Home | History | Annotate | Download | only in strings
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/strings/safe_sprintf.h"
      6 
      7 #include <limits>
      8 
      9 #if !defined(NDEBUG)
     10 // In debug builds, we use RAW_CHECK() to print useful error messages, if
     11 // SafeSPrintf() is called with broken arguments.
     12 // As our contract promises that SafeSPrintf() can be called from any
     13 // restricted run-time context, it is not actually safe to call logging
     14 // functions from it; and we only ever do so for debug builds and hope for the
     15 // best. We should _never_ call any logging function other than RAW_CHECK(),
     16 // and we should _never_ include any logging code that is active in production
     17 // builds. Most notably, we should not include these logging functions in
     18 // unofficial release builds, even though those builds would otherwise have
     19 // DCHECKS() enabled.
     20 // In other words; please do not remove the #ifdef around this #include.
     21 // Instead, in production builds we opt for returning a degraded result,
     22 // whenever an error is encountered.
     23 // E.g. The broken function call
     24 //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
     25 //      will print something like
     26 //        errno = 13, (%x)
     27 //      instead of
     28 //        errno = 13 (Access denied)
     29 //      In most of the anticipated use cases, that's probably the preferred
     30 //      behavior.
     31 #include "base/logging.h"
     32 #define DEBUG_CHECK RAW_CHECK
     33 #else
     34 #define DEBUG_CHECK(x) do { if (x) { } } while (0)
     35 #endif
     36 
     37 namespace base {
     38 namespace strings {
     39 
     40 // The code in this file is extremely careful to be async-signal-safe.
     41 //
     42 // Most obviously, we avoid calling any code that could dynamically allocate
     43 // memory. Doing so would almost certainly result in bugs and dead-locks.
     44 // We also avoid calling any other STL functions that could have unintended
     45 // side-effects involving memory allocation or access to other shared
     46 // resources.
     47 //
     48 // But on top of that, we also avoid calling other library functions, as many
     49 // of them have the side-effect of calling getenv() (in order to deal with
     50 // localization) or accessing errno. The latter sounds benign, but there are
     51 // several execution contexts where it isn't even possible to safely read let
     52 // alone write errno.
     53 //
     54 // The stated design goal of the SafeSPrintf() function is that it can be
     55 // called from any context that can safely call C or C++ code (i.e. anything
     56 // that doesn't require assembly code).
     57 //
     58 // For a brief overview of some but not all of the issues with async-signal-
     59 // safety, refer to:
     60 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
     61 
     62 namespace {
     63 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
     64 
     65 const char kUpCaseHexDigits[]   = "0123456789ABCDEF";
     66 const char kDownCaseHexDigits[] = "0123456789abcdef";
     67 }
     68 
     69 #if defined(NDEBUG)
     70 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
     71 // but C++ doesn't allow us to do that for constants. Instead, we have to
     72 // use careful casting and shifting. We later use a COMPILE_ASSERT to
     73 // verify that this worked correctly.
     74 namespace {
     75 const size_t kSSizeMax = kSSizeMaxConst;
     76 }
     77 #else  // defined(NDEBUG)
     78 // For efficiency, we really need kSSizeMax to be a constant. But for unit
     79 // tests, it should be adjustable. This allows us to verify edge cases without
     80 // having to fill the entire available address space. As a compromise, we make
     81 // kSSizeMax adjustable in debug builds, and then only compile that particular
     82 // part of the unit test in debug builds.
     83 namespace {
     84 static size_t kSSizeMax = kSSizeMaxConst;
     85 }
     86 
     87 namespace internal {
     88 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
     89   kSSizeMax = max;
     90 }
     91 
     92 size_t GetSafeSPrintfSSizeMaxForTest() {
     93   return kSSizeMax;
     94 }
     95 }
     96 #endif  // defined(NDEBUG)
     97 
     98 namespace {
     99 class Buffer {
    100  public:
    101   // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
    102   // has |size| bytes of writable storage. It is the caller's responsibility
    103   // to ensure that the buffer is at least one byte in size, so that it fits
    104   // the trailing NUL that will be added by the destructor. The buffer also
    105   // must be smaller or equal to kSSizeMax in size.
    106   Buffer(char* buffer, size_t size)
    107       : buffer_(buffer),
    108         size_(size - 1),  // Account for trailing NUL byte
    109         count_(0) {
    110 // The following assertion does not build on Mac and Android. This is because
    111 // static_assert only works with compile-time constants, but mac uses
    112 // libstdc++4.2 and android uses stlport, which both don't mark
    113 // numeric_limits::max() as constexp.
