFilterCode = 0x5001; 159 160 MessagePumpForUI(); 161 virtual ~MessagePumpForUI(); 162 163 // Sets a new MessageFilter. MessagePumpForUI takes ownership of 164 // |message_filter|. When SetMessageFilter is called, old MessageFilter is 165 // deleted. 166 void SetMessageFilter(scoped_ptr<MessageFilter> message_filter); 167 168 // MessagePump methods: 169 virtual void ScheduleWork(); 170 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time); 171 172 private: 173 static LRESULT CALLBACK WndProcThunk(HWND window_handle, 174 UINT message, 175 WPARAM wparam, 176 LPARAM lparam); 177 virtual void DoRunLoop(); 178 void InitMessageWnd(); 179 void WaitForWork(); 180 void HandleWorkMessage(); 181 void HandleTimerMessage(); 182 bool ProcessNextWindowsMessage(); 183 bool ProcessMessageHelper(const MSG& msg); 184 bool ProcessPumpReplacementMessage(); 185 186 // Atom representing the registered window class. 187 ATOM atom_; 188 189 // A hidden message-only window. 190 HWND message_hwnd_; 191 192 scoped_ptr<MessageFilter> message_filter_; 193 }; 194 195 //----------------------------------------------------------------------------- 196 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a 197 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not 198 // deal with Windows mesagges, and instead has a Run loop based on Completion 199 // Ports so it is better suited for IO operations. 200 // 201 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin { 202 public: 203 struct IOContext; 204 205 // Clients interested in receiving OS notifications when asynchronous IO 206 // operations complete should implement this interface and register themselves 207 // with the message pump. 208 // 209 // Typical use #1: 210 // // Use only when there are no user's buffers involved on the actual IO, 211 // // so that all the cleanup can be done by the message pump. 212 // class MyFile : public IOHandler { 213 // MyFile() { 214 // ... 215 // context_ = new IOContext; 216 // context_->handler = this; 217 // message_pump->RegisterIOHandler(file_, this); 218 // } 219 // ~MyFile() { 220 // if (pending_) { 221 // // By setting the handler to NULL, we're asking for this context 222 // // to be deleted when received, without calling back to us. 223 // context_->handler = NULL; 224 // } else { 225 // delete context_; 226 // } 227 // } 228 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 229 // DWORD error) { 230 // pending_ = false; 231 // } 232 // void DoSomeIo() { 233 // ... 234 // // The only buffer required for this operation is the overlapped 235 // // structure. 236 // ConnectNamedPipe(file_, &context_->overlapped); 237 // pending_ = true; 238 // } 239 // bool pending_; 240 // IOContext* context_; 241 // HANDLE file_; 242 // }; 243 // 244 // Typical use #2: 245 // class MyFile : public IOHandler { 246 // MyFile() { 247 // ... 248 // message_pump->RegisterIOHandler(file_, this); 249 // } 250 // // Plus some code to make sure that this destructor is not called 251 // // while there are pending IO operations. 252 // ~MyFile() { 253 // } 254 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 255 // DWORD error) { 256 // ... 257 // delete context; 258 // } 259 // void DoSomeIo() { 260 // ... 261 // IOContext* context = new IOContext; 262 // // This is not used for anything. It just prevents the context from 263 // // being considered "abandoned". 264 // context->handler = this; 265 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); 266 // } 267 // HANDLE file_; 268 // }; 269 // 270 // Typical use #3: 271 // Same as the previous example, except that in order to deal with the 272 // requirement stated for the destructor, the class calls WaitForIOCompletion 273 // from the destructor to block until all IO finishes. 274 // ~MyFile() { 275 // while(pending_) 276 // message_pump->WaitForIOCompletion(INFINITE, this); 277 // } 278 // 279 class IOHandler { 280 public: 281 virtual ~IOHandler() {} 282 // This will be called once the pending IO operation associated with 283 // |context| completes. |error| is the Win32 error code of the IO operation 284 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero 285 // on error. 286 virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, 287 DWORD error) = 0; 288 }; 289 290 // An IOObserver is an object that receives IO notifications from the 291 // MessagePump. 