1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/metrics/stats_table.h" 6 7 #include "base/logging.h" 8 #include "base/memory/scoped_ptr.h" 9 #include "base/memory/shared_memory.h" 10 #include "base/process/process_handle.h" 11 #include "base/strings/string_piece.h" 12 #include "base/strings/string_util.h" 13 #include "base/strings/utf_string_conversions.h" 14 #include "base/threading/platform_thread.h" 15 #include "base/threading/thread_local_storage.h" 16 17 #if defined(OS_POSIX) 18 #include "base/posix/global_descriptors.h" 19 #include "errno.h" 20 #include "ipc/ipc_descriptors.h" 21 #endif 22 23 namespace base { 24 25 // The StatsTable uses a shared memory segment that is laid out as follows 26 // 27 // +-------------------------------------------+ 28 // | Version | Size | MaxCounters | MaxThreads | 29 // +-------------------------------------------+ 30 // | Thread names table | 31 // +-------------------------------------------+ 32 // | Thread TID table | 33 // +-------------------------------------------+ 34 // | Thread PID table | 35 // +-------------------------------------------+ 36 // | Counter names table | 37 // +-------------------------------------------+ 38 // | Data | 39 // +-------------------------------------------+ 40 // 41 // The data layout is a grid, where the columns are the thread_ids and the 42 // rows are the counter_ids. 43 // 44 // If the first character of the thread_name is '\0', then that column is 45 // empty. 46 // If the first character of the counter_name is '\0', then that row is 47 // empty. 48 // 49 // About Locking: 50 // This class is designed to be both multi-thread and multi-process safe. 51 // Aside from initialization, this is done by partitioning the data which 52 // each thread uses so that no locking is required. However, to allocate 53 // the rows and columns of the table to particular threads, locking is 54 // required. 55 // 56 // At the shared-memory level, we have a lock. This lock protects the 57 // shared-memory table only, and is used when we create new counters (e.g. 58 // use rows) or when we register new threads (e.g. use columns). Reading 59 // data from the table does not require any locking at the shared memory 60 // level. 61 // 62 // Each process which accesses the table will create a StatsTable object. 63 // The StatsTable maintains a hash table of the existing counters in the 64 // table for faster lookup. Since the hash table is process specific, 65 // each process maintains its own cache. We avoid complexity here by never 66 // de-allocating from the hash table. (Counters are dynamically added, 67 // but not dynamically removed). 68 69 // In order for external viewers to be able to read our shared memory, 70 // we all need to use the same size ints. 71 COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints); 72 73 namespace { 74 75 // An internal version in case we ever change the format of this 76 // file, and so that we can identify our table. 77 const int kTableVersion = 0x13131313; 78 79 // The name for un-named counters and threads in the table. 80 const char kUnknownName[] = "<unknown>"; 81 82 // Calculates delta to align an offset to the size of an int 83 inline int AlignOffset(int offset) { 84 return (sizeof(int) - (offset % sizeof(int))) % sizeof(int); 85 } 86 87 inline int AlignedSize(int size) { 88 return size + AlignOffset(size); 89 } 90 91 } // namespace 92 93 // The StatsTable::Internal maintains convenience pointers into the 94 // shared memory segment. Use this class to keep the data structure 95 // clean and accessible. 96 class StatsTable::Internal { 97 public: 98 // Various header information contained in the memory mapped segment. 99 struct TableHeader { 100 int version; 101 int size; 102 int max_counters; 103 int max_threads; 104 }; 105 106 // Construct a new Internal based on expected size parameters, or 107 // return NULL on failure. 