Home | History | Annotate | Download | only in v3
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/disk_cache/backend_impl.h"
      6 
      7 #include "base/bind.h"
      8 #include "base/bind_helpers.h"
      9 #include "base/file_util.h"
     10 #include "base/files/file_path.h"
     11 #include "base/hash.h"
     12 #include "base/message_loop/message_loop.h"
     13 #include "base/metrics/field_trial.h"
     14 #include "base/metrics/histogram.h"
     15 #include "base/metrics/stats_counters.h"
     16 #include "base/rand_util.h"
     17 #include "base/strings/string_util.h"
     18 #include "base/strings/stringprintf.h"
     19 #include "base/sys_info.h"
     20 #include "base/threading/thread_restrictions.h"
     21 #include "base/time/time.h"
     22 #include "base/timer/timer.h"
     23 #include "net/base/net_errors.h"
     24 #include "net/disk_cache/cache_util.h"
     25 #include "net/disk_cache/entry_impl.h"
     26 #include "net/disk_cache/errors.h"
     27 #include "net/disk_cache/experiments.h"
     28 #include "net/disk_cache/file.h"
     29 
     30 // This has to be defined before including histogram_macros.h from this file.
     31 #define NET_DISK_CACHE_BACKEND_IMPL_CC_
     32 #include "net/disk_cache/histogram_macros.h"
     33 
     34 using base::Time;
     35 using base::TimeDelta;
     36 using base::TimeTicks;
     37 
     38 namespace {
     39 
     40 const char* kIndexName = "index";
     41 
     42 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
     43 // Note that the actual target is to keep the index table load factor under 55%
     44 // for most users.
     45 const int k64kEntriesStore = 240 * 1000 * 1000;
     46 const int kBaseTableLen = 64 * 1024;
     47 const int kDefaultCacheSize = 80 * 1024 * 1024;
     48 
     49 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
     50 const int kTrimDelay = 10;
     51 
     52 int DesiredIndexTableLen(int32 storage_size) {
     53   if (storage_size <= k64kEntriesStore)
     54     return kBaseTableLen;
     55   if (storage_size <= k64kEntriesStore * 2)
     56     return kBaseTableLen * 2;
     57   if (storage_size <= k64kEntriesStore * 4)
     58     return kBaseTableLen * 4;
     59   if (storage_size <= k64kEntriesStore * 8)
     60     return kBaseTableLen * 8;
     61 
     62   // The biggest storage_size for int32 requires a 4 MB table.
     63   return kBaseTableLen * 16;
     64 }
     65 
     66 int MaxStorageSizeForTable(int table_len) {
     67   return table_len * (k64kEntriesStore / kBaseTableLen);
     68 }
     69 
     70 size_t GetIndexSize(int table_len) {
     71   size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
     72   return sizeof(disk_cache::IndexHeader) + table_size;
     73 }
     74 
     75 }  // namespace
     76 
     77 // ------------------------------------------------------------------------
     78 
     79 namespace disk_cache {
     80 
     81 BackendImpl::BackendImpl(const base::FilePath& path,
     82                          base::MessageLoopProxy* cache_thread,
     83                          net::NetLog* net_log)
     84     : background_queue_(this, cache_thread),
     85       path_(path),
     86       block_files_(path),
     87       mask_(0),
     88       max_size_(0),
     89       up_ticks_(0),
     90       cache_type_(net::DISK_CACHE),
     91       uma_report_(0),
     92       user_flags_(0),
     93       init_(false),
     94       restarted_(false),
     95       unit_test_(false),
     96       read_only_(false),
     97       disabled_(false),
     98       new_eviction_(false),
     99       first_timer_(true),
    100       user_load_(false),
    101       net_log_(net_log),
    102       done_(true, false),
    103       ptr_factory_(this) {
    104 }
    105 
    106 BackendImpl::BackendImpl(const base::FilePath& path,
    107                          uint32 mask,
    108                          base::MessageLoopProxy* cache_thread,
    109                          net::NetLog* net_log)
    110     : background_queue_(this, cache_thread),
    111       path_(path),
    112       block_files_(path),
    113       mask_(mask),
    114       max_size_(0),
    115       up_ticks_(0),
    116       cache_type_(net::DISK_CACHE),
    117       uma_report_(0),
    118       user_flags_(kMask),
    119       init_(false),
    120       restarted_(false),
    121       unit_test_(false),
    122       read_only_(false),
    123       disabled_(false),
    124       new_eviction_(false),
    125       first_timer_(true),
    126       user_load_(false),
    127       net_log_(net_log),
    128       done_(true, false),
    129       ptr_factory_(this) {
    130 }
    131 
    132 BackendImpl::~BackendImpl() {
    133   if (user_flags_ & kNoRandom) {
    134     // This is a unit test, so we want to be strict about not leaking entries
    135     // and completing all the work.
    136     background_queue_.WaitForPendingIO();
    137   } else {
    138     // This is most likely not a test, so we want to do as little work as
    139     // possible at this time, at the price of leaving dirty entries behind.
    140     background_queue_.DropPendingIO();
    141   }
    142 
    143   if (background_queue_.BackgroundIsCurrentThread()) {
    144     // Unit tests may use the same thread for everything.
    145     CleanupCache();
    146   } else {
    147     background_queue_.background_thread()->PostTask(
    148         FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
    149     // http://crbug.com/74623
    150     base::ThreadRestrictions::ScopedAllowWait allow_wait;
    151     done_.Wait();
    152   }
    153 }
    154 
    155 int BackendImpl::Init(const CompletionCallback& callback) {
    156   background_queue_.Init(callback);
    157   return net::ERR_IO_PENDING;
    158 }
    159 
    160 // ------------------------------------------------------------------------
    161 
    162 int BackendImpl::OpenPrevEntry(void** iter, Entry** prev_entry,
    163                                const CompletionCallback& callback) {
    164   DCHECK(!callback.is_null());
    165   background_queue_.OpenPrevEntry(iter, prev_entry, callback);
    166   return net::ERR_IO_PENDING;
    167 }
    168 
    169 bool BackendImpl::SetMaxSize(int max_bytes) {
    170   COMPILE_ASSERT(sizeof(max_bytes) == sizeof(max_size_), unsupported_int_model);
    171   if (max_bytes < 0)
    172     return false;
    173 
    174   // Zero size means use the default.
    175   if (!max_bytes)
    176     return true;
    177 
    178   // Avoid a DCHECK later on.
    179   if (max_bytes >= kint32max - kint32max / 10)
    180     max_bytes = kint32max - kint32max / 10 - 1;
    181 
    182   user_flags_ |= kMaxSize;
    183   max_size_ = max_bytes;
    184   return true;
    185 }
    186 
    187 void BackendImpl::SetType(net::CacheType type) {
    188   DCHECK_NE(net::MEMORY_CACHE, type);
    189   cache_type_ = type;
    190 }
    191 
    192 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
    193                              Addr* block_address) {
    194   return block_files_.CreateBlock(block_type, block_count, block_address);
    195 }
    196 
    197 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
    198   if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
    199     return;
    200   eviction_.UpdateRank(entry, modified);
    201 }
    202 
    203 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
    204   uint32 hash = entry->GetHash();
    205   std::string key = entry->GetKey();
    206   Addr entry_addr = entry->entry()->address();
    207   bool error;
    208   EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
    209   CacheAddr child(entry->GetNextAddress());
    210 
    211   Trace("Doom entry 0x%p", entry);
    212 
    213   if (!entry->doomed()) {
    214     // We may have doomed this entry from within MatchEntry.