    114 #if __cplusplus >= 201103 && !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_IOS)
    115     COMPILE_ASSERT(kSSizeMaxConst == \
    116                    static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
    117                    kSSizeMax_is_the_max_value_of_an_ssize_t);
    118 #endif
    119     DEBUG_CHECK(size > 0);
    120     DEBUG_CHECK(size <= kSSizeMax);
    121   }
    122 
    123   ~Buffer() {
    124     // The code calling the constructor guaranteed that there was enough space
    125     // to store a trailing NUL -- and in debug builds, we are actually
    126     // verifying this with DEBUG_CHECK()s in the constructor. So, we can
    127     // always unconditionally write the NUL byte in the destructor.  We do not
    128     // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
    129     // including the NUL byte in its return code.
    130     *GetInsertionPoint() = '\000';
    131   }
    132 
    133   // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
    134   // caller can now stop adding more data, as GetCount() has reached its
    135   // maximum possible value.
    136   inline bool OutOfAddressableSpace() const {
    137     return count_ == static_cast<size_t>(kSSizeMax - 1);
    138   }
    139 
    140   // Returns the number of bytes that would have been emitted to |buffer_|
    141   // if it was sized sufficiently large. This number can be larger than
    142   // |size_|, if the caller provided an insufficiently large output buffer.
    143   // But it will never be bigger than |kSSizeMax-1|.
    144   inline ssize_t GetCount() const {
    145     DEBUG_CHECK(count_ < kSSizeMax);
    146     return static_cast<ssize_t>(count_);
    147   }
    148 
    149   // Emits one |ch| character into the |buffer_| and updates the |count_| of
    150   // characters that are currently supposed to be in the buffer.
    151   // Returns "false", iff the buffer was already full.
    152   // N.B. |count_| increases even if no characters have been written. This is
    153   // needed so that GetCount() can return the number of bytes that should
    154   // have been allocated for the |buffer_|.
    155   inline bool Out(char ch) {
    156     if (size_ >= 1 && count_ < size_) {
    157       buffer_[count_] = ch;
    158       return IncrementCountByOne();
    159     }
    160     // |count_| still needs to be updated, even if the buffer has been
    161     // filled completely. This allows SafeSPrintf() to return the number of
    162     // bytes that should have been emitted.
    163     IncrementCountByOne();
    164     return false;
    165   }
    166 
    167   // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
    168   // |count_| will also be incremented by the number of bytes that were meant
    169   // to be emitted. The |pad| character is typically either a ' ' space
    170   // or a '0' zero, but other non-NUL values are legal.
    171   // Returns "false", iff the the |buffer_| filled up (i.e. |count_|
    172   // overflowed |size_|) at any time during padding.
    173   inline bool Pad(char pad, size_t padding, size_t len) {
    174     DEBUG_CHECK(pad);
    175     DEBUG_CHECK(padding >= 0 && padding <= kSSizeMax);
    176     DEBUG_CHECK(len >= 0);
    177     for (; padding > len; --padding) {
    178       if (!Out(pad)) {
    179         if (--padding) {
    180           IncrementCount(padding-len);
    181         }
    182         return false;
    183       }
    184     }
    185     return true;
    186   }
    187 
    188   // POSIX doesn't define any async-signal-safe function for converting
    189   // an integer to ASCII. Define our own version.
    190   //
    191   // This also gives us the ability to make the function a little more
    192   // powerful and have it deal with |padding|, with truncation, and with
    193   // predicting the length of the untruncated output.
    194   //
    195   // IToASCII() converts an integer |i| to ASCII.
    196   //
    197   // Unlike similar functions in the standard C library, it never appends a
    198   // NUL character. This is left for the caller to do.
    199   //
    200   // While the function signature takes a signed int64_t, the code decides at
    201   // run-time whether to treat the argument as signed (int64_t) or as unsigned
    202   // (uint64_t) based on the value of |sign|.
    203   //
    204   // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
    205   // a |sign|. Otherwise, |i| is treated as unsigned.
    206   //
    207   // For bases larger than 10, |upcase| decides whether lower-case or upper-
    208   // case letters should be used to designate digits greater than 10.
    209   //
    210   // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
    211   // be positive and will always be applied to the left of the output.
    212   //
    213   // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
    214   // the left of |padding|, if |pad| is '0'; and to the right of |padding|
    215   // if |pad| is ' '.