108 static Internal* New(const std::string& name, 109 int size, 110 int max_threads, 111 int max_counters); 112 113 SharedMemory* shared_memory() { return shared_memory_.get(); } 114 115 // Accessors for our header pointers 116 TableHeader* table_header() const { return table_header_; } 117 int version() const { return table_header_->version; } 118 int size() const { return table_header_->size; } 119 int max_counters() const { return table_header_->max_counters; } 120 int max_threads() const { return table_header_->max_threads; } 121 122 // Accessors for our tables 123 char* thread_name(int slot_id) const { 124 return &thread_names_table_[ 125 (slot_id-1) * (StatsTable::kMaxThreadNameLength)]; 126 } 127 PlatformThreadId* thread_tid(int slot_id) const { 128 return &(thread_tid_table_[slot_id-1]); 129 } 130 int* thread_pid(int slot_id) const { 131 return &(thread_pid_table_[slot_id-1]); 132 } 133 char* counter_name(int counter_id) const { 134 return &counter_names_table_[ 135 (counter_id-1) * (StatsTable::kMaxCounterNameLength)]; 136 } 137 int* row(int counter_id) const { 138 return &data_table_[(counter_id-1) * max_threads()]; 139 } 140 141 private: 142 // Constructor is private because you should use New() instead. 143 explicit Internal(SharedMemory* shared_memory) 144 : shared_memory_(shared_memory), 145 table_header_(NULL), 146 thread_names_table_(NULL), 147 thread_tid_table_(NULL), 148 thread_pid_table_(NULL), 149 counter_names_table_(NULL), 150 data_table_(NULL) { 151 } 152 153 // Create or open the SharedMemory used by the stats table. 154 static SharedMemory* CreateSharedMemory(const std::string& name, 155 int size); 156 157 // Initializes the table on first access. Sets header values 158 // appropriately and zeroes all counters. 159 void InitializeTable(void* memory, int size, int max_counters, 160 int max_threads); 161 162 // Initializes our in-memory pointers into a pre-created StatsTable. 163 void ComputeMappedPointers(void* memory); 164 165 scoped_ptr<SharedMemory> shared_memory_; 166 TableHeader* table_header_; 167 char* thread_names_table_; 168 PlatformThreadId* thread_tid_table_; 169 int* thread_pid_table_; 170 char* counter_names_table_; 171 int* data_table_; 172 173 DISALLOW_COPY_AND_ASSIGN(Internal); 174 }; 175 176 // static 177 StatsTable::Internal* StatsTable::Internal::New(const std::string& name, 178 int size, 179 int max_threads, 180 int max_counters) { 181 scoped_ptr<SharedMemory> shared_memory(CreateSharedMemory(name, size)); 182 if (!shared_memory.get()) 183 return NULL; 184 if (!shared_memory->Map(size)) 185 return NULL; 186 void* memory = shared_memory->memory(); 187 188 scoped_ptr<Internal> internal(new Internal(shared_memory.release())); 189 TableHeader* header = static_cast<TableHeader*>(memory); 190 191 // If the version does not match, then assume the table needs 192 // to be initialized. 193 if (header->version != kTableVersion) 194 internal->InitializeTable(memory, size, max_counters, max_threads); 195 196 // We have a valid table, so compute our pointers. 197 internal->ComputeMappedPointers(memory); 198 199 return internal.release(); 200 } 201 202 // static 203 SharedMemory* StatsTable::Internal::CreateSharedMemory(const std::string& name, 204 int size) { 205 #if defined(OS_POSIX) 206 GlobalDescriptors* global_descriptors = GlobalDescriptors::GetInstance(); 207 if (global_descriptors->MaybeGet(kStatsTableSharedMemFd) != -1) { 208 // Open the shared memory file descriptor passed by the browser process. 