1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <windows.h> 6 #include <mmsystem.h> 7 #include <process.h> 8 9 #include "base/threading/platform_thread.h" 10 #include "base/time/time.h" 11 #include "testing/gtest/include/gtest/gtest.h" 12 13 using base::Time; 14 using base::TimeDelta; 15 using base::TimeTicks; 16 17 namespace { 18 19 class MockTimeTicks : public TimeTicks { 20 public: 21 static DWORD Ticker() { 22 return static_cast<int>(InterlockedIncrement(&ticker_)); 23 } 24 25 static void InstallTicker() { 26 old_tick_function_ = SetMockTickFunction(&Ticker); 27 ticker_ = -5; 28 } 29 30 static void UninstallTicker() { 31 SetMockTickFunction(old_tick_function_); 32 } 33 34 private: 35 static volatile LONG ticker_; 36 static TickFunctionType old_tick_function_; 37 }; 38 39 volatile LONG MockTimeTicks::ticker_; 40 MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_; 41 42 HANDLE g_rollover_test_start; 43 44 unsigned __stdcall RolloverTestThreadMain(void* param) { 45 int64 counter = reinterpret_cast<int64>(param); 46 DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE); 47 EXPECT_EQ(rv, WAIT_OBJECT_0); 48 49 TimeTicks last = TimeTicks::Now(); 50 for (int index = 0; index < counter; index++) { 51 TimeTicks now = TimeTicks::Now(); 52 int64 milliseconds = (now - last).InMilliseconds(); 53 // This is a tight loop; we could have looped faster than our 54 // measurements, so the time might be 0 millis. 55 EXPECT_GE(milliseconds, 0); 56 EXPECT_LT(milliseconds, 250); 57 last = now; 58 } 59 return 0; 60 } 61 62 } // namespace 63 64 TEST(TimeTicks, WinRollover) { 65 // The internal counter rolls over at ~49days. We'll use a mock 66 // timer to test this case. 67 // Basic test algorithm: 68 // 1) Set clock to rollover - N 69 // 2) Create N threads 70 // 3) Start the threads 71 // 4) Each thread loops through TimeTicks() N times 72 // 5) Each thread verifies integrity of result. 73 74 const int kThreads = 8; 75 // Use int64 so we can cast into a void* without a compiler warning. 76 const int64 kChecks = 10; 77 78 // It takes a lot of iterations to reproduce the bug! 79 // (See bug 1081395) 80 for (int loop = 0; loop < 4096; loop++) { 81 // Setup 82 MockTimeTicks::InstallTicker(); 83 g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0); 84 HANDLE threads[kThreads]; 85 86 for (int index = 0; index < kThreads; index++) { 87 void* argument = reinterpret_cast<void*>(kChecks); 88 unsigned thread_id; 89 threads[index] = reinterpret_cast<HANDLE>( 90 _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0, 91 &thread_id)); 92 EXPECT_NE((HANDLE)NULL, threads[index]); 93 } 94 95 // Start! 96 SetEvent(g_rollover_test_start); 97 98 // Wait for threads to finish 99 for (int index = 0; index < kThreads; index++) { 100 DWORD rv = WaitForSingleObject(threads[index], INFINITE); 101 EXPECT_EQ(rv, WAIT_OBJECT_0); 102 } 103 104 CloseHandle(g_rollover_test_start); 105 106 // Teardown 107 MockTimeTicks::UninstallTicker(); 108 } 109 } 110 111 TEST(TimeTicks, SubMillisecondTimers) { 112 // HighResNow doesn't work on some systems. Since the product still works 113 // even if it doesn't work, it makes this entire test questionable. 114 if (!TimeTicks::IsHighResClockWorking()) 115 return; 116 117 const int kRetries = 1000; 118 bool saw_submillisecond_timer = false; 119 120 // Run kRetries attempts to see a sub-millisecond timer. 121 for (int index = 0; index < 1000; index++) { 122 TimeTicks last_time = TimeTicks::HighResNow(); 123 TimeDelta delta; 124 // Spin until the clock has detected a change. 125 do { 126 delta = TimeTicks::HighResNow() - last_time; 127 } while (delta.InMicroseconds() == 0); 128 if (delta.InMicroseconds() < 1000) { 129 saw_submillisecond_timer = true; 130 break; 131 } 132 } 133 EXPECT_TRUE(saw_submillisecond_timer); 134 } 135 136 TEST(TimeTicks, TimeGetTimeCaps) { 137 // Test some basic assumptions that we expect about how timeGetDevCaps works. 