1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "config.h" 29 30 #include <stdarg.h> 31 #include <limits.h> 32 33 #include "strtod.h" 34 #include "bignum.h" 35 #include "cached-powers.h" 36 #include "double.h" 37 38 namespace WTF { 39 40 namespace double_conversion { 41 42 // 2^53 = 9007199254740992. 43 // Any integer with at most 15 decimal digits will hence fit into a double 44 // (which has a 53bit significand) without loss of precision. 45 static const int kMaxExactDoubleIntegerDecimalDigits = 15; 46 // 2^64 = 18446744073709551616 > 10^19 47 static const int kMaxUint64DecimalDigits = 19; 48 49 // Max double: 1.7976931348623157 x 10^308 50 // Min non-zero double: 4.9406564584124654 x 10^-324 51 // Any x >= 10^309 is interpreted as +infinity. 52 // Any x <= 10^-324 is interpreted as 0. 53 // Note that 2.5e-324 (despite being smaller than the min double) will be read 54 // as non-zero (equal to the min non-zero double). 55 static const int kMaxDecimalPower = 309; 56 static const int kMinDecimalPower = -324; 57 58 // 2^64 = 18446744073709551616 59 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); 60 61 62 static const double exact_powers_of_ten[] = { 63 1.0, // 10^0 64 10.0, 65 100.0, 66 1000.0, 67 10000.0, 68 100000.0, 69 1000000.0, 70 10000000.0, 71 100000000.0, 72 1000000000.0, 73 10000000000.0, // 10^10 74 100000000000.0, 75 1000000000000.0, 76 10000000000000.0, 77 100000000000000.0, 78 1000000000000000.0, 79 10000000000000000.0, 80 100000000000000000.0, 81 1000000000000000000.0, 82 10000000000000000000.0, 83 100000000000000000000.0, // 10^20 84 1000000000000000000000.0, 85 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 86 10000000000000000000000.0 87 }; 88 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); 89 90 // Maximum number of significant digits in the decimal representation. 91 // In fact the value is 772 (see conversions.cc), but to give us some margin 92 // we round up to 780. 93 static const int kMaxSignificantDecimalDigits = 780; 94 95 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { 96 for (int i = 0; i < buffer.length(); i++) { 97 if (buffer[i] != '0') { 98 return buffer.SubVector(i, buffer.length()); 99 } 100 } 101 return Vector<const char>(buffer.start(), 0); 102 } 103 104 105 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { 106 for (int i = buffer.length() - 1; i >= 0; --i) { 107 if (buffer[i] != '0') { 108 return buffer.SubVector(0, i + 1); 109 } 110 } 111 return Vector<const char>(buffer.start(), 0); 112 } 113 114 115 static void TrimToMaxSignificantDigits(Vector<const char> buffer, 116 int exponent, 117 char* significant_buffer, 118 int* significant_exponent) { 119 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { 120 significant_buffer[i] = buffer[i]; 121 } 122 // The input buffer has been trimmed. Therefore the last digit must be 123 // different from '0'. 124 ASSERT(buffer[buffer.length() - 1] != '0'); 125 // Set the last digit to be non-zero. This is sufficient to guarantee 126 // correct rounding. 127 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; 128 *significant_exponent = 129 exponent + (buffer.length() - kMaxSignificantDecimalDigits); 130 } 131 132 // Reads digits from the buffer and converts them to a uint64. 133 // Reads in as many digits as fit into a uint64. 134 // When the string starts with "1844674407370955161" no further digit is read. 135 // Since 2^64 = 18446744073709551616 it would still be possible read another 136 // digit if it was less or equal than 6, but this would complicate the code. 137 static uint64_t ReadUint64(Vector<const char> buffer, 138 int* number_of_read_digits) { 139 uint64_t result = 0; 140 int i = 0; 141 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { 142 int digit = buffer[i++] - '0'; 143 ASSERT(0 <= digit && digit <= 9); 144 result = 10 * result + digit; 145 } 146 *number_of_read_digits = i; 147 return result; 148 } 149 150 151 // Reads a DiyFp from the buffer. 152 // The returned DiyFp is not necessarily normalized. 153 // If remaining_decimals is zero then the returned DiyFp is accurate. 154 // Otherwise it has been rounded and has error of at most 1/2 ulp. 155 static void ReadDiyFp(Vector<const char> buffer, 156 DiyFp* result, 157 int* remaining_decimals) { 158 int read_digits; 159 uint64_t significand = ReadUint64(buffer, &read_digits); 160 if (buffer.length() == read_digits) { 161 *result = DiyFp(significand, 0); 162 *remaining_decimals = 0; 163 } else { 164 // Round the significand. 165 if (buffer[read_digits] >= '5') { 166 significand++; 167 } 168 // Compute the binary exponent. 169 int exponent = 0; 170 *result = DiyFp(significand, exponent); 171 *remaining_decimals = buffer.length() - read_digits; 172 } 173 } 174 175 176 static bool DoubleStrtod(Vector<const char> trimmed, 177 int exponent, 178 double* result) { 179 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) 180 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is 181 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the 182 // result is not accurate. 183 // We know that Windows32 uses 64 bits and is therefore accurate. 