209 FileDescriptor file_descriptor( 210 global_descriptors->Get(kStatsTableSharedMemFd), false); 211 return new SharedMemory(file_descriptor, false); 212 } 213 // Otherwise we need to create it. 214 scoped_ptr<SharedMemory> shared_memory(new SharedMemory()); 215 if (!shared_memory->CreateAnonymous(size)) 216 return NULL; 217 return shared_memory.release(); 218 #elif defined(OS_WIN) 219 scoped_ptr<SharedMemory> shared_memory(new SharedMemory()); 220 if (!shared_memory->CreateNamed(name, true, size)) 221 return NULL; 222 return shared_memory.release(); 223 #endif 224 } 225 226 void StatsTable::Internal::InitializeTable(void* memory, int size, 227 int max_counters, 228 int max_threads) { 229 // Zero everything. 230 memset(memory, 0, size); 231 232 // Initialize the header. 233 TableHeader* header = static_cast<TableHeader*>(memory); 234 header->version = kTableVersion; 235 header->size = size; 236 header->max_counters = max_counters; 237 header->max_threads = max_threads; 238 } 239 240 void StatsTable::Internal::ComputeMappedPointers(void* memory) { 241 char* data = static_cast<char*>(memory); 242 int offset = 0; 243 244 table_header_ = reinterpret_cast<TableHeader*>(data); 245 offset += sizeof(*table_header_); 246 offset += AlignOffset(offset); 247 248 // Verify we're looking at a valid StatsTable. 249 DCHECK_EQ(table_header_->version, kTableVersion); 250 251 thread_names_table_ = reinterpret_cast<char*>(data + offset); 252 offset += sizeof(char) * 253 max_threads() * StatsTable::kMaxThreadNameLength; 254 offset += AlignOffset(offset); 255 256 thread_tid_table_ = reinterpret_cast<PlatformThreadId*>(data + offset); 257 offset += sizeof(int) * max_threads(); 258 offset += AlignOffset(offset); 259 260 thread_pid_table_ = reinterpret_cast<int*>(data + offset); 261 offset += sizeof(int) * max_threads(); 262 offset += AlignOffset(offset); 263 264 counter_names_table_ = reinterpret_cast<char*>(data + offset); 265 offset += sizeof(char) * 266 max_counters() * StatsTable::kMaxCounterNameLength; 267 offset += AlignOffset(offset); 268 269 data_table_ = reinterpret_cast<int*>(data + offset); 270 offset += sizeof(int) * max_threads() * max_counters(); 271 272 DCHECK_EQ(offset, size()); 273 } 274 275 // TLSData carries the data stored in the TLS slots for the 276 // StatsTable. This is used so that we can properly cleanup when the 277 // thread exits and return the table slot. 278 // 279 // Each thread that calls RegisterThread in the StatsTable will have 280 // a TLSData stored in its TLS. 281 struct StatsTable::TLSData { 282 StatsTable* table; 283 int slot; 284 }; 285 286 // We keep a singleton table which can be easily accessed. 287 StatsTable* global_table = NULL; 288 289 StatsTable::StatsTable(const std::string& name, int max_threads, 290 int max_counters) 291 : internal_(NULL), 292 tls_index_(SlotReturnFunction) { 293 int table_size = 294 AlignedSize(sizeof(Internal::TableHeader)) + 295 AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) + 296 AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) + 297 AlignedSize(max_threads * sizeof(int)) + 298 AlignedSize(max_threads * sizeof(int)) + 299 AlignedSize((sizeof(int) * (max_counters * max_threads))); 300 301 internal_ = Internal::New(name, table_size, max_threads, max_counters); 302 303 if (!internal_) 304 DPLOG(ERROR) << "StatsTable did not initialize"; 305 } 306 307 StatsTable::~StatsTable() { 308 // Before we tear down our copy of the table, be sure to 309 // unregister our thread. 310 UnregisterThread(); 311 312 // Return ThreadLocalStorage. At this point, if any registered threads 313 // still exist, they cannot Unregister. 314 tls_index_.Free(); 315 316 // Cleanup our shared memory. 317 delete internal_; 318 319 // If we are the global table, unregister ourselves. 320 if (global_table == this) 321 global_table = NULL; 322 } 323 324 StatsTable* StatsTable::current() { 325 return global_table; 326 } 327 328 void StatsTable::set_current(StatsTable* value) { 329 global_table = value; 330 } 331 332 int StatsTable::GetSlot() const { 333 TLSData* data = GetTLSData(); 334 if (!data) 335 return 0; 336 return data->slot; 337 } 338 339 int StatsTable::RegisterThread(const std::string& name) { 340 int slot = 0; 341 if (!internal_) 342 return 0; 343 344 // Registering a thread requires that we lock the shared memory 345 // so that two threads don't grab the same slot. Fortunately, 346 // thread creation shouldn't happen in inner loops. 