1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 /* 6 * curve25519-donna: Curve25519 elliptic curve, public key function 7 * 8 * http://code.google.com/p/curve25519-donna/ 9 * 10 * Adam Langley <agl (at) imperialviolet.org> 11 * 12 * Derived from public domain C code by Daniel J. Bernstein <djb (at) cr.yp.to> 13 * 14 * More information about curve25519 can be found here 15 * http://cr.yp.to/ecdh.html 16 * 17 * djb's sample implementation of curve25519 is written in a special assembly 18 * language called qhasm and uses the floating point registers. 19 * 20 * This is, almost, a clean room reimplementation from the curve25519 paper. It 21 * uses many of the tricks described therein. Only the crecip function is taken 22 * from the sample implementation. 23 */ 24 25 #include <string.h> 26 #include <stdint.h> 27 28 typedef uint8_t u8; 29 typedef int32_t s32; 30 typedef int64_t limb; 31 32 /* Field element representation: 33 * 34 * Field elements are written as an array of signed, 64-bit limbs, least 35 * significant first. The value of the field element is: 36 * x[0] + 2^26x[1] + x^51x[2] + 2^102x[3] + ... 37 * 38 * i.e. the limbs are 26, 25, 26, 25, ... bits wide. 39 */ 40 41 /* Sum two numbers: output += in */ 42 static void fsum(limb *output, const limb *in) { 43 unsigned i; 44 for (i = 0; i < 10; i += 2) { 45 output[0+i] = (output[0+i] + in[0+i]); 46 output[1+i] = (output[1+i] + in[1+i]); 47 } 48 } 49 50 /* Find the difference of two numbers: output = in - output 51 * (note the order of the arguments!) 52 */ 53 static void fdifference(limb *output, const limb *in) { 54 unsigned i; 55 for (i = 0; i < 10; ++i) { 56 output[i] = (in[i] - output[i]); 57 } 58 } 59 60 /* Multiply a number my a scalar: output = in * scalar */ 61 static void fscalar_product(limb *output, const limb *in, const limb scalar) { 62 unsigned i; 63 for (i = 0; i < 10; ++i) { 64 output[i] = in[i] * scalar; 65 } 66 } 67 68 /* Multiply two numbers: output = in2 * in 69 * 70 * output must be distinct to both inputs. The inputs are reduced coefficient 71 * form, the output is not. 72 */ 73 static void fproduct(limb *output, const limb *in2, const limb *in) { 74 output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]); 75 output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) + 76 ((limb) ((s32) in2[1])) * ((s32) in[0]); 77 output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) + 78 ((limb) ((s32) in2[0])) * ((s32) in[2]) + 79 ((limb) ((s32) in2[2])) * ((s32) in[0]); 80 output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) + 81 ((limb) ((s32) in2[2])) * ((s32) in[1]) + 82 ((limb) ((s32) in2[0])) * ((s32) in[3]) + 83 ((limb) ((s32) in2[3])) * ((s32) in[0]); 84 output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) + 85 2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + 86 ((limb) ((s32) in2[3])) * ((s32) in[1])) + 87 ((limb) ((s32) in2[0])) * ((s32) in[4]) + 88 ((limb) ((s32) in2[4])) * ((s32) in[0]); 89 output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) + 90 ((limb) ((s32) in2[3])) * ((s32) in[2]) + 91 ((limb) ((s32) in2[1])) * ((s32) in[4]) + 92 ((limb) ((s32) in2[4])) * ((s32) in[1]) + 93 ((limb) ((s32) in2[0])) * ((s32) in[5]) + 94 ((limb) ((s32) in2[5])) * ((s32) in[0]); 95 output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + 96 ((limb) ((s32) in2[1])) * ((s32) in[5]) + 97 ((limb) ((s32) in2[5])) * ((s32) in[1])) + 