    215     eviction_.OnDoomEntry(entry);
    216     entry->InternalDoom();
    217     if (!new_eviction_) {
    218       DecreaseNumEntries();
    219     }
    220     stats_.OnEvent(Stats::DOOM_ENTRY);
    221   }
    222 
    223   if (parent_entry) {
    224     parent_entry->SetNextAddress(Addr(child));
    225     parent_entry->Release();
    226   } else if (!error) {
    227     data_->table[hash & mask_] = child;
    228   }
    229 
    230   FlushIndex();
    231 }
    232 
    233 void BackendImpl::OnEntryDestroyBegin(Addr address) {
    234   EntriesMap::iterator it = open_entries_.find(address.value());
    235   if (it != open_entries_.end())
    236     open_entries_.erase(it);
    237 }
    238 
    239 void BackendImpl::OnEntryDestroyEnd() {
    240   DecreaseNumRefs();
    241   if (data_->header.num_bytes > max_size_ && !read_only_ &&
    242       (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
    243     eviction_.TrimCache(false);
    244 }
    245 
    246 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
    247   DCHECK(rankings->HasData());
    248   EntriesMap::const_iterator it =
    249       open_entries_.find(rankings->Data()->contents);
    250   if (it != open_entries_.end()) {
    251     // We have this entry in memory.
    252     return it->second;
    253   }
    254 
    255   return NULL;
    256 }
    257 
    258 int BackendImpl::MaxFileSize() const {
    259   return max_size_ / 8;
    260 }
    261 
    262 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
    263   if (disabled_ || old_size == new_size)
    264     return;
    265   if (old_size > new_size)
    266     SubstractStorageSize(old_size - new_size);
    267   else
    268     AddStorageSize(new_size - old_size);
    269 
    270   FlushIndex();
    271 
    272   // Update the usage statistics.
    273   stats_.ModifyStorageStats(old_size, new_size);
    274 }
    275 
    276 void BackendImpl::TooMuchStorageRequested(int32 size) {
    277   stats_.ModifyStorageStats(0, size);
    278 }
    279 
    280 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
    281   DCHECK_GT(new_size, current_size);
    282   if (user_flags_ & kNoBuffering)
    283     return false;
    284 
    285   int to_add = new_size - current_size;
    286   if (buffer_bytes_ + to_add > MaxBuffersSize())
    287     return false;
    288 
    289   buffer_bytes_ += to_add;
    290   CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
    291   return true;
    292 }
    293 
    294 void BackendImpl::BufferDeleted(int size) {
    295   buffer_bytes_ -= size;
    296   DCHECK_GE(size, 0);
    297 }
    298 
    299 bool BackendImpl::IsLoaded() const {
    300   CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
    301   if (user_flags_ & kNoLoadProtection)
    302     return false;
    303 
    304   return (num_pending_io_ > 5 || user_load_);
    305 }
    306 
    307 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
    308   if (!experiment)
    309     return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
    310   return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
    311                             name, experiment);
    312 }
    313 
    314 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
    315   return ptr_factory_.GetWeakPtr();
    316 }
    317 
    318 // We want to remove biases from some histograms so we only send data once per
    319 // week.
    320 bool BackendImpl::ShouldReportAgain() {
    321   if (uma_report_)
    322     return uma_report_ == 2;
    323 
    324   uma_report_++;
    325   int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
    326   Time last_time = Time::FromInternalValue(last_report);
    327   if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
    328     stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
    329     uma_report_++;
    330     return true;
    331   }
    332   return false;
    333 }
    334 
    335 void BackendImpl::FirstEviction() {
    336   DCHECK(data_->header.create_time);
    337   if (!GetEntryCount())
    338     return;  // This is just for unit tests.
    339 
    340   Time create_time = Time::FromInternalValue(data_->header.create_time);
    341   CACHE_UMA(AGE, "FillupAge", 0, create_time);
    342 
    343   int64 use_time = stats_.GetCounter(Stats::TIMER);
    344   CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
    345   CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
    346 
    347   if (!use_time)
    348     use_time = 1;
    349   CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
    350             static_cast<int>(data_->header.num_entries / use_time));
    351   CACHE_UMA(COUNTS, "FirstByteIORate", 0,
    352             static_cast<int>((data_->header.num_bytes / 1024) / use_time));
    353 
    354   int avg_size = data_->header.num_bytes / GetEntryCount();
    355   CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
    356 
    357   int large_entries_bytes = stats_.GetLargeEntriesSize();
    358   int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
    359   CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
    360 
    361   if (new_eviction_) {
    362     CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
    363     CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
    364               data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
    365     CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
    366               data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
    367     CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
    368               data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
    369   }
    370 
    371   stats_.ResetRatios();
    372 }
    373 
    374 void BackendImpl::OnEvent(Stats::Counters an_event) {
    375   stats_.OnEvent(an_event);
    376 }
    377 
    378 void BackendImpl::OnRead(int32 bytes) {
    379   DCHECK_GE(bytes, 0);
    380   byte_count_ += bytes;
    381   if (byte_count_ < 0)
    382     byte_count_ = kint32max;
    383 }
    384 
    385 void BackendImpl::OnWrite(int32 bytes) {
    386   // We use the same implementation as OnRead... just log the number of bytes.
    387   OnRead(bytes);
    388 }
    389 
    390 void BackendImpl::OnStatsTimer() {
    391   stats_.OnEvent(Stats::TIMER);
    392   int64 time = stats_.GetCounter(Stats::TIMER);
    393   int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
    394 
    395   // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
    396   // the bias towards 0.
    397   if (num_refs_ && (current != num_refs_)) {
    398     int64 diff = (num_refs_ - current) / 50;
    399     if (!diff)
    400       diff = num_refs_ > current ? 1 : -1;
    401     current = current + diff;
    402     stats_.SetCounter(Stats::OPEN_ENTRIES, current);
    403     stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
    404   }
    405 
    406   CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
    407 
    408   CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
    409   CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
    410 
    411   // These values cover about 99.5% of the population (Oct 2011).
    412   user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
    413   entry_count_ = 0;
    414   byte_count_ = 0;
    415   up_ticks_++;
    416 
    417   if (!data_)
    418     first_timer_ = false;
    419   if (first_timer_) {
    420     first_timer_ = false;
    421     if (ShouldReportAgain())
    422       ReportStats();
    423   }
    424 
    425   // Save stats to disk at 5 min intervals.