347 { 348 SharedMemoryAutoLock lock(internal_->shared_memory()); 349 slot = FindEmptyThread(); 350 if (!slot) { 351 return 0; 352 } 353 354 // We have space, so consume a column in the table. 355 std::string thread_name = name; 356 if (name.empty()) 357 thread_name = kUnknownName; 358 strlcpy(internal_->thread_name(slot), thread_name.c_str(), 359 kMaxThreadNameLength); 360 *(internal_->thread_tid(slot)) = PlatformThread::CurrentId(); 361 *(internal_->thread_pid(slot)) = GetCurrentProcId(); 362 } 363 364 // Set our thread local storage. 365 TLSData* data = new TLSData; 366 data->table = this; 367 data->slot = slot; 368 tls_index_.Set(data); 369 return slot; 370 } 371 372 int StatsTable::CountThreadsRegistered() const { 373 if (!internal_) 374 return 0; 375 376 // Loop through the shared memory and count the threads that are active. 377 // We intentionally do not lock the table during the operation. 378 int count = 0; 379 for (int index = 1; index <= internal_->max_threads(); index++) { 380 char* name = internal_->thread_name(index); 381 if (*name != '\0') 382 count++; 383 } 384 return count; 385 } 386 387 int StatsTable::FindCounter(const std::string& name) { 388 // Note: the API returns counters numbered from 1..N, although 389 // internally, the array is 0..N-1. This is so that we can return 390 // zero as "not found". 391 if (!internal_) 392 return 0; 393 394 // Create a scope for our auto-lock. 395 { 396 AutoLock scoped_lock(counters_lock_); 397 398 // Attempt to find the counter. 399 CountersMap::const_iterator iter; 400 iter = counters_.find(name); 401 if (iter != counters_.end()) 402 return iter->second; 403 } 404 405 // Counter does not exist, so add it. 406 return AddCounter(name); 407 } 408 409 int* StatsTable::GetLocation(int counter_id, int slot_id) const { 410 if (!internal_) 411 return NULL; 412 if (slot_id > internal_->max_threads()) 413 return NULL; 414 415 int* row = internal_->row(counter_id); 416 return &(row[slot_id-1]); 417 } 418 419 const char* StatsTable::GetRowName(int index) const { 420 if (!internal_) 421 return NULL; 422 423 return internal_->counter_name(index); 424 } 425 426 int StatsTable::GetRowValue(int index) const { 427 return GetRowValue(index, 0); 428 } 429 430 int StatsTable::GetRowValue(int index, int pid) const { 431 if (!internal_) 432 return 0; 433 434 int rv = 0; 435 int* row = internal_->row(index); 436 for (int slot_id = 1; slot_id <= internal_->max_threads(); slot_id++) { 437 if (pid == 0 || *internal_->thread_pid(slot_id) == pid) 438 rv += row[slot_id-1]; 439 } 440 return rv; 441 } 442 443 int StatsTable::GetCounterValue(const std::string& name) { 444 return GetCounterValue(name, 0); 445 } 446 447 int StatsTable::GetCounterValue(const std::string& name, int pid) { 448 if (!internal_) 449 return 0; 450 451 int row = FindCounter(name); 452 if (!row) 453 return 0; 454 return GetRowValue(row, pid); 455 } 456 457 int StatsTable::GetMaxCounters() const { 458 if (!internal_) 459 return 0; 460 return internal_->max_counters(); 461 } 462 463 int StatsTable::GetMaxThreads() const { 464 if (!internal_) 465 return 0; 466 return internal_->max_threads(); 467 } 468 469 int* StatsTable::FindLocation(const char* name) { 470 // Get the static StatsTable 471 StatsTable *table = StatsTable::current(); 472 if (!table) 473 return NULL; 474 475 // Get the slot for this thread. Try to register 476 // it if none exists. 477 int slot = table->GetSlot(); 478 if (!slot && !(slot = table->RegisterThread(std::string()))) 479 return NULL; 480 481 // Find the counter id for the counter. 