98 ((limb) ((s32) in2[2])) * ((s32) in[4]) + 99 ((limb) ((s32) in2[4])) * ((s32) in[2]) + 100 ((limb) ((s32) in2[0])) * ((s32) in[6]) + 101 ((limb) ((s32) in2[6])) * ((s32) in[0]); 102 output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) + 103 ((limb) ((s32) in2[4])) * ((s32) in[3]) + 104 ((limb) ((s32) in2[2])) * ((s32) in[5]) + 105 ((limb) ((s32) in2[5])) * ((s32) in[2]) + 106 ((limb) ((s32) in2[1])) * ((s32) in[6]) + 107 ((limb) ((s32) in2[6])) * ((s32) in[1]) + 108 ((limb) ((s32) in2[0])) * ((s32) in[7]) + 109 ((limb) ((s32) in2[7])) * ((s32) in[0]); 110 output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) + 111 2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + 112 ((limb) ((s32) in2[5])) * ((s32) in[3]) + 113 ((limb) ((s32) in2[1])) * ((s32) in[7]) + 114 ((limb) ((s32) in2[7])) * ((s32) in[1])) + 115 ((limb) ((s32) in2[2])) * ((s32) in[6]) + 116 ((limb) ((s32) in2[6])) * ((s32) in[2]) + 117 ((limb) ((s32) in2[0])) * ((s32) in[8]) + 118 ((limb) ((s32) in2[8])) * ((s32) in[0]); 119 output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) + 120 ((limb) ((s32) in2[5])) * ((s32) in[4]) + 121 ((limb) ((s32) in2[3])) * ((s32) in[6]) + 122 ((limb) ((s32) in2[6])) * ((s32) in[3]) + 123 ((limb) ((s32) in2[2])) * ((s32) in[7]) + 124 ((limb) ((s32) in2[7])) * ((s32) in[2]) + 125 ((limb) ((s32) in2[1])) * ((s32) in[8]) + 126 ((limb) ((s32) in2[8])) * ((s32) in[1]) + 127 ((limb) ((s32) in2[0])) * ((s32) in[9]) + 128 ((limb) ((s32) in2[9])) * ((s32) in[0]); 129 output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + 130 ((limb) ((s32) in2[3])) * ((s32) in[7]) + 131 ((limb) ((s32) in2[7])) * ((s32) in[3]) + 132 ((limb) ((s32) in2[1])) * ((s32) in[9]) + 133 ((limb) ((s32) in2[9])) * ((s32) in[1])) + 134 ((limb) ((s32) in2[4])) * ((s32) in[6]) + 135 ((limb) ((s32) in2[6])) * ((s32) in[4]) + 136 ((limb) ((s32) in2[2])) * ((s32) in[8]) + 137 ((limb) ((s32) in2[8])) * ((s32) in[2]); 138 output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) + 139 ((limb) ((s32) in2[6])) * ((s32) in[5]) + 140 ((limb) ((s32) in2[4])) * ((s32) in[7]) + 141 ((limb) ((s32) in2[7])) * ((s32) in[4]) + 142 ((limb) ((s32) in2[3])) * ((s32) in[8]) + 143 ((limb) ((s32) in2[8])) * ((s32) in[3]) + 144 ((limb) ((s32) in2[2])) * ((s32) in[9]) + 145 ((limb) ((s32) in2[9])) * ((s32) in[2]); 146 output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) + 147 2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + 148 ((limb) ((s32) in2[7])) * ((s32) in[5]) + 149 ((limb) ((s32) in2[3])) * ((s32) in[9]) + 150 ((limb) ((s32) in2[9])) * ((s32) in[3])) + 151 ((limb) ((s32) in2[4])) * ((s32) in[8]) + 152 ((limb) ((s32) in2[8])) * ((s32) in[4]); 153 output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) + 154 ((limb) ((s32) in2[7])) * ((s32) in[6]) + 155 ((limb) ((s32) in2[5])) * ((s32) in[8]) + 156 ((limb) ((s32) in2[8])) * ((s32) in[5]) + 157 ((limb) ((s32) in2[4])) * ((s32) in[9]) + 158 ((limb) ((s32) in2[9])) * ((s32) in[4]); 159 output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + 160 ((limb) ((s32) in2[5])) * ((s32) in[9]) + 161 ((limb) ((s32) in2[9])) * ((s32) in[5])) + 162 ((limb) ((s32) in2[6])) * ((s32) in[8]) + 163 ((limb) ((s32) in2[8])) * ((s32) in[6]); 164 output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) + 165 ((limb) ((s32) in2[8])) * ((s32) in[7]) + 166 ((limb) ((s32) in2[6])) * ((s32) in[9]) + 167 ((limb) ((s32) in2[9])) * ((s32) in[6]); 168 output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) + 169 2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + 170 ((limb) ((s32) in2[9])) * ((s32) in[7])); 171 output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) + 172 ((limb) ((s32) in2[9])) * ((s32) in[8]); 173 output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]); 174 } 175 176 /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ 177 static void freduce_degree(limb *output) { 178 /* Each of these shifts and adds ends up multiplying the value by 19. */ 179 output[8] += output[18] << 4; 180 output[8] += output[18] << 1; 181 output[8] += output[18]; 182 output[7] += output[17] << 4; 183 output[7] += output[17] << 1; 184 output[7] += output[17]; 185 output[6] += output[16] << 4; 186 output[6] += output[16] << 1; 187 output[6] += output[16]; 188 output[5] += output[15] << 4; 189 output[5] += output[15] << 1; 190 output[5] += output[15]; 191 output[4] += output[14] << 4; 192 output[4] += output[14] << 1; 193 output[4] += output[14]; 194 output[3] += output[13] << 4; 195 output[3] += output[13] << 1; 196 output[3] += output[13]; 197 output[2] += output[12] << 4; 198 output[2] += output[12] << 1; 199 output[2] += output[12]; 200 output[1] += output[11] << 4; 201 output[1] += output[11] << 1; 202 output[1] += output[11]; 203 output[0] += output[10] << 4; 204 output[0] += output[10] << 1; 205 output[0] += output[10]; 206 } 207 208 /* Reduce all coefficients of the short form input so that |x| < 2^26. 209 * 210 * On entry: |output[i]| < 2^62 211 */ 212 static void freduce_coefficients(limb *output) { 213 unsigned i; 214 do { 215 output[10] = 0; 216 217 for (i = 0; i < 10; i += 2) { 218 limb over = output[i] / 0x4000000l; 219 output[i+1] += over; 220 output[i] -= over * 0x4000000l; 221 222 over = output[i+1] / 0x2000000; 223 output[i+2] += over; 224 output[i+1] -= over * 0x2000000; 225 } 226 output[0] += 19 * output[10]; 227 } while (output[10]); 228 } 229 230 /* A helpful wrapper around fproduct: output = in * in2. 231 * 232 * output must be distinct to both inputs. The output is reduced degree and 233 * reduced coefficient. 234 */ 235 static void 236 fmul(limb *output, const limb *in, const limb *in2) { 237 limb t[19]; 238 fproduct(t, in, in2); 239 freduce_degree(t); 240 freduce_coefficients(t); 241 memcpy(output, t, sizeof(limb) * 10); 242 } 243 244 static void fsquare_inner(limb *output, const limb *in) { 245 output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]); 246 output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]); 247 output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + 248 ((limb) ((s32) in[0])) * ((s32) in[2])); 249 output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + 250 ((limb) ((s32) in[0])) * ((s32) in[3])); 251 output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) + 252 4 * ((limb) ((s32) in[1])) * ((s32) in[3]) + 253 2 * ((limb) ((s32) in[0])) * ((s32) in[4]); 254 output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + 255 ((limb) ((s32) in[1])) * ((s32) in[4]) + 256 ((limb) ((s32) in[0])) * ((s32) in[5])); 257 output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + 258 ((limb) ((s32) in[2])) * ((s32) in[4]) + 259 ((limb) ((s32) in[0])) * ((s32) in[6]) + 260 2 * ((limb) ((s32) in[1])) * ((s32) in[5])); 261 