    426   if (time % 10 == 0)
    427     StoreStats();
    428 }
    429 
    430 void BackendImpl::SetUnitTestMode() {
    431   user_flags_ |= kUnitTestMode;
    432   unit_test_ = true;
    433 }
    434 
    435 void BackendImpl::SetUpgradeMode() {
    436   user_flags_ |= kUpgradeMode;
    437   read_only_ = true;
    438 }
    439 
    440 void BackendImpl::SetNewEviction() {
    441   user_flags_ |= kNewEviction;
    442   new_eviction_ = true;
    443 }
    444 
    445 void BackendImpl::SetFlags(uint32 flags) {
    446   user_flags_ |= flags;
    447 }
    448 
    449 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
    450   background_queue_.FlushQueue(callback);
    451   return net::ERR_IO_PENDING;
    452 }
    453 
    454 void BackendImpl::TrimForTest(bool empty) {
    455   eviction_.SetTestMode();
    456   eviction_.TrimCache(empty);
    457 }
    458 
    459 void BackendImpl::TrimDeletedListForTest(bool empty) {
    460   eviction_.SetTestMode();
    461   eviction_.TrimDeletedList(empty);
    462 }
    463 
    464 int BackendImpl::SelfCheck() {
    465   if (!init_) {
    466     LOG(ERROR) << "Init failed";
    467     return ERR_INIT_FAILED;
    468   }
    469 
    470   int num_entries = rankings_.SelfCheck();
    471   if (num_entries < 0) {
    472     LOG(ERROR) << "Invalid rankings list, error " << num_entries;
    473 #if !defined(NET_BUILD_STRESS_CACHE)
    474     return num_entries;
    475 #endif
    476   }
    477 
    478   if (num_entries != data_->header.num_entries) {
    479     LOG(ERROR) << "Number of entries mismatch";
    480 #if !defined(NET_BUILD_STRESS_CACHE)
    481     return ERR_NUM_ENTRIES_MISMATCH;
    482 #endif
    483   }
    484 
    485   return CheckAllEntries();
    486 }
    487 
    488 // ------------------------------------------------------------------------
    489 
    490 net::CacheType BackendImpl::GetCacheType() const {
    491   return cache_type_;
    492 }
    493 
    494 int32 BackendImpl::GetEntryCount() const {
    495   if (!index_.get() || disabled_)
    496     return 0;
    497   // num_entries includes entries already evicted.
    498   int32 not_deleted = data_->header.num_entries -
    499                       data_->header.lru.sizes[Rankings::DELETED];
    500 
    501   if (not_deleted < 0) {
    502     NOTREACHED();
    503     not_deleted = 0;
    504   }
    505 
    506   return not_deleted;
    507 }
    508 
    509 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
    510   if (disabled_)
    511     return NULL;
    512 
    513   TimeTicks start = TimeTicks::Now();
    514   uint32 hash = base::Hash(key);
    515   Trace("Open hash 0x%x", hash);
    516 
    517   bool error;
    518   EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
    519   if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
    520     // The entry was already evicted.
    521     cache_entry->Release();
    522     cache_entry = NULL;
    523   }
    524 
    525   int current_size = data_->header.num_bytes / (1024 * 1024);
    526   int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
    527   int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
    528   int64 use_hours = total_hours - no_use_hours;
    529 
    530   if (!cache_entry) {
    531     CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
    532     CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
    533     CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0, total_hours);
    534     CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0, use_hours);
    535     stats_.OnEvent(Stats::OPEN_MISS);
    536     return NULL;
    537   }
    538 
    539   eviction_.OnOpenEntry(cache_entry);
    540   entry_count_++;
    541 
    542   Trace("Open hash 0x%x end: 0x%x", hash,
    543         cache_entry->entry()->address().value());
    544   CACHE_UMA(AGE_MS, "OpenTime", 0, start);
    545   CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
    546   CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0, total_hours);
    547   CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0, use_hours);
    548   stats_.OnEvent(Stats::OPEN_HIT);
    549   SIMPLE_STATS_COUNTER("disk_cache.hit");
    550   return cache_entry;
    551 }
    552 
    553 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
    554   if (disabled_ || key.empty())
    555     return NULL;
    556 
    557   TimeTicks start = TimeTicks::Now();
    558   Trace("Create hash 0x%x", hash);
    559 
    560   scoped_refptr<EntryImpl> parent;
    561   Addr entry_address(data_->table[hash & mask_]);
    562   if (entry_address.is_initialized()) {
    563     // We have an entry already. It could be the one we are looking for, or just
    564     // a hash conflict.
    565     bool error;
    566     EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
    567     if (old_entry)
    568       return ResurrectEntry(old_entry);
    569 
    570     EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
    571     DCHECK(!error);
    572     if (parent_entry) {
    573       parent.swap(&parent_entry);
    574     } else if (data_->table[hash & mask_]) {
    575       // We should have corrected the problem.
    576       NOTREACHED();
    577       return NULL;
    578     }
    579   }
    580 
    581   // The general flow is to allocate disk space and initialize the entry data,
    582   // followed by saving that to disk, then linking the entry though the index
    583   // and finally through the lists. If there is a crash in this process, we may
    584   // end up with:
    585   // a. Used, unreferenced empty blocks on disk (basically just garbage).
    586   // b. Used, unreferenced but meaningful data on disk (more garbage).
    587   // c. A fully formed entry, reachable only through the index.
    588   // d. A fully formed entry, also reachable through the lists, but still dirty.
    589   //
    590   // Anything after (b) can be automatically cleaned up. We may consider saving
    591   // the current operation (as we do while manipulating the lists) so that we
    592   // can detect and cleanup (a) and (b).
    593 
    594   int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
    595   if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
    596     LOG(ERROR) << "Create entry failed " << key.c_str();
    597     stats_.OnEvent(Stats::CREATE_ERROR);
    598     return NULL;
    599   }
    600 
    601   Addr node_address(0);
    602   if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
    603     block_files_.DeleteBlock(entry_address, false);
    604     LOG(ERROR) << "Create entry failed " << key.c_str();
    605     stats_.OnEvent(Stats::CREATE_ERROR);
    606     return NULL;
    607   }
    608 
    609   scoped_refptr<EntryImpl> cache_entry(
    610       new EntryImpl(this, entry_address, false));
    611   IncreaseNumRefs();
    612 
    613   if (!cache_entry->CreateEntry(node_address, key, hash)) {
    614     block_files_.DeleteBlock(entry_address, false);
    615     block_files_.DeleteBlock(node_address, false);
    616     LOG(ERROR) << "Create entry failed " << key.c_str();
    617     stats_.OnEvent(Stats::CREATE_ERROR);
    618     return NULL;
    619   }
    620 
    621   cache_entry->BeginLogging(net_log_, true);
    622 
    623   // We are not failing the operation; let's add this to the map.
    624   open_entries_[entry_address.value()] = cache_entry.get();
    625 
    626   // Save the entry.
    627   cache_entry->entry()->Store();
    628   cache_entry->rankings()->Store();
    629   IncreaseNumEntries();
    630   entry_count_++;
    631 
    632   // Link this entry through the index.
    633   if (parent.get()) {
    634     parent->SetNextAddress(entry_address);
    635   } else {
    636     data_->table[hash & mask_] = entry_address.value();
    637   }
    638 
    639   // Link this entry through the lists.