    216   //
    217   // Returns "false", if the |buffer_| overflowed at any time.
    218   bool IToASCII(bool sign, bool upcase, int64_t i, int base,
    219                 char pad, size_t padding, const char* prefix);
    220 
    221  private:
    222   // Increments |count_| by |inc| unless this would cause |count_| to
    223   // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
    224   // it then clamps |count_| to |kSSizeMax-1|.
    225   inline bool IncrementCount(size_t inc) {
    226     // "inc" is either 1 or a "padding" value. Padding is clamped at
    227     // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
    228     // the range 1..kSSizeMax-1.
    229     // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
    230     // integer overflows.
    231     DEBUG_CHECK(inc <= kSSizeMax - 1);
    232     if (count_ > kSSizeMax - 1 - inc) {
    233       count_ = kSSizeMax - 1;
    234       return false;
    235     } else {
    236       count_ += inc;
    237       return true;
    238     }
    239   }
    240 
    241   // Convenience method for the common case of incrementing |count_| by one.
    242   inline bool IncrementCountByOne() {
    243     return IncrementCount(1);
    244   }
    245 
    246   // Return the current insertion point into the buffer. This is typically
    247   // at |buffer_| + |count_|, but could be before that if truncation
    248   // happened. It always points to one byte past the last byte that was
    249   // successfully placed into the |buffer_|.
    250   inline char* GetInsertionPoint() const {
    251     size_t idx = count_;
    252     if (idx > size_) {
    253       idx = size_;
    254     }
    255     return buffer_ + idx;
    256   }
    257 
    258   // User-provided buffer that will receive the fully formatted output string.
    259   char* buffer_;
    260 
    261   // Number of bytes that are available in the buffer excluding the trailing
    262   // NUL byte that will be added by the destructor.
    263   const size_t size_;
    264 
    265   // Number of bytes that would have been emitted to the buffer, if the buffer
    266   // was sufficiently big. This number always excludes the trailing NUL byte
    267   // and it is guaranteed to never grow bigger than kSSizeMax-1.
    268   size_t count_;
    269 
    270   DISALLOW_COPY_AND_ASSIGN(Buffer);
    271 };
    272 
    273 
    274 bool Buffer::IToASCII(bool sign, bool upcase, int64_t i, int base,
    275                       char pad, size_t padding, const char* prefix) {
    276   // Sanity check for parameters. None of these should ever fail, but see
    277   // above for the rationale why we can't call CHECK().
    278   DEBUG_CHECK(base >= 2);
    279   DEBUG_CHECK(base <= 16);
    280   DEBUG_CHECK(!sign || base == 10);
    281   DEBUG_CHECK(pad == '0' || pad == ' ');
    282   DEBUG_CHECK(padding >= 0);
    283   DEBUG_CHECK(padding <= kSSizeMax);
    284   DEBUG_CHECK(!(sign && prefix && *prefix));
    285 
    286   // Handle negative numbers, if the caller indicated that |i| should be
    287   // treated as a signed number; otherwise treat |i| as unsigned (even if the
    288   // MSB is set!)
    289   // Details are tricky, because of limited data-types, but equivalent pseudo-
    290   // code would look like:
    291   //   if (sign && i < 0)
    292   //     prefix = "-";
    293   //   num = abs(i);
    294   int minint = 0;
    295   uint64_t num;
    296   if (sign && i < 0) {
    297     prefix = "-";
    298 
    299     // Turn our number positive.
    300     if (i == std::numeric_limits<int64_t>::min()) {
    301       // The most negative integer needs special treatment.
    302       minint = 1;
    303       num = static_cast<uint64_t>(-(i + 1));
    304     } else {
    305       // "Normal" negative numbers are easy.
    306       num = static_cast<uint64_t>(-i);
    307     }
    308   } else {
    309     num = static_cast<uint64_t>(i);
    310   }
    311 
    312   // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
    313   // make the prefix accessible in reverse order, so that we can later output
    314   // it right between padding and the number.
    315   // We cannot choose the easier approach of just reversing the number, as that
    316   // fails in situations where we need to truncate numbers that have padding
    317   // and/or prefixes.
    318   const char* reverse_prefix = NULL;
    319   if (prefix && *prefix) {
    320     if (pad == '0') {
    321       while (*prefix) {
    322         if (padding) {
    323           --padding;
    324         }
    325         Out(*prefix++);
    326       }
    327       prefix = NULL;
    328     } else {
    329       for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
    330       }
    331     }
    332   } else
    333     prefix = NULL;
    334   const size_t prefix_length = reverse_prefix - prefix;
    335 
    336   // Loop until we have converted the entire number. Output at least one
    337   // character (i.e. '0').