output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + 262 ((limb) ((s32) in[2])) * ((s32) in[5]) + 263 ((limb) ((s32) in[1])) * ((s32) in[6]) + 264 ((limb) ((s32) in[0])) * ((s32) in[7])); 265 output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) + 266 2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + 267 ((limb) ((s32) in[0])) * ((s32) in[8]) + 268 2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + 269 ((limb) ((s32) in[3])) * ((s32) in[5]))); 270 output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + 271 ((limb) ((s32) in[3])) * ((s32) in[6]) + 272 ((limb) ((s32) in[2])) * ((s32) in[7]) + 273 ((limb) ((s32) in[1])) * ((s32) in[8]) + 274 ((limb) ((s32) in[0])) * ((s32) in[9])); 275 output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + 276 ((limb) ((s32) in[4])) * ((s32) in[6]) + 277 ((limb) ((s32) in[2])) * ((s32) in[8]) + 278 2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + 279 ((limb) ((s32) in[1])) * ((s32) in[9]))); 280 output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + 281 ((limb) ((s32) in[4])) * ((s32) in[7]) + 282 ((limb) ((s32) in[3])) * ((s32) in[8]) + 283 ((limb) ((s32) in[2])) * ((s32) in[9])); 284 output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) + 285 2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + 286 2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + 287 ((limb) ((s32) in[3])) * ((s32) in[9]))); 288 output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + 289 ((limb) ((s32) in[5])) * ((s32) in[8]) + 290 ((limb) ((s32) in[4])) * ((s32) in[9])); 291 output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + 292 ((limb) ((s32) in[6])) * ((s32) in[8]) + 293 2 * ((limb) ((s32) in[5])) * ((s32) in[9])); 294 output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + 295 ((limb) ((s32) in[6])) * ((s32) in[9])); 296 output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) + 297 4 * ((limb) ((s32) in[7])) * ((s32) in[9]); 298 output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]); 299 output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]); 300 } 301 302 static void 303 fsquare(limb *output, const limb *in) { 304 limb t[19]; 305 fsquare_inner(t, in); 306 freduce_degree(t); 307 freduce_coefficients(t); 308 memcpy(output, t, sizeof(limb) * 10); 309 } 310 311 /* Take a little-endian, 32-byte number and expand it into polynomial form */ 312 static void 313 fexpand(limb *output, const u8 *input) { 314 #define F(n,start,shift,mask) \ 315 output[n] = ((((limb) input[start + 0]) | \ 316 ((limb) input[start + 1]) << 8 | \ 317 ((limb) input[start + 2]) << 16 | \ 318 ((limb) input[start + 3]) << 24) >> shift) & mask; 319 F(0, 0, 0, 0x3ffffff); 320 F(1, 3, 2, 0x1ffffff); 321 F(2, 6, 3, 0x3ffffff); 322 F(3, 9, 5, 0x1ffffff); 323 F(4, 12, 6, 0x3ffffff); 324 F(5, 16, 0, 0x1ffffff); 325 F(6, 19, 1, 0x3ffffff); 326 F(7, 22, 3, 0x1ffffff); 327 F(8, 25, 4, 0x3ffffff); 328 F(9, 28, 6, 0x1ffffff); 329 #undef F 330 } 331 332 /* Take a fully reduced polynomial form number and contract it into a 333 * little-endian, 32-byte array 334 */ 335 static void 336 fcontract(u8 *output, limb *input) { 337 int i; 338 339 do { 340 for (i = 0; i < 9; ++i) { 341 if ((i & 1) == 1) { 342 while (input[i] < 0) { 343 input[i] += 0x2000000; 344 input[i + 1]--; 345 } 346 } else { 347 while (input[i] < 0) { 348 input[i] += 0x4000000; 349 input[i + 1]--; 350 } 351 } 352 } 353 while (input[9] < 0) { 354 input[9] += 0x2000000; 355 input[0] -= 19; 356 } 357 } while (input[0] < 0); 358 359 input[1] <<= 2; 360 input[2] <<= 3; 361 input[3] <<= 5; 362 input[4] <<= 6; 363 input[6] <<= 1; 364 input[7] <<= 3; 365 input[8] <<= 4; 366 input[9] <<= 6; 367 #define F(i, s) \ 368 output[s+0] |= input[i] & 0xff; \ 369 output[s+1] = (input[i] >> 8) & 0xff; \ 370 output[s+2] = (input[i] >> 16) & 0xff; \ 371 output[s+3] = (input[i] >> 24) & 0xff; 372 output[0] = 0; 373 output[16] = 0; 374 F(0,0); 375 F(1,3); 376 F(2,6); 377 F(3,9); 378 F(4,12); 379 F(5,16); 380 F(6,19); 381 F(7,22); 382 F(8,25); 383 F(9,28); 384 #undef F 385 } 386 387 /* Input: Q, Q', Q-Q' 388 * Output: 2Q, Q+Q' 389 * 390 * x2 z3: long form 391 * x3 z3: long form 392 * x z: short form, destroyed 393 * xprime zprime: short form, destroyed 394 * qmqp: short form, preserved 395 */ 396 static void fmonty(limb *x2, limb *z2, /* output 2Q */ 397 limb *x3, limb *z3, /* output Q + Q' */ 398 limb *x, limb *z, /* input Q */ 399 limb *xprime, limb *zprime, /* input Q' */ 400 const limb *qmqp /* input Q - Q' */) { 401 limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], 402 zzprime[19], zzzprime[19], xxxprime[19]; 403 404 memcpy(origx, x, 10 * sizeof(limb)); 405 fsum(x, z); 406 fdifference(z, origx); // does x - z 407 408 memcpy(origxprime, xprime, sizeof(limb) * 10); 409 fsum(xprime, zprime); 410 fdifference(zprime, origxprime); 411 fproduct(xxprime, xprime, z); 412 fproduct(zzprime, x, zprime); 413 freduce_degree(xxprime); 414 freduce_coefficients(xxprime); 415 freduce_degree(zzprime); 416 freduce_coefficients(zzprime); 417 memcpy(origxprime, xxprime, sizeof(limb) * 10); 418 fsum(xxprime, zzprime); 419 fdifference(zzprime, origxprime); 420 fsquare(xxxprime, xxprime); 421 fsquare(zzzprime, zzprime); 422 fproduct(zzprime, zzzprime, qmqp); 423 freduce_degree(zzprime); 424 freduce_coefficients(zzprime); 425 memcpy(x3, xxxprime, sizeof(limb) * 10); 426 memcpy(z3, zzprime, sizeof(limb) * 10); 427 428 fsquare(xx, x); 429 fsquare(zz, z); 430 fproduct(x2, xx, zz); 431 freduce_degree(x2); 432 freduce_coefficients(x2); 433 fdifference(zz, xx); // does zz = xx - zz 434 memset(zzz + 10, 0, sizeof(limb) * 9); 435 fscalar_product(zzz, zz, 121665); 436 freduce_degree(zzz); 437 freduce_coefficients(zzz); 438 fsum(zzz, xx); 439 fproduct(z2, zz, zzz); 440 freduce_degree(z2); 441 freduce_coefficients(z2); 442 } 443 444 /* Calculates nQ where Q is the x-coordinate of a point on the curve 445 * 446 * resultx/resultz: the x coordinate of the resulting curve point (short form) 447 * n: a little endian, 32-byte number 448 * q: a point of the curve (short form) 449 */ 450 static void 451 cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { 452 limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; 453 limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; 454 limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; 455 limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; 456 457 unsigned i, j; 458 459 memcpy(nqpqx, q, sizeof(limb) * 10); 460 461 for (i = 0; i < 32; ++i) { 462 u8 byte = n[31 - i]; 463 for (j = 0; j < 8; ++j) { 464 if (byte & 0x80) { 465 fmonty(nqpqx2, nqpqz2, 466 nqx2, nqz2, 467 nqpqx, nqpqz, 468 nqx, nqz, 469 q); 470 } else { 471 fmonty(nqx2, nqz2, 472 nqpqx2, nqpqz2, 473 nqx, nqz, 474 nqpqx, nqpqz, 475 q); 476 } 477 478 t = nqx; 479 nqx = nqx2; 480 nqx2 = t; 481 t = nqz; 482 nqz = nqz2; 483 nqz2 = t; 484 t = nqpqx; 485 nqpqx = nqpqx2; 486 nqpqx2 = t; 487 t = nqpqz; 488 nqpqz = nqpqz2; 489 nqpqz2 = t; 490 491 byte <<= 1; 492 } 493 } 494 495 memcpy(resultx, nqx, sizeof(limb) * 10); 496 memcpy(resultz, nqz, sizeof(limb) * 10); 497 } 498 499 // ----------------------------------------------------------------------------- 500 // Shamelessly copied from djb's code 501 // ----------------------------------------------------------------------------- 502 static void 503 crecip(limb *out, const limb *z) { 504 limb z2[10]; 505 limb z9[10]; 506 limb z11[10]; 507 limb z2_5_0[10]; 508 limb z2_10_0[10]; 509 limb z2_20_0[10]; 510 limb z2_50_0[10]; 511 limb z2_100_0[10]; 512 limb t0[10]; 513 limb t1[10]; 514 int i; 515 516 /* 2 */ fsquare(z2,z); 517 /* 4 */ fsquare(t1,z2); 518 /* 8 */ fsquare(t0,t1); 519 /* 9 */ fmul(z9,t0,z); 520 /* 11 */ fmul(z11,z9,z2); 521 /* 22 */ fsquare(t0,z11); 522 /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); 523 524 /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); 525 /* 2^7 - 2^2 */ fsquare(t1,t0); 526 /* 2^8 - 2^3 */ fsquare(t0,t1); 527 /* 2^9 - 2^4 */ fsquare(t1,t0); 528 /* 2^10 - 2^5 */ fsquare(t0,t1); 529 /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); 530 531 /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); 532 /* 2^12 - 2^2 */ fsquare(t1,t0); 533 /* 2^20 - 2^10 */ 534 for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } 535 /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); 536 537 /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); 538 /* 2^22 - 2^2 */ fsquare(t1,t0); 539 /* 2^40 - 2^20 */ 540 for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } 541 /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); 542 543 /* 2^41 - 2^1 */ fsquare(t1,t0); 544 /* 2^42 - 2^2 */ fsquare(t0,t1); 545 /* 2^50 - 2^10 */ 546 for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } 547 /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); 548 549 /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); 550 /* 2^52 - 2^2 */ fsquare(t1,t0); 551 /* 2^100 - 2^50 */ 552 for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } 553 /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); 554 555 /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); 556 /* 2^102 - 2^2 */ fsquare(t0,t1); 557 /* 2^200 - 2^100 */ 558 for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } 559 /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); 560 561 /* 2^201 - 2^1 */ fsquare(t0,t1); 562 /* 2^202 - 2^2 */ fsquare(t1,t0); 563 /* 2^250 - 2^50 */ 564 for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } 565 /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); 566 567 /* 2^251 - 2^1 */ fsquare(t1,t0); 568 /* 2^252 - 2^2 */ fsquare(t0,t1); 569 /* 2^253 - 2^3 */ fsquare(t1,t0); 570 /* 2^254 - 2^4 */ fsquare(t0,t1); 571 /* 2^255 - 2^5 */ fsquare(t1,t0); 572 /* 2^255 - 21 */ fmul(out,t1,z11); 573 } 574 575 int 576 curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { 577 limb bp[10], x[10], z[10], zmone[10]; 578 uint8_t e[32]; 579 int i; 580 581 for (i = 0; i < 32; ++i) e[i] = secret[i]; 582 e[0] &= 248; 583 e[31] &= 127; 584 e[31] |= 64; 585 586 fexpand(bp, basepoint); 587 cmult(x, z, e, bp); 588 crecip(zmone, z); 589 fmul(z, x, zmone); 590 fcontract(mypublic, z); 591 return 0; 592 } 593