    640   eviction_.OnCreateEntry(cache_entry.get());
    641 
    642   CACHE_UMA(AGE_MS, "CreateTime", 0, start);
    643   stats_.OnEvent(Stats::CREATE_HIT);
    644   SIMPLE_STATS_COUNTER("disk_cache.miss");
    645   Trace("create entry hit ");
    646   FlushIndex();
    647   cache_entry->AddRef();
    648   return cache_entry.get();
    649 }
    650 
    651 int BackendImpl::SyncDoomEntry(const std::string& key) {
    652   if (disabled_)
    653     return net::ERR_FAILED;
    654 
    655   EntryImpl* entry = OpenEntryImpl(key);
    656   if (!entry)
    657     return net::ERR_FAILED;
    658 
    659   entry->DoomImpl();
    660   entry->Release();
    661   return net::OK;
    662 }
    663 
    664 int BackendImpl::SyncDoomAllEntries() {
    665   // This is not really an error, but it is an interesting condition.
    666   ReportError(ERR_CACHE_DOOMED);
    667   stats_.OnEvent(Stats::DOOM_CACHE);
    668   if (!num_refs_) {
    669     RestartCache(false);
    670     return disabled_ ? net::ERR_FAILED : net::OK;
    671   } else {
    672     if (disabled_)
    673       return net::ERR_FAILED;
    674 
    675     eviction_.TrimCache(true);
    676     return net::OK;
    677   }
    678 }
    679 
    680 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
    681                                         const base::Time end_time) {
    682   DCHECK_NE(net::APP_CACHE, cache_type_);
    683   if (end_time.is_null())
    684     return SyncDoomEntriesSince(initial_time);
    685 
    686   DCHECK(end_time >= initial_time);
    687 
    688   if (disabled_)
    689     return net::ERR_FAILED;
    690 
    691   EntryImpl* node;
    692   void* iter = NULL;
    693   EntryImpl* next = OpenNextEntryImpl(&iter);
    694   if (!next)
    695     return net::OK;
    696 
    697   while (next) {
    698     node = next;
    699     next = OpenNextEntryImpl(&iter);
    700 
    701     if (node->GetLastUsed() >= initial_time &&
    702         node->GetLastUsed() < end_time) {
    703       node->DoomImpl();
    704     } else if (node->GetLastUsed() < initial_time) {
    705       if (next)
    706         next->Release();
    707       next = NULL;
    708       SyncEndEnumeration(iter);
    709     }
    710 
    711     node->Release();
    712   }
    713 
    714   return net::OK;
    715 }
    716 
    717 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
    718 // entries that are too old.
    719 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
    720   DCHECK_NE(net::APP_CACHE, cache_type_);
    721   if (disabled_)
    722     return net::ERR_FAILED;
    723 
    724   stats_.OnEvent(Stats::DOOM_RECENT);
    725   for (;;) {
    726     void* iter = NULL;
    727     EntryImpl* entry = OpenNextEntryImpl(&iter);
    728     if (!entry)
    729       return net::OK;
    730 
    731     if (initial_time > entry->GetLastUsed()) {
    732       entry->Release();
    733       SyncEndEnumeration(iter);
    734       return net::OK;
    735     }
    736 
    737     entry->DoomImpl();
    738     entry->Release();
    739     SyncEndEnumeration(iter);  // Dooming the entry invalidates the iterator.
    740   }
    741 }
    742 
    743 int BackendImpl::OpenNextEntry(void** iter, Entry** next_entry,
    744                                const CompletionCallback& callback) {
    745   DCHECK(!callback.is_null());
    746   background_queue_.OpenNextEntry(iter, next_entry, callback);
    747   return net::ERR_IO_PENDING;
    748 }
    749 
    750 void BackendImpl::EndEnumeration(void** iter) {
    751   background_queue_.EndEnumeration(*iter);
    752   *iter = NULL;
    753 }
    754 
    755 void BackendImpl::GetStats(StatsItems* stats) {
    756   if (disabled_)
    757     return;
    758 
    759   std::pair<std::string, std::string> item;
    760 
    761   item.first = "Entries";
    762   item.second = base::StringPrintf("%d", data_->header.num_entries);
    763   stats->push_back(item);
    764 
    765   item.first = "Pending IO";
    766   item.second = base::StringPrintf("%d", num_pending_io_);
    767   stats->push_back(item);
    768 
    769   item.first = "Max size";
    770   item.second = base::StringPrintf("%d", max_size_);
    771   stats->push_back(item);
    772 
    773   item.first = "Current size";
    774   item.second = base::StringPrintf("%d", data_->header.num_bytes);
    775   stats->push_back(item);
    776 
    777   item.first = "Cache type";
    778   item.second = "Blockfile Cache";
    779   stats->push_back(item);
    780 
    781   stats_.GetItems(stats);
    782 }
    783 
    784 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
    785   if (disabled_)
    786     return;
    787 
    788   uint32 hash = base::Hash(key);
    789   bool error;
    790   EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
    791   if (cache_entry) {
    792     if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
    793       UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
    794     }
    795     cache_entry->Release();
    796   }
    797 }
    798 
    799 // ------------------------------------------------------------------------
    800 
    801 // The maximum cache size will be either set explicitly by the caller, or
    802 // calculated by this code.
    803 void BackendImpl::AdjustMaxCacheSize(int table_len) {
    804   if (max_size_)
    805     return;
    806 
    807   // If table_len is provided, the index file exists.
    808   DCHECK(!table_len || data_->header.magic);
    809 
    810   // The user is not setting the size, let's figure it out.
    811   int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
    812   if (available < 0) {
    813     max_size_ = kDefaultCacheSize;
    814     return;
    815   }
    816 
    817   if (table_len)
    818     available += data_->header.num_bytes;
    819 
    820   max_size_ = PreferedCacheSize(available);
    821 
    822   // Let's not use more than the default size while we tune-up the performance
    823   // of bigger caches. TODO(rvargas): remove this limit.
    824   if (max_size_ > kDefaultCacheSize * 4)
    825     max_size_ = kDefaultCacheSize * 4;
    826 
    827   if (!table_len)
    828     return;
    829 
    830   // If we already have a table, adjust the size to it.
    831   int current_max_size = MaxStorageSizeForTable(table_len);
    832   if (max_size_ > current_max_size)
    833     max_size_= current_max_size;
    834 }
    835 
    836 bool BackendImpl::InitStats() {
    837   Addr address(data_->header.stats);
    838   int size = stats_.StorageSize();
    839 
    840   if (!address.is_initialized()) {
    841     FileType file_type = Addr::RequiredFileType(size);
    842     DCHECK_NE(file_type, EXTERNAL);
    843     int num_blocks = Addr::RequiredBlocks(size, file_type);
    844 
    845     if (!CreateBlock(file_type, num_blocks, &address))
    846       return false;
    847     return stats_.Init(NULL, 0, address);
    848   }
    849 
    850   if (!address.is_block_file()) {
    851     NOTREACHED();
    852     return false;
    853   }
    854 
    855   // Load the required data.