    338   size_t start = count_;
    339   size_t discarded = 0;
    340   bool started = false;
    341   do {
    342     // Make sure there is still enough space left in our output buffer.
    343     if (count_ >= size_) {
    344       if (start < size_) {
    345         // It is rare that we need to output a partial number. But if asked
    346         // to do so, we will still make sure we output the correct number of
    347         // leading digits.
    348         // Since we are generating the digits in reverse order, we actually
    349         // have to discard digits in the order that we have already emitted
    350         // them. This is essentially equivalent to:
    351         //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
    352         for (char* move = buffer_ + start, *end = buffer_ + size_ - 1;
    353              move < end;
    354              ++move) {
    355           *move = move[1];
    356         }
    357         ++discarded;
    358         --count_;
    359       } else if (count_ - size_ > 1) {
    360         // Need to increment either |count_| or |discarded| to make progress.
    361         // The latter is more efficient, as it eventually triggers fast
    362         // handling of padding. But we have to ensure we don't accidentally
    363         // change the overall state (i.e. switch the state-machine from
    364         // discarding to non-discarding). |count_| needs to always stay
    365         // bigger than |size_|.
    366         --count_;
    367         ++discarded;
    368       }
    369     }
    370 
    371     // Output the next digit and (if necessary) compensate for the most
    372     // negative integer needing special treatment. This works because,
    373     // no matter the bit width of the integer, the lowest-most decimal
    374     // integer always ends in 2, 4, 6, or 8.
    375     if (!num && started) {
    376       if (reverse_prefix > prefix) {
    377         Out(*--reverse_prefix);
    378       } else {
    379         Out(pad);
    380       }
    381     } else {
    382       started = true;
    383       Out((upcase ? kUpCaseHexDigits : kDownCaseHexDigits)[num%base + minint]);
    384     }
    385 
    386     minint = 0;
    387     num /= base;
    388 
    389     // Add padding, if requested.
    390     if (padding > 0) {
    391       --padding;
    392 
    393       // Performance optimization for when we are asked to output excessive
    394       // padding, but our output buffer is limited in size.  Even if we output
    395       // a 64bit number in binary, we would never write more than 64 plus
    396       // prefix non-padding characters. So, once this limit has been passed,
    397       // any further state change can be computed arithmetically; we know that
    398       // by this time, our entire final output consists of padding characters
    399       // that have all already been output.
    400       if (discarded > 8*sizeof(num) + prefix_length) {
    401         IncrementCount(padding);
    402         padding = 0;
    403       }
    404     }
    405   } while (num || padding || (reverse_prefix > prefix));
    406 
    407   // Conversion to ASCII actually resulted in the digits being in reverse
    408   // order. We can't easily generate them in forward order, as we can't tell
    409   // the number of characters needed until we are done converting.
    410   // So, now, we reverse the string (except for the possible '-' sign).
    411   char* front = buffer_ + start;
    412   char* back = GetInsertionPoint();
    413   while (--back > front) {
    414     char ch = *back;
    415     *back = *front;
    416     *front++ = ch;
    417   }
    418 
    419   IncrementCount(discarded);
    420   return !discarded;
    421 }
    422 
    423 }  // anonymous namespace
    424 
    425 namespace internal {
    426 
    427 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt, const Arg* args,
    428                      const size_t max_args) {
    429   // Make sure that at least one NUL byte can be written, and that the buffer
    430   // never overflows kSSizeMax. Not only does that use up most or all of the
    431   // address space, it also would result in a return code that cannot be
    432   // represented.
    433   if (static_cast<ssize_t>(sz) < 1) {
    434     return -1;
    435   } else if (sz > kSSizeMax) {
    436     sz = kSSizeMax;
    437   }
    438 
    439   // Iterate over format string and interpret '%' arguments as they are
    440   // encountered.
    441   Buffer buffer(buf, sz);
    442   size_t padding;
    443   char pad;
    444   for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace(); ) {
    445     if (*fmt++ == '%') {
    446       padding = 0;
    447       pad = ' ';
    448       char ch = *fmt++;
    449     format_character_found:
    450       switch (ch) {
    451       case '0': case '1': case '2': case '3': case '4':
    452       case '5': case '6': case '7': case '8': case '9':
    453         // Found a width parameter. Convert to an integer value and store in
    454         // "padding". If the leading digit is a zero, change the padding
    455         // character from a space ' ' to a zero '0'.