138 139 TIMECAPS caps; 140 MMRESULT status = timeGetDevCaps(&caps, sizeof(caps)); 141 EXPECT_EQ(TIMERR_NOERROR, status); 142 if (status != TIMERR_NOERROR) { 143 printf("Could not get timeGetDevCaps\n"); 144 return; 145 } 146 147 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); 148 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); 149 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1); 150 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1); 151 printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, 152 caps.wPeriodMax); 153 } 154 155 TEST(TimeTicks, QueryPerformanceFrequency) { 156 // Test some basic assumptions that we expect about QPC. 157 158 LARGE_INTEGER frequency; 159 BOOL rv = QueryPerformanceFrequency(&frequency); 160 EXPECT_EQ(TRUE, rv); 161 EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz 162 printf("QueryPerformanceFrequency is %5.2fMHz\n", 163 frequency.QuadPart / 1000000.0); 164 } 165 166 TEST(TimeTicks, TimerPerformance) { 167 // Verify that various timer mechanisms can always complete quickly. 168 // Note: This is a somewhat arbitrary test. 169 const int kLoops = 10000; 170 // Due to the fact that these run on bbots, which are horribly slow, 171 // we can't really make any guarantees about minimum runtime. 172 // Really, we want these to finish in ~10ms, and that is generous. 173 const int kMaxTime = 35; // Maximum acceptible milliseconds for test. 174 175 typedef TimeTicks (*TestFunc)(); 176 struct TestCase { 177 TestFunc func; 178 char *description; 179 }; 180 // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time) 181 // in order to create a single test case list. 182 COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time), 183 test_only_works_with_same_sizes); 184 TestCase cases[] = { 185 { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" }, 186 { TimeTicks::Now, "TimeTicks::Now" }, 187 { TimeTicks::HighResNow, "TimeTicks::HighResNow" }, 188 { NULL, "" } 189 }; 190 191 int test_case = 0; 192 while (cases[test_case].func) { 193 TimeTicks start = TimeTicks::HighResNow(); 194 for (int index = 0; index < kLoops; index++) 195 cases[test_case].func(); 196 TimeTicks stop = TimeTicks::HighResNow(); 197 // Turning off the check for acceptible delays. Without this check, 198 // the test really doesn't do much other than measure. But the 199 // measurements are still useful for testing timers on various platforms. 200 // The reason to remove the check is because the tests run on many 201 // buildbots, some of which are VMs. These machines can run horribly 202 // slow, and there is really no value for checking against a max timer. 203 //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime); 204 printf("%s: %1.2fus per call\n", cases[test_case].description, 205 (stop - start).InMillisecondsF() * 1000 / kLoops); 206 test_case++; 207 } 208 } 209 210 TEST(TimeTicks, Drift) { 211 // If QPC is disabled, this isn't measuring anything. 212 if (!TimeTicks::IsHighResClockWorking()) 213 return; 214 215 const int kIterations = 100; 216 int64 total_drift = 0; 217 218 for (int i = 0; i < kIterations; ++i) { 219 int64 drift_microseconds = TimeTicks::GetQPCDriftMicroseconds(); 220 221 // Make sure the drift never exceeds our limit. 222 EXPECT_LT(drift_microseconds, 50000); 223 224 // Sleep for a few milliseconds (note that it means 1000 microseconds). 225 // If we check the drift too frequently, it's going to increase 226 // monotonically, making our measurement less realistic. 227 base::PlatformThread::Sleep( 228 base::TimeDelta::FromMilliseconds((i % 2 == 0) ? 1 : 2)); 229 230 total_drift += drift_microseconds; 231 } 232 233 // Sanity check. We expect some time drift to occur, especially across 234 // the number of iterations we do. 235 EXPECT_LT(0, total_drift); 236 237 printf("average time drift in microseconds: %lld\n", 238 total_drift / kIterations); 239 } 240