    856   size = address.num_blocks() * address.BlockSize();
    857   MappedFile* file = File(address);
    858   if (!file)
    859     return false;
    860 
    861   scoped_ptr<char[]> data(new char[size]);
    862   size_t offset = address.start_block() * address.BlockSize() +
    863                   kBlockHeaderSize;
    864   if (!file->Read(data.get(), size, offset))
    865     return false;
    866 
    867   if (!stats_.Init(data.get(), size, address))
    868     return false;
    869   if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
    870     stats_.InitSizeHistogram();
    871   return true;
    872 }
    873 
    874 void BackendImpl::StoreStats() {
    875   int size = stats_.StorageSize();
    876   scoped_ptr<char[]> data(new char[size]);
    877   Addr address;
    878   size = stats_.SerializeStats(data.get(), size, &address);
    879   DCHECK(size);
    880   if (!address.is_initialized())
    881     return;
    882 
    883   MappedFile* file = File(address);
    884   if (!file)
    885     return;
    886 
    887   size_t offset = address.start_block() * address.BlockSize() +
    888                   kBlockHeaderSize;
    889   file->Write(data.get(), size, offset);  // ignore result.
    890 }
    891 
    892 void BackendImpl::RestartCache(bool failure) {
    893   int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
    894   int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
    895   int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
    896   int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
    897 
    898   PrepareForRestart();
    899   if (failure) {
    900     DCHECK(!num_refs_);
    901     DCHECK(!open_entries_.size());
    902     DelayedCacheCleanup(path_);
    903   } else {
    904     DeleteCache(path_, false);
    905   }
    906 
    907   // Don't call Init() if directed by the unit test: we are simulating a failure
    908   // trying to re-enable the cache.
    909   if (unit_test_)
    910     init_ = true;  // Let the destructor do proper cleanup.
    911   else if (SyncInit() == net::OK) {
    912     stats_.SetCounter(Stats::FATAL_ERROR, errors);
    913     stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
    914     stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
    915     stats_.SetCounter(Stats::LAST_REPORT, last_report);
    916   }
    917 }
    918 
    919 void BackendImpl::PrepareForRestart() {
    920   // Reset the mask_ if it was not given by the user.
    921   if (!(user_flags_ & kMask))
    922     mask_ = 0;
    923 
    924   if (!(user_flags_ & kNewEviction))
    925     new_eviction_ = false;
    926 
    927   disabled_ = true;
    928   data_->header.crash = 0;
    929   index_->Flush();
    930   index_ = NULL;
    931   data_ = NULL;
    932   block_files_.CloseFiles();
    933   rankings_.Reset();
    934   init_ = false;
    935   restarted_ = true;
    936 }
    937 
    938 void BackendImpl::CleanupCache() {
    939   Trace("Backend Cleanup");
    940   eviction_.Stop();
    941   timer_.reset();
    942 
    943   if (init_) {
    944     StoreStats();
    945     if (data_)
    946       data_->header.crash = 0;
    947 
    948     if (user_flags_ & kNoRandom) {
    949       // This is a net_unittest, verify that we are not 'leaking' entries.
    950       File::WaitForPendingIO(&num_pending_io_);
    951       DCHECK(!num_refs_);
    952     } else {
    953       File::DropPendingIO();
    954     }
    955   }
    956   block_files_.CloseFiles();
    957   FlushIndex();
    958   index_ = NULL;
    959   ptr_factory_.InvalidateWeakPtrs();
    960   done_.Signal();
    961 }
    962 
    963 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
    964   EntriesMap::iterator it = open_entries_.find(address.value());
    965   if (it != open_entries_.end()) {
    966     // Easy job. This entry is already in memory.
    967     EntryImpl* this_entry = it->second;
    968     this_entry->AddRef();
    969     *entry = this_entry;
    970     return 0;
    971   }
    972 
    973   STRESS_DCHECK(block_files_.IsValid(address));
    974 
    975   if (!address.SanityCheckForEntry()) {
    976     LOG(WARNING) << "Wrong entry address.";
    977     STRESS_NOTREACHED();
    978     return ERR_INVALID_ADDRESS;
    979   }
    980 
    981   scoped_refptr<EntryImpl> cache_entry(
    982       new EntryImpl(this, address, read_only_));
    983   IncreaseNumRefs();
    984   *entry = NULL;
    985 
    986   TimeTicks start = TimeTicks::Now();
    987   if (!cache_entry->entry()->Load())
    988     return ERR_READ_FAILURE;
    989 
    990   if (IsLoaded()) {
    991     CACHE_UMA(AGE_MS, "LoadTime", 0, start);
    992   }
    993 
    994   if (!cache_entry->SanityCheck()) {
    995     LOG(WARNING) << "Messed up entry found.";
    996     STRESS_NOTREACHED();
    997     return ERR_INVALID_ENTRY;
    998   }
    999 
   1000   STRESS_DCHECK(block_files_.IsValid(
   1001                     Addr(cache_entry->entry()->Data()->rankings_node)));
   1002 
   1003   if (!cache_entry->LoadNodeAddress())
   1004     return ERR_READ_FAILURE;
   1005 
   1006   if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
   1007     STRESS_NOTREACHED();
   1008     cache_entry->SetDirtyFlag(0);
   1009     // Don't remove this from the list (it is not linked properly). Instead,
   1010     // break the link back to the entry because it is going away, and leave the
   1011     // rankings node to be deleted if we find it through a list.
   1012     rankings_.SetContents(cache_entry->rankings(), 0);
   1013   } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
   1014     STRESS_NOTREACHED();
   1015     cache_entry->SetDirtyFlag(0);
   1016     rankings_.SetContents(cache_entry->rankings(), address.value());
   1017   }
   1018 
   1019   if (!cache_entry->DataSanityCheck()) {
   1020     LOG(WARNING) << "Messed up entry found.";
   1021     cache_entry->SetDirtyFlag(0);
   1022     cache_entry->FixForDelete();
   1023   }
   1024 
   1025   // Prevent overwriting the dirty flag on the destructor.
   1026   cache_entry->SetDirtyFlag(GetCurrentEntryId());
   1027 
   1028   if (cache_entry->dirty()) {
   1029     Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
   1030           address.value());
   1031   }
   1032 
   1033   open_entries_[address.value()] = cache_entry.get();
   1034 
   1035   cache_entry->BeginLogging(net_log_, false);
   1036   cache_entry.swap(entry);
   1037   return 0;
   1038 }
   1039 
   1040 // This is the actual implementation for OpenNextEntry and OpenPrevEntry.
   1041 EntryImpl* BackendImpl::OpenFollowingEntry(bool forward, void** iter) {
   1042   if (disabled_)
   1043     return NULL;
   1044 
   1045   DCHECK(iter);
   1046 
   1047   const int kListsToSearch = 3;
   1048   scoped_refptr<EntryImpl> entries[kListsToSearch];
   1049   scoped_ptr<Rankings::Iterator> iterator(
   1050       reinterpret_cast<Rankings::Iterator*>(*iter));
   1051   *iter = NULL;
   1052 
   1053   if (!iterator.get()) {
   1054     iterator.reset(new Rankings::Iterator(&rankings_));
   1055     bool ret = false;
   1056 
   1057     // Get an entry from each list.