    456         pad = ch == '0' ? '0' : ' ';
    457         for (;;) {
    458           // The maximum allowed padding fills all the available address
    459           // space and leaves just enough space to insert the trailing NUL.
    460           const size_t max_padding = kSSizeMax - 1;
    461           if (padding > max_padding/10 ||
    462               10*padding > max_padding - (ch - '0')) {
    463             DEBUG_CHECK(padding <= max_padding/10 &&
    464                         10*padding <= max_padding - (ch - '0'));
    465             // Integer overflow detected. Skip the rest of the width until
    466             // we find the format character, then do the normal error handling.
    467           padding_overflow:
    468             padding = max_padding;
    469             while ((ch = *fmt++) >= '0' && ch <= '9') {
    470             }
    471             if (cur_arg < max_args) {
    472               ++cur_arg;
    473             }
    474             goto fail_to_expand;
    475           }
    476           padding = 10*padding + ch - '0';
    477           if (padding > max_padding) {
    478             // This doesn't happen for "sane" values of kSSizeMax. But once
    479             // kSSizeMax gets smaller than about 10, our earlier range checks
    480             // are incomplete. Unittests do trigger this artificial corner
    481             // case.
    482             DEBUG_CHECK(padding <= max_padding);
    483             goto padding_overflow;
    484           }
    485           ch = *fmt++;
    486           if (ch < '0' || ch > '9') {
    487             // Reached the end of the width parameter. This is where the format
    488             // character is found.
    489             goto format_character_found;
    490           }
    491         }
    492         break;
    493       case 'c': {  // Output an ASCII character.
    494         // Check that there are arguments left to be inserted.
    495         if (cur_arg >= max_args) {
    496           DEBUG_CHECK(cur_arg < max_args);
    497           goto fail_to_expand;
    498         }
    499 
    500         // Check that the argument has the expected type.
    501         const Arg& arg = args[cur_arg++];
    502         if (arg.type != Arg::INT && arg.type != Arg::UINT) {
    503           DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
    504           goto fail_to_expand;
    505         }
    506 
    507         // Apply padding, if needed.
    508         buffer.Pad(' ', padding, 1);
    509 
    510         // Convert the argument to an ASCII character and output it.
    511         char ch = static_cast<char>(arg.i);
    512         if (!ch) {
    513           goto end_of_output_buffer;
    514         }
    515         buffer.Out(ch);
    516         break; }
    517       case 'd':    // Output a possibly signed decimal value.
    518       case 'o':    // Output an unsigned octal value.
    519       case 'x':    // Output an unsigned hexadecimal value.
    520       case 'X':
    521       case 'p': {  // Output a pointer value.
    522         // Check that there are arguments left to be inserted.
    523         if (cur_arg >= max_args) {
    524           DEBUG_CHECK(cur_arg < max_args);
    525           goto fail_to_expand;
    526         }
    527 
    528         const Arg& arg = args[cur_arg++];
    529         int64_t i;
    530         const char* prefix = NULL;
    531         if (ch != 'p') {
    532           // Check that the argument has the expected type.
    533           if (arg.type != Arg::INT && arg.type != Arg::UINT) {
    534             DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
    535             goto fail_to_expand;
    536           }
    537           i = arg.i;
    538 
    539           if (ch != 'd') {
    540             // The Arg() constructor automatically performed sign expansion on
    541             // signed parameters. This is great when outputting a %d decimal
    542             // number, but can result in unexpected leading 0xFF bytes when
    543             // outputting a %x hexadecimal number. Mask bits, if necessary.
    544             // We have to do this here, instead of in the Arg() constructor, as
    545             // the Arg() constructor cannot tell whether we will output a %d
    546             // or a %x. Only the latter should experience masking.
    547             if (arg.width < sizeof(int64_t)) {
    548               i &= (1LL << (8*arg.width)) - 1;
    549             }
    550           }
    551         } else {
    552           // Pointer values require an actual pointer or a string.
    553           if (arg.type == Arg::POINTER) {
    554             i = reinterpret_cast<uintptr_t>(arg.ptr);
    555           } else if (arg.type == Arg::STRING) {
    556             i = reinterpret_cast<uintptr_t>(arg.str);
    557           } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
    558                      arg.i == 0) {  // Allow C++'s version of NULL
    559             i = 0;
    560           } else {
    561             DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
    562             goto fail_to_expand;
    563           }
    564 
    565           // Pointers always include the "0x" prefix.