292 // 293 // NOTE: An IOObserver implementation should be extremely fast! 294 class IOObserver { 295 public: 296 IOObserver() {} 297 298 virtual void WillProcessIOEvent() = 0; 299 virtual void DidProcessIOEvent() = 0; 300 301 protected: 302 virtual ~IOObserver() {} 303 }; 304 305 // The extended context that should be used as the base structure on every 306 // overlapped IO operation. |handler| must be set to the registered IOHandler 307 // for the given file when the operation is started, and it can be set to NULL 308 // before the operation completes to indicate that the handler should not be 309 // called anymore, and instead, the IOContext should be deleted when the OS 310 // notifies the completion of this operation. Please remember that any buffers 311 // involved with an IO operation should be around until the callback is 312 // received, so this technique can only be used for IO that do not involve 313 // additional buffers (other than the overlapped structure itself). 314 struct IOContext { 315 OVERLAPPED overlapped; 316 IOHandler* handler; 317 }; 318 319 MessagePumpForIO(); 320 virtual ~MessagePumpForIO() {} 321 322 // MessagePump methods: 323 virtual void ScheduleWork(); 324 virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time); 325 326 // Register the handler to be used when asynchronous IO for the given file 327 // completes. The registration persists as long as |file_handle| is valid, so 328 // |handler| must be valid as long as there is pending IO for the given file. 329 void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); 330 331 // Register the handler to be used to process job events. The registration 332 // persists as long as the job object is live, so |handler| must be valid 333 // until the job object is destroyed. Returns true if the registration 334 // succeeded, and false otherwise. 335 bool RegisterJobObject(HANDLE job_handle, IOHandler* handler); 336 337 // Waits for the next IO completion that should be processed by |filter|, for 338 // up to |timeout| milliseconds. Return true if any IO operation completed, 339 // regardless of the involved handler, and false if the timeout expired. If 340 // the completion port received any message and the involved IO handler 341 // matches |filter|, the callback is called before returning from this code; 342 // if the handler is not the one that we are looking for, the callback will 343 // be postponed for another time, so reentrancy problems can be avoided. 344 // External use of this method should be reserved for the rare case when the 345 // caller is willing to allow pausing regular task dispatching on this thread. 346 bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); 347 348 void AddIOObserver(IOObserver* obs); 349 void RemoveIOObserver(IOObserver* obs); 350 351 private: 352 struct IOItem { 353 IOHandler* handler; 354 IOContext* context; 355 DWORD bytes_transfered; 356 DWORD error; 357 358 // In some cases |context| can be a non-pointer value casted to a pointer. 359 // |has_valid_io_context| is true if |context| is a valid IOContext 360 // pointer, and false otherwise. 361 bool has_valid_io_context; 362 }; 363 364 virtual void DoRunLoop(); 365 void WaitForWork(); 366 bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); 367 bool GetIOItem(DWORD timeout, IOItem* item); 368 bool ProcessInternalIOItem(const IOItem& item); 369 void WillProcessIOEvent(); 370 void DidProcessIOEvent(); 371 372 // Converts an IOHandler pointer to a completion port key. 373 // |has_valid_io_context| specifies whether completion packets posted to 374 // |handler| will have valid OVERLAPPED pointers. 375 static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context); 376 377 // Converts a completion port key to an IOHandler pointer. 378 static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context); 379 380 // The completion port associated with this thread. 381 win::ScopedHandle port_; 382 // This list will be empty almost always. It stores IO completions that have 383 // not been delivered yet because somebody was doing cleanup. 384 std::list<IOItem> completed_io_; 385 386 ObserverList<IOObserver> io_observers_; 387 }; 388 389 } // namespace base 390 391 #endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ 392