   1058     for (int i = 0; i < kListsToSearch; i++) {
   1059       EntryImpl* temp = NULL;
   1060       ret |= OpenFollowingEntryFromList(forward, static_cast<Rankings::List>(i),
   1061                                         &iterator->nodes[i], &temp);
   1062       entries[i].swap(&temp);  // The entry was already addref'd.
   1063     }
   1064     if (!ret)
   1065       return NULL;
   1066   } else {
   1067     // Get the next entry from the last list, and the actual entries for the
   1068     // elements on the other lists.
   1069     for (int i = 0; i < kListsToSearch; i++) {
   1070       EntryImpl* temp = NULL;
   1071       if (iterator->list == i) {
   1072           OpenFollowingEntryFromList(forward, iterator->list,
   1073                                      &iterator->nodes[i], &temp);
   1074       } else {
   1075         temp = GetEnumeratedEntry(iterator->nodes[i],
   1076                                   static_cast<Rankings::List>(i));
   1077       }
   1078 
   1079       entries[i].swap(&temp);  // The entry was already addref'd.
   1080     }
   1081   }
   1082 
   1083   int newest = -1;
   1084   int oldest = -1;
   1085   Time access_times[kListsToSearch];
   1086   for (int i = 0; i < kListsToSearch; i++) {
   1087     if (entries[i].get()) {
   1088       access_times[i] = entries[i]->GetLastUsed();
   1089       if (newest < 0) {
   1090         DCHECK_LT(oldest, 0);
   1091         newest = oldest = i;
   1092         continue;
   1093       }
   1094       if (access_times[i] > access_times[newest])
   1095         newest = i;
   1096       if (access_times[i] < access_times[oldest])
   1097         oldest = i;
   1098     }
   1099   }
   1100 
   1101   if (newest < 0 || oldest < 0)
   1102     return NULL;
   1103 
   1104   EntryImpl* next_entry;
   1105   if (forward) {
   1106     next_entry = entries[newest].get();
   1107     iterator->list = static_cast<Rankings::List>(newest);
   1108   } else {
   1109     next_entry = entries[oldest].get();
   1110     iterator->list = static_cast<Rankings::List>(oldest);
   1111   }
   1112 
   1113   *iter = iterator.release();
   1114   next_entry->AddRef();
   1115   return next_entry;
   1116 }
   1117 
   1118 void BackendImpl::AddStorageSize(int32 bytes) {
   1119   data_->header.num_bytes += bytes;
   1120   DCHECK_GE(data_->header.num_bytes, 0);
   1121 }
   1122 
   1123 void BackendImpl::SubstractStorageSize(int32 bytes) {
   1124   data_->header.num_bytes -= bytes;
   1125   DCHECK_GE(data_->header.num_bytes, 0);
   1126 }
   1127 
   1128 void BackendImpl::IncreaseNumRefs() {
   1129   num_refs_++;
   1130   if (max_refs_ < num_refs_)
   1131     max_refs_ = num_refs_;
   1132 }
   1133 
   1134 void BackendImpl::DecreaseNumRefs() {
   1135   DCHECK(num_refs_);
   1136   num_refs_--;
   1137 
   1138   if (!num_refs_ && disabled_)
   1139     base::MessageLoop::current()->PostTask(
   1140         FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
   1141 }
   1142 
   1143 void BackendImpl::IncreaseNumEntries() {
   1144   data_->header.num_entries++;
   1145   DCHECK_GT(data_->header.num_entries, 0);
   1146 }
   1147 
   1148 void BackendImpl::DecreaseNumEntries() {
   1149   data_->header.num_entries--;
   1150   if (data_->header.num_entries < 0) {
   1151     NOTREACHED();
   1152     data_->header.num_entries = 0;
   1153   }
   1154 }
   1155 
   1156 int BackendImpl::SyncInit() {
   1157 #if defined(NET_BUILD_STRESS_CACHE)
   1158   // Start evictions right away.
   1159   up_ticks_ = kTrimDelay * 2;
   1160 #endif
   1161   DCHECK(!init_);
   1162   if (init_)
   1163     return net::ERR_FAILED;
   1164 
   1165   bool create_files = false;
   1166   if (!InitBackingStore(&create_files)) {
   1167     ReportError(ERR_STORAGE_ERROR);
   1168     return net::ERR_FAILED;
   1169   }
   1170 
   1171   num_refs_ = num_pending_io_ = max_refs_ = 0;
   1172   entry_count_ = byte_count_ = 0;
   1173 
   1174   if (!restarted_) {
   1175     buffer_bytes_ = 0;
   1176     trace_object_ = TraceObject::GetTraceObject();
   1177     // Create a recurrent timer of 30 secs.
   1178     int timer_delay = unit_test_ ? 1000 : 30000;
   1179     timer_.reset(new base::RepeatingTimer<BackendImpl>());
   1180     timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
   1181                   &BackendImpl::OnStatsTimer);
   1182   }
   1183 
   1184   init_ = true;
   1185   Trace("Init");
   1186 
   1187   if (data_->header.experiment != NO_EXPERIMENT &&
   1188       cache_type_ != net::DISK_CACHE) {
   1189     // No experiment for other caches.
   1190     return net::ERR_FAILED;
   1191   }
   1192 
   1193   if (!(user_flags_ & kNoRandom)) {
   1194     // The unit test controls directly what to test.
   1195     new_eviction_ = (cache_type_ == net::DISK_CACHE);
   1196   }
   1197 
   1198   if (!CheckIndex()) {
   1199     ReportError(ERR_INIT_FAILED);
   1200     return net::ERR_FAILED;
   1201   }
   1202 
   1203   if (!restarted_ && (create_files || !data_->header.num_entries))
   1204     ReportError(ERR_CACHE_CREATED);
   1205 
   1206   if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
   1207       !InitExperiment(&data_->header, create_files)) {
   1208     return net::ERR_FAILED;
   1209   }
   1210 
   1211   // We don't care if the value overflows. The only thing we care about is that
   1212   // the id cannot be zero, because that value is used as "not dirty".
   1213   // Increasing the value once per second gives us many years before we start
   1214   // having collisions.
   1215   data_->header.this_id++;
   1216   if (!data_->header.this_id)
   1217     data_->header.this_id++;
   1218 
   1219   bool previous_crash = (data_->header.crash != 0);
   1220   data_->header.crash = 1;
   1221 
   1222   if (!block_files_.Init(create_files))
   1223     return net::ERR_FAILED;
   1224 
   1225   // We want to minimize the changes to cache for an AppCache.
   1226   if (cache_type() == net::APP_CACHE) {
   1227     DCHECK(!new_eviction_);
   1228     read_only_ = true;
   1229   } else if (cache_type() == net::SHADER_CACHE) {
   1230     DCHECK(!new_eviction_);
   1231   }
   1232 
   1233   eviction_.Init(this);
   1234 
   1235   // stats_ and rankings_ may end up calling back to us so we better be enabled.