    566           prefix = "0x";
    567         }
    568 
    569         // Use IToASCII() to convert to ASCII representation. For decimal
    570         // numbers, optionally print a sign. For hexadecimal numbers,
    571         // distinguish between upper and lower case. %p addresses are always
    572         // printed as upcase. Supports base 8, 10, and 16. Prints padding
    573         // and/or prefixes, if so requested.
    574         buffer.IToASCII(ch == 'd' && arg.type == Arg::INT,
    575                         ch != 'x', i,
    576                         ch == 'o' ? 8 : ch == 'd' ? 10 : 16,
    577                         pad, padding, prefix);
    578         break; }
    579       case 's': {
    580         // Check that there are arguments left to be inserted.
    581         if (cur_arg >= max_args) {
    582           DEBUG_CHECK(cur_arg < max_args);
    583           goto fail_to_expand;
    584         }
    585 
    586         // Check that the argument has the expected type.
    587         const Arg& arg = args[cur_arg++];
    588         const char *s;
    589         if (arg.type == Arg::STRING) {
    590           s = arg.str ? arg.str : "<NULL>";
    591         } else if (arg.type == Arg::INT && arg.width == sizeof(NULL) &&
    592                    arg.i == 0) {  // Allow C++'s version of NULL
    593           s = "<NULL>";
    594         } else {
    595           DEBUG_CHECK(arg.type == Arg::STRING);
    596           goto fail_to_expand;
    597         }
    598 
    599         // Apply padding, if needed. This requires us to first check the
    600         // length of the string that we are outputting.
    601         if (padding) {
    602           size_t len = 0;
    603           for (const char* src = s; *src++; ) {
    604             ++len;
    605           }
    606           buffer.Pad(' ', padding, len);
    607         }
    608 
    609         // Printing a string involves nothing more than copying it into the
    610         // output buffer and making sure we don't output more bytes than
    611         // available space; Out() takes care of doing that.
    612         for (const char* src = s; *src; ) {
    613           buffer.Out(*src++);
    614         }
    615         break; }
    616       case '%':
    617         // Quoted percent '%' character.
    618         goto copy_verbatim;
    619       fail_to_expand:
    620         // C++ gives us tools to do type checking -- something that snprintf()
    621         // could never really do. So, whenever we see arguments that don't
    622         // match up with the format string, we refuse to output them. But
    623         // since we have to be extremely conservative about being async-
    624         // signal-safe, we are limited in the type of error handling that we
    625         // can do in production builds (in debug builds we can use
    626         // DEBUG_CHECK() and hope for the best). So, all we do is pass the
    627         // format string unchanged. That should eventually get the user's
    628         // attention; and in the meantime, it hopefully doesn't lose too much
    629         // data.
    630       default:
    631         // Unknown or unsupported format character. Just copy verbatim to
    632         // output.
    633         buffer.Out('%');
    634         DEBUG_CHECK(ch);
    635         if (!ch) {
    636           goto end_of_format_string;
    637         }
    638         buffer.Out(ch);
    639         break;
    640       }
    641     } else {
    642   copy_verbatim:
    643     buffer.Out(fmt[-1]);
    644     }
    645   }
    646  end_of_format_string:
    647  end_of_output_buffer:
    648   return buffer.GetCount();
    649 }
    650 
    651 }  // namespace internal
    652 
    653 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
    654   // Make sure that at least one NUL byte can be written, and that the buffer
    655   // never overflows kSSizeMax. Not only does that use up most or all of the
    656   // address space, it also would result in a return code that cannot be
    657   // represented.
    658   if (static_cast<ssize_t>(sz) < 1) {
    659     return -1;
    660   } else if (sz > kSSizeMax) {
    661     sz = kSSizeMax;
    662   }
    663 
    664   Buffer buffer(buf, sz);
    665 
    666   // In the slow-path, we deal with errors by copying the contents of
    667   // "fmt" unexpanded. This means, if there are no arguments passed, the
    668   // SafeSPrintf() function always degenerates to a version of strncpy() that
    669   // de-duplicates '%' characters.
    670   const char* src = fmt;
    671   for (; *src; ++src) {
    672     buffer.Out(*src);
    673     DEBUG_CHECK(src[0] != '%' || src[1] == '%');
    674     if (src[0] == '%' && src[1] == '%') {
    675       ++src;
    676     }
    677   }
    678   return buffer.GetCount();
    679 }
    680 
    681 }  // namespace strings
    682 }  // namespace base
    683