184 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits 185 // the same problem. 186 return false; 187 #endif 188 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { 189 int read_digits; 190 // The trimmed input fits into a double. 191 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we 192 // can compute the result-double simply by multiplying (resp. dividing) the 193 // two numbers. 194 // This is possible because IEEE guarantees that floating-point operations 195 // return the best possible approximation. 196 if (exponent < 0 && -exponent < kExactPowersOfTenSize) { 197 // 10^-exponent fits into a double. 198 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 199 ASSERT(read_digits == trimmed.length()); 200 *result /= exact_powers_of_ten[-exponent]; 201 return true; 202 } 203 if (0 <= exponent && exponent < kExactPowersOfTenSize) { 204 // 10^exponent fits into a double. 205 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 206 ASSERT(read_digits == trimmed.length()); 207 *result *= exact_powers_of_ten[exponent]; 208 return true; 209 } 210 int remaining_digits = 211 kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); 212 if ((0 <= exponent) && 213 (exponent - remaining_digits < kExactPowersOfTenSize)) { 214 // The trimmed string was short and we can multiply it with 215 // 10^remaining_digits. As a result the remaining exponent now fits 216 // into a double too. 217 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); 218 ASSERT(read_digits == trimmed.length()); 219 *result *= exact_powers_of_ten[remaining_digits]; 220 *result *= exact_powers_of_ten[exponent - remaining_digits]; 221 return true; 222 } 223 } 224 return false; 225 } 226 227 228 // Returns 10^exponent as an exact DiyFp. 229 // The given exponent must be in the range [1; kDecimalExponentDistance[. 230 static DiyFp AdjustmentPowerOfTen(int exponent) { 231 ASSERT(0 < exponent); 232 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); 233 // Simply hardcode the remaining powers for the given decimal exponent 234 // distance. 235 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); 236 switch (exponent) { 237 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); 238 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); 239 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); 240 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); 241 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); 242 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); 243 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); 244 default: 245 UNREACHABLE(); 246 return DiyFp(0, 0); 247 } 248 } 249 250 251 // If the function returns true then the result is the correct double. 252 // Otherwise it is either the correct double or the double that is just below 253 // the correct double. 254 static bool DiyFpStrtod(Vector<const char> buffer, 255 int exponent, 256 double* result) { 257 DiyFp input; 258 int remaining_decimals; 259 ReadDiyFp(buffer, &input, &remaining_decimals); 260 // Since we may have dropped some digits the input is not accurate. 261 // If remaining_decimals is different than 0 than the error is at most 262 // .5 ulp (unit in the last place). 263 // We don't want to deal with fractions and therefore keep a common 264 // denominator. 265 const int kDenominatorLog = 3; 266 const int kDenominator = 1 << kDenominatorLog; 267 // Move the remaining decimals into the exponent. 268 exponent += remaining_decimals; 269 int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); 270 271 int old_e = input.e(); 272 input.Normalize(); 273 error <<= old_e - input.e(); 274 275 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); 276 if (exponent < PowersOfTenCache::kMinDecimalExponent) { 277 *result = 0.0; 278 return true; 279 } 280 DiyFp cached_power; 281 int cached_decimal_exponent; 282 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, 283 &cached_power, 284 &cached_decimal_exponent); 285 286 if (cached_decimal_exponent != exponent) { 287 int adjustment_exponent = exponent - cached_decimal_exponent; 288 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); 289 input.Multiply(adjustment_power); 290 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { 291 // The product of input with the adjustment power fits into a 64 bit 292 // integer. 293 ASSERT(DiyFp::kSignificandSize == 64); 294 } else { 295 // The adjustment power is exact. There is hence only an error of 0.5. 296 error += kDenominator / 2; 297 } 298 } 299 300 input.Multiply(cached_power); 301 // The error introduced by a multiplication of a*b equals 302 // error_a + error_b + error_a*error_b/2^64 + 0.5 303 // Substituting a with 'input' and b with 'cached_power' we have 304 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), 305 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 306 int error_b = kDenominator / 2; 307 int error_ab = (error == 0 ? 0 : 1); // We round up to 1. 308 int fixed_error = kDenominator / 2; 309 error += error_b + error_ab + fixed_error; 310 311 old_e = input.e(); 312 input.Normalize(); 313 error <<= old_e - input.e(); 314 315 // See if the double's significand changes if we add/subtract the error. 