   1236   disabled_ = false;
   1237   if (!InitStats())
   1238     return net::ERR_FAILED;
   1239 
   1240   disabled_ = !rankings_.Init(this, new_eviction_);
   1241 
   1242 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
   1243   trace_object_->EnableTracing(false);
   1244   int sc = SelfCheck();
   1245   if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
   1246     NOTREACHED();
   1247   trace_object_->EnableTracing(true);
   1248 #endif
   1249 
   1250   if (previous_crash) {
   1251     ReportError(ERR_PREVIOUS_CRASH);
   1252   } else if (!restarted_) {
   1253     ReportError(ERR_NO_ERROR);
   1254   }
   1255 
   1256   FlushIndex();
   1257 
   1258   return disabled_ ? net::ERR_FAILED : net::OK;
   1259 }
   1260 
   1261 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
   1262   if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
   1263     deleted_entry->Release();
   1264     stats_.OnEvent(Stats::CREATE_MISS);
   1265     Trace("create entry miss ");
   1266     return NULL;
   1267   }
   1268 
   1269   // We are attempting to create an entry and found out that the entry was
   1270   // previously deleted.
   1271 
   1272   eviction_.OnCreateEntry(deleted_entry);
   1273   entry_count_++;
   1274 
   1275   stats_.OnEvent(Stats::RESURRECT_HIT);
   1276   Trace("Resurrect entry hit ");
   1277   return deleted_entry;
   1278 }
   1279 
   1280 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
   1281   if (disabled_ || key.empty())
   1282     return NULL;
   1283 
   1284   TimeTicks start = TimeTicks::Now();
   1285   Trace("Create hash 0x%x", hash);
   1286 
   1287   scoped_refptr<EntryImpl> parent;
   1288   Addr entry_address(data_->table[hash & mask_]);
   1289   if (entry_address.is_initialized()) {
   1290     // We have an entry already. It could be the one we are looking for, or just
   1291     // a hash conflict.
   1292     bool error;
   1293     EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
   1294     if (old_entry)
   1295       return ResurrectEntry(old_entry);
   1296 
   1297     EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
   1298     DCHECK(!error);
   1299     if (parent_entry) {
   1300       parent.swap(&parent_entry);
   1301     } else if (data_->table[hash & mask_]) {
   1302       // We should have corrected the problem.
   1303       NOTREACHED();
   1304       return NULL;
   1305     }
   1306   }
   1307 
   1308   // The general flow is to allocate disk space and initialize the entry data,
   1309   // followed by saving that to disk, then linking the entry though the index
   1310   // and finally through the lists. If there is a crash in this process, we may
   1311   // end up with:
   1312   // a. Used, unreferenced empty blocks on disk (basically just garbage).
   1313   // b. Used, unreferenced but meaningful data on disk (more garbage).
   1314   // c. A fully formed entry, reachable only through the index.
   1315   // d. A fully formed entry, also reachable through the lists, but still dirty.
   1316   //
   1317   // Anything after (b) can be automatically cleaned up. We may consider saving
   1318   // the current operation (as we do while manipulating the lists) so that we
   1319   // can detect and cleanup (a) and (b).
   1320 
   1321   int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
   1322   if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
   1323     LOG(ERROR) << "Create entry failed " << key.c_str();
   1324     stats_.OnEvent(Stats::CREATE_ERROR);
   1325     return NULL;
   1326   }
   1327 
   1328   Addr node_address(0);
   1329   if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
   1330     block_files_.DeleteBlock(entry_address, false);
   1331     LOG(ERROR) << "Create entry failed " << key.c_str();
   1332     stats_.OnEvent(Stats::CREATE_ERROR);
   1333     return NULL;
   1334   }
   1335 
   1336   scoped_refptr<EntryImpl> cache_entry(
   1337       new EntryImpl(this, entry_address, false));
   1338   IncreaseNumRefs();
   1339 
   1340   if (!cache_entry->CreateEntry(node_address, key, hash)) {
   1341     block_files_.DeleteBlock(entry_address, false);
   1342     block_files_.DeleteBlock(node_address, false);
   1343     LOG(ERROR) << "Create entry failed " << key.c_str();
   1344     stats_.OnEvent(Stats::CREATE_ERROR);
   1345     return NULL;
   1346   }
   1347 
   1348   cache_entry->BeginLogging(net_log_, true);
   1349 
   1350   // We are not failing the operation; let's add this to the map.
   1351   open_entries_[entry_address.value()] = cache_entry;
   1352 
   1353   // Save the entry.
   1354   cache_entry->entry()->Store();
   1355   cache_entry->rankings()->Store();
   1356   IncreaseNumEntries();
   1357   entry_count_++;
   1358 
   1359   // Link this entry through the index.
   1360   if (parent.get()) {
   1361     parent->SetNextAddress(entry_address);
   1362   } else {
   1363     data_->table[hash & mask_] = entry_address.value();
   1364   }
   1365 
   1366   // Link this entry through the lists.
   1367   eviction_.OnCreateEntry(cache_entry);
   1368 
   1369   CACHE_UMA(AGE_MS, "CreateTime", 0, start);
   1370   stats_.OnEvent(Stats::CREATE_HIT);
   1371   SIMPLE_STATS_COUNTER("disk_cache.miss");
   1372   Trace("create entry hit ");
   1373   FlushIndex();
   1374   cache_entry->AddRef();
   1375   return cache_entry.get();
   1376 }
   1377 
   1378 void BackendImpl::LogStats() {
   1379   StatsItems stats;
   1380   GetStats(&stats);
   1381 
   1382   for (size_t index = 0; index < stats.size(); index++)
   1383     VLOG(1) << stats[index].first << ": " << stats[index].second;
   1384 }
   1385 
   1386 void BackendImpl::ReportStats() {
   1387   CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
   1388 
   1389   int current_size = data_->header.num_bytes / (1024 * 1024);
   1390   int max_size = max_size_ / (1024 * 1024);
   1391   int hit_ratio_as_percentage = stats_.GetHitRatio();
   1392 
   1393   CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
   1394   // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
   1395   // ratio of that bin's total count to the count in the same bin in the Size2
   1396   // histogram.
   1397   if (base::RandInt(0, 99) < hit_ratio_as_percentage)
   1398     CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
   1399   CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
   1400   if (!max_size)
   1401     max_size++;
   1402   CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
   1403 
   1404   CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
   1405             static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
   1406   CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
   1407             static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
   1408   stats_.SetCounter(Stats::MAX_ENTRIES, 0);
   1409 
   1410   CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
   1411             static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
   1412   CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
   1413             static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
   1414   CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
   1415             static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
   1416   stats_.SetCounter(Stats::FATAL_ERROR, 0);
   1417   stats_.SetCounter(Stats::DOOM_CACHE, 0);
   1418   stats_.SetCounter(Stats::DOOM_RECENT, 0);
   1419 
   1420   int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
   1421   if (!data_->header.create_time || !data_->header.lru.filled) {
   1422     int cause = data_->header.create_time ? 0 : 1;
   1423     if (!data_->header.lru.filled)
   1424       cause |= 2;
   1425     CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
   1426     CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
   1427     return;
   1428   }
   1429 
   1430   // This is an up to date client that will report FirstEviction() data. After
   1431   // that event, start reporting this:
   1432 
   1433   CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
   1434   // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
   1435   // time is the ratio of that bin's total count to the count in the same bin in
   1436   // the TotalTime histogram.