482 std::string str_name(name); 483 int counter = table->FindCounter(str_name); 484 485 // Now we can find the location in the table. 486 return table->GetLocation(counter, slot); 487 } 488 489 void StatsTable::UnregisterThread() { 490 UnregisterThread(GetTLSData()); 491 } 492 493 void StatsTable::UnregisterThread(TLSData* data) { 494 if (!data) 495 return; 496 DCHECK(internal_); 497 498 // Mark the slot free by zeroing out the thread name. 499 char* name = internal_->thread_name(data->slot); 500 *name = '\0'; 501 502 // Remove the calling thread's TLS so that it cannot use the slot. 503 tls_index_.Set(NULL); 504 delete data; 505 } 506 507 void StatsTable::SlotReturnFunction(void* data) { 508 // This is called by the TLS destructor, which on some platforms has 509 // already cleared the TLS info, so use the tls_data argument 510 // rather than trying to fetch it ourselves. 511 TLSData* tls_data = static_cast<TLSData*>(data); 512 if (tls_data) { 513 DCHECK(tls_data->table); 514 tls_data->table->UnregisterThread(tls_data); 515 } 516 } 517 518 int StatsTable::FindEmptyThread() const { 519 // Note: the API returns slots numbered from 1..N, although 520 // internally, the array is 0..N-1. This is so that we can return 521 // zero as "not found". 522 // 523 // The reason for doing this is because the thread 'slot' is stored 524 // in TLS, which is always initialized to zero, not -1. If 0 were 525 // returned as a valid slot number, it would be confused with the 526 // uninitialized state. 527 if (!internal_) 528 return 0; 529 530 int index = 1; 531 for (; index <= internal_->max_threads(); index++) { 532 char* name = internal_->thread_name(index); 533 if (!*name) 534 break; 535 } 536 if (index > internal_->max_threads()) 537 return 0; // The table is full. 538 return index; 539 } 540 541 int StatsTable::FindCounterOrEmptyRow(const std::string& name) const { 542 // Note: the API returns slots numbered from 1..N, although 543 // internally, the array is 0..N-1. This is so that we can return 544 // zero as "not found". 545 // 546 // There isn't much reason for this other than to be consistent 547 // with the way we track columns for thread slots. (See comments 548 // in FindEmptyThread for why it is done this way). 549 if (!internal_) 550 return 0; 551 552 int free_slot = 0; 553 for (int index = 1; index <= internal_->max_counters(); index++) { 554 char* row_name = internal_->counter_name(index); 555 if (!*row_name && !free_slot) 556 free_slot = index; // save that we found a free slot 557 else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength)) 558 return index; 559 } 560 return free_slot; 561 } 562 563 int StatsTable::AddCounter(const std::string& name) { 564 if (!internal_) 565 return 0; 566 567 int counter_id = 0; 568 { 569 // To add a counter to the shared memory, we need the 570 // shared memory lock. 571 SharedMemoryAutoLock lock(internal_->shared_memory()); 572 573 // We have space, so create a new counter. 574 counter_id = FindCounterOrEmptyRow(name); 575 if (!counter_id) 576 return 0; 577 578 std::string counter_name = name; 579 if (name.empty()) 580 counter_name = kUnknownName; 581 strlcpy(internal_->counter_name(counter_id), counter_name.c_str(), 582 kMaxCounterNameLength); 583 } 584 585 // now add to our in-memory cache 586 { 587 AutoLock lock(counters_lock_); 588 counters_[name] = counter_id; 589 } 590 return counter_id; 591 } 592 593 StatsTable::TLSData* StatsTable::GetTLSData() const { 594 TLSData* data = 595 static_cast<TLSData*>(tls_index_.Get()); 596 if (!data) 597 return NULL; 598 599 DCHECK(data->slot); 600 DCHECK_EQ(data->table, this); 601 return data; 602 } 603 604 #if defined(OS_POSIX) 605 SharedMemoryHandle StatsTable::GetSharedMemoryHandle() const { 606 if (!internal_) 607 return SharedMemory::NULLHandle(); 608 return internal_->shared_memory()->handle(); 609 } 610 #endif 611 612 } // namespace base 613