316 int order_of_magnitude = DiyFp::kSignificandSize + input.e(); 317 int effective_significand_size = 318 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); 319 int precision_digits_count = 320 DiyFp::kSignificandSize - effective_significand_size; 321 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { 322 // This can only happen for very small denormals. In this case the 323 // half-way multiplied by the denominator exceeds the range of an uint64. 324 // Simply shift everything to the right. 325 int shift_amount = (precision_digits_count + kDenominatorLog) - 326 DiyFp::kSignificandSize + 1; 327 input.set_f(input.f() >> shift_amount); 328 input.set_e(input.e() + shift_amount); 329 // We add 1 for the lost precision of error, and kDenominator for 330 // the lost precision of input.f(). 331 error = (error >> shift_amount) + 1 + kDenominator; 332 precision_digits_count -= shift_amount; 333 } 334 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. 335 ASSERT(DiyFp::kSignificandSize == 64); 336 ASSERT(precision_digits_count < 64); 337 uint64_t one64 = 1; 338 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; 339 uint64_t precision_bits = input.f() & precision_bits_mask; 340 uint64_t half_way = one64 << (precision_digits_count - 1); 341 precision_bits *= kDenominator; 342 half_way *= kDenominator; 343 DiyFp rounded_input(input.f() >> precision_digits_count, 344 input.e() + precision_digits_count); 345 if (precision_bits >= half_way + error) { 346 rounded_input.set_f(rounded_input.f() + 1); 347 } 348 // If the last_bits are too close to the half-way case than we are too 349 // inaccurate and round down. In this case we return false so that we can 350 // fall back to a more precise algorithm. 351 352 *result = Double(rounded_input).value(); 353 if (half_way - error < precision_bits && precision_bits < half_way + error) { 354 // Too imprecise. The caller will have to fall back to a slower version. 355 // However the returned number is guaranteed to be either the correct 356 // double, or the next-lower double. 357 return false; 358 } else { 359 return true; 360 } 361 } 362 363 364 // Returns the correct double for the buffer*10^exponent. 365 // The variable guess should be a close guess that is either the correct double 366 // or its lower neighbor (the nearest double less than the correct one). 367 // Preconditions: 368 // buffer.length() + exponent <= kMaxDecimalPower + 1 369 // buffer.length() + exponent > kMinDecimalPower 370 // buffer.length() <= kMaxDecimalSignificantDigits 371 static double BignumStrtod(Vector<const char> buffer, 372 int exponent, 373 double guess) { 374 if (guess == Double::Infinity()) { 375 return guess; 376 } 377 378 DiyFp upper_boundary = Double(guess).UpperBoundary(); 379 380 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); 381 ASSERT(buffer.length() + exponent > kMinDecimalPower); 382 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); 383 // Make sure that the Bignum will be able to hold all our numbers. 384 // Our Bignum implementation has a separate field for exponents. Shifts will 385 // consume at most one bigit (< 64 bits). 386 // ln(10) == 3.3219... 387 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); 388 Bignum input; 389 Bignum boundary; 390 input.AssignDecimalString(buffer); 391 boundary.AssignUInt64(upper_boundary.f()); 392 if (exponent >= 0) { 393 input.MultiplyByPowerOfTen(exponent); 394 } else { 395 boundary.MultiplyByPowerOfTen(-exponent); 396 } 397 if (upper_boundary.e() > 0) { 398 boundary.ShiftLeft(upper_boundary.e()); 399 } else { 400 input.ShiftLeft(-upper_boundary.e()); 401 } 402 int comparison = Bignum::Compare(input, boundary); 403 if (comparison < 0) { 404 return guess; 405 } else if (comparison > 0) { 406 return Double(guess).NextDouble(); 407 } else if ((Double(guess).Significand() & 1) == 0) { 408 // Round towards even. 409 return guess; 410 } else { 411 return Double(guess).NextDouble(); 412 } 413 } 414 415 416 double Strtod(Vector<const char> buffer, int exponent) { 417 Vector<const char> left_trimmed = TrimLeadingZeros(buffer); 418 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); 419 exponent += left_trimmed.length() - trimmed.length(); 420 if (trimmed.length() == 0) return 0.0; 421 if (trimmed.length() > kMaxSignificantDecimalDigits) { 422 char significant_buffer[kMaxSignificantDecimalDigits]; 423 int significant_exponent; 424 TrimToMaxSignificantDigits(trimmed, exponent, 425 significant_buffer, &significant_exponent); 426 return Strtod(Vector<const char>(significant_buffer, 427 kMaxSignificantDecimalDigits), 428 significant_exponent); 429 } 430 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { 431 return Double::Infinity(); 432 } 433 if (exponent + trimmed.length() <= kMinDecimalPower) { 434 return 0.0; 435 } 436 437 double guess; 438 if (DoubleStrtod(trimmed, exponent, &guess) || 439 DiyFpStrtod(trimmed, exponent, &guess)) { 440 return guess; 441 } 442 return BignumStrtod(trimmed, exponent, guess); 443 } 444 445 } // namespace double_conversion 446 447 } // namespace WTF 448