   1437   if (base::RandInt(0, 99) < hit_ratio_as_percentage)
   1438     CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, implicit_cast<int>(total_hours));
   1439 
   1440   int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
   1441   stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
   1442 
   1443   // We may see users with no use_hours at this point if this is the first time
   1444   // we are running this code.
   1445   if (use_hours)
   1446     use_hours = total_hours - use_hours;
   1447 
   1448   if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
   1449     return;
   1450 
   1451   CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
   1452   // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
   1453   // is the ratio of that bin's total count to the count in the same bin in the
   1454   // UseTime histogram.
   1455   if (base::RandInt(0, 99) < hit_ratio_as_percentage)
   1456     CACHE_UMA(HOURS, "HitRatioByUseTime", 0, implicit_cast<int>(use_hours));
   1457   CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
   1458 
   1459   int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
   1460   CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
   1461 
   1462   int avg_size = data_->header.num_bytes / GetEntryCount();
   1463   CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
   1464   CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
   1465 
   1466   CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
   1467             data_->header.num_entries * 100 / (mask_ + 1));
   1468 
   1469   int large_entries_bytes = stats_.GetLargeEntriesSize();
   1470   int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
   1471   CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
   1472 
   1473   if (new_eviction_) {
   1474     CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
   1475     CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
   1476               data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
   1477     CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
   1478               data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
   1479     CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
   1480               data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
   1481     CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
   1482               data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
   1483   }
   1484 
   1485   stats_.ResetRatios();
   1486   stats_.SetCounter(Stats::TRIM_ENTRY, 0);
   1487 
   1488   if (cache_type_ == net::DISK_CACHE)
   1489     block_files_.ReportStats();
   1490 }
   1491 
   1492 void BackendImpl::ReportError(int error) {
   1493   STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
   1494                 error == ERR_CACHE_CREATED);
   1495 
   1496   // We transmit positive numbers, instead of direct error codes.
   1497   DCHECK_LE(error, 0);
   1498   CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
   1499 }
   1500 
   1501 bool BackendImpl::CheckIndex() {
   1502   DCHECK(data_);
   1503 
   1504   size_t current_size = index_->GetLength();
   1505   if (current_size < sizeof(Index)) {
   1506     LOG(ERROR) << "Corrupt Index file";
   1507     return false;
   1508   }
   1509 
   1510   if (new_eviction_) {
   1511     // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
   1512     if (kIndexMagic != data_->header.magic ||
   1513         kCurrentVersion >> 16 != data_->header.version >> 16) {
   1514       LOG(ERROR) << "Invalid file version or magic";
   1515       return false;
   1516     }
   1517     if (kCurrentVersion == data_->header.version) {
   1518       // We need file version 2.1 for the new eviction algorithm.
   1519       UpgradeTo2_1();
   1520     }
   1521   } else {
   1522     if (kIndexMagic != data_->header.magic ||
   1523         kCurrentVersion != data_->header.version) {
   1524       LOG(ERROR) << "Invalid file version or magic";
   1525       return false;
   1526     }
   1527   }
   1528 
   1529   if (!data_->header.table_len) {
   1530     LOG(ERROR) << "Invalid table size";
   1531     return false;
   1532   }
   1533 
   1534   if (current_size < GetIndexSize(data_->header.table_len) ||
   1535       data_->header.table_len & (kBaseTableLen - 1)) {
   1536     LOG(ERROR) << "Corrupt Index file";
   1537     return false;
   1538   }
   1539 
   1540   AdjustMaxCacheSize(data_->header.table_len);
   1541 
   1542 #if !defined(NET_BUILD_STRESS_CACHE)
   1543   if (data_->header.num_bytes < 0 ||
   1544       (max_size_ < kint32max - kDefaultCacheSize &&
   1545        data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
   1546     LOG(ERROR) << "Invalid cache (current) size";
   1547     return false;
   1548   }
   1549 #endif
   1550 
   1551   if (data_->header.num_entries < 0) {
   1552     LOG(ERROR) << "Invalid number of entries";
   1553     return false;
   1554   }
   1555 
   1556   if (!mask_)
   1557     mask_ = data_->header.table_len - 1;
   1558 
   1559   // Load the table into memory with a single read.
   1560   scoped_ptr<char[]> buf(new char[current_size]);
   1561   return index_->Read(buf.get(), current_size, 0);
   1562 }
   1563 
   1564 int BackendImpl::CheckAllEntries() {
   1565   int num_dirty = 0;
   1566   int num_entries = 0;
   1567   DCHECK(mask_ < kuint32max);
   1568   for (unsigned int i = 0; i <= mask_; i++) {
   1569     Addr address(data_->table[i]);
   1570     if (!address.is_initialized())
   1571       continue;
   1572     for (;;) {
   1573       EntryImpl* tmp;
   1574       int ret = NewEntry(address, &tmp);
   1575       if (ret) {
   1576         STRESS_NOTREACHED();
   1577         return ret;
   1578       }
   1579       scoped_refptr<EntryImpl> cache_entry;
   1580       cache_entry.swap(&tmp);
   1581 
   1582       if (cache_entry->dirty())
   1583         num_dirty++;
   1584       else if (CheckEntry(cache_entry.get()))
   1585         num_entries++;
   1586       else
   1587         return ERR_INVALID_ENTRY;
   1588 
   1589       DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
   1590       address.set_value(cache_entry->GetNextAddress());
   1591       if (!address.is_initialized())
   1592         break;
   1593     }
   1594   }
   1595 
   1596   Trace("CheckAllEntries End");
   1597   if (num_entries + num_dirty != data_->header.num_entries) {
   1598     LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
   1599                   " " << data_->header.num_entries;
   1600     DCHECK_LT(num_entries, data_->header.num_entries);
   1601     return ERR_NUM_ENTRIES_MISMATCH;
   1602   }
   1603 
   1604   return num_dirty;
   1605 }
   1606 
   1607 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
   1608   bool ok = block_files_.IsValid(cache_entry->entry()->address());
   1609   ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
   1610   EntryStore* data = cache_entry->entry()->Data();
   1611   for (size_t i = 0; i < arraysize(data->data_addr); i++) {
   1612     if (data->data_addr[i]) {
   1613       Addr address(data->data_addr[i]);
   1614       if (address.is_block_file())
   1615         ok = ok && block_files_.IsValid(address);
   1616     }
   1617   }
   1618 
   1619   return ok && cache_entry->rankings()->VerifyHash();
   1620 }
   1621 
   1622 int BackendImpl::MaxBuffersSize() {
   1623   static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
   1624   static bool done = false;
   1625 
   1626   if (!done) {
   1627     const int kMaxBuffersSize = 30 * 1024 * 1024;
   1628 
   1629     // We want to use up to 2% of the computer's memory.
   1630     total_memory = total_memory * 2 / 100;
   1631     if (total_memory > kMaxBuffersSize || total_memory <= 0)
   1632       total_memory = kMaxBuffersSize;
   1633 
   1634     done = true;
   1635   }
   1636 
   1637   return static_cast<int>(total_memory);
   1638 }
   1639 
   1640 }  // namespace disk_cache
   1641