1 /* 2 ***************************************************************************** 3 * Copyright (C) 1996-2010, International Business Machines Corporation and * 4 * others. All Rights Reserved. * 5 ***************************************************************************** 6 */ 7 8 #include "unicode/utypes.h" 9 10 #if !UCONFIG_NO_NORMALIZATION 11 12 #include "unicode/caniter.h" 13 #include "unicode/normalizer2.h" 14 #include "unicode/uchar.h" 15 #include "unicode/uniset.h" 16 #include "unicode/usetiter.h" 17 #include "unicode/ustring.h" 18 #include "cmemory.h" 19 #include "hash.h" 20 #include "normalizer2impl.h" 21 22 /** 23 * This class allows one to iterate through all the strings that are canonically equivalent to a given 24 * string. For example, here are some sample results: 25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 26 1: \u0041\u030A\u0064\u0307\u0327 27 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 28 2: \u0041\u030A\u0064\u0327\u0307 29 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 30 3: \u0041\u030A\u1E0B\u0327 31 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 32 4: \u0041\u030A\u1E11\u0307 33 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 34 5: \u00C5\u0064\u0307\u0327 35 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 36 6: \u00C5\u0064\u0327\u0307 37 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 38 7: \u00C5\u1E0B\u0327 39 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 40 8: \u00C5\u1E11\u0307 41 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 42 9: \u212B\u0064\u0307\u0327 43 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} 44 10: \u212B\u0064\u0327\u0307 45 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} 46 11: \u212B\u1E0B\u0327 47 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} 48 12: \u212B\u1E11\u0307 49 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} 50 *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones, 51 * since it has not been optimized for that situation. 52 *@author M. Davis 53 *@draft 54 */ 55 56 // public 57 58 U_NAMESPACE_BEGIN 59 60 // TODO: add boilerplate methods. 61 62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) 63 64 /** 65 *@param source string to get results for 66 */ 67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) : 68 pieces(NULL), 69 pieces_length(0), 70 pieces_lengths(NULL), 71 current(NULL), 72 current_length(0), 73 nfd(*Normalizer2Factory::getNFDInstance(status)), 74 nfcImpl(*Normalizer2Factory::getNFCImpl(status)) 75 { 76 if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { 77 setSource(sourceStr, status); 78 } 79 } 80 81 CanonicalIterator::~CanonicalIterator() { 82 cleanPieces(); 83 } 84 85 void CanonicalIterator::cleanPieces() { 86 int32_t i = 0; 87 if(pieces != NULL) { 88 for(i = 0; i < pieces_length; i++) { 89 if(pieces[i] != NULL) { 90 delete[] pieces[i]; 91 } 92 } 93 uprv_free(pieces); 94 pieces = NULL; 95 pieces_length = 0; 96 } 97 if(pieces_lengths != NULL) { 98 uprv_free(pieces_lengths); 99 pieces_lengths = NULL; 100 } 101 if(current != NULL) { 102 uprv_free(current); 103 current = NULL; 104 current_length = 0; 105 } 106 } 107 108 /** 109 *@return gets the source: NOTE: it is the NFD form of source 110 */ 111 UnicodeString CanonicalIterator::getSource() { 112 return source; 113 } 114 115 /** 116 * Resets the iterator so that one can start again from the beginning. 117 */ 118 void CanonicalIterator::reset() { 119 done = FALSE; 120 for (int i = 0; i < current_length; ++i) { 121 current[i] = 0; 122 } 123 } 124 125 /** 126 *@return the next string that is canonically equivalent. The value null is returned when 127 * the iteration is done. 128 */ 129 UnicodeString CanonicalIterator::next() { 130 int32_t i = 0; 131 132 if (done) { 133 buffer.setToBogus(); 134 return buffer; 135 } 136 137 // delete old contents 138 buffer.remove(); 139 140 // construct return value 141 142 for (i = 0; i < pieces_length; ++i) { 143 buffer.append(pieces[i][current[i]]); 144 } 145 //String result = buffer.toString(); // not needed 146 147 // find next value for next time 148 149 for (i = current_length - 1; ; --i) { 150 if (i < 0) { 151 done = TRUE; 152 break; 153 } 154 current[i]++; 155 if (current[i] < pieces_lengths[i]) break; // got sequence 156 current[i] = 0; 157 } 158 return buffer; 159 } 160 161 /** 162 *@param set the source string to iterate against. This allows the same iterator to be used 163 * while changing the source string, saving object creation. 164 */ 165 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) { 166 int32_t list_length = 0; 167 UChar32 cp = 0; 168 int32_t start = 0; 169 int32_t i = 0; 170 UnicodeString *list = NULL; 171 172 nfd.normalize(newSource, source, status); 173 if(U_FAILURE(status)) { 174 return; 175 } 176 done = FALSE; 177 178 cleanPieces(); 179 180 // catch degenerate case 181 if (newSource.length() == 0) { 182 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); 183 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); 184 pieces_length = 1; 185 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); 186 current_length = 1; 187 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { 188 status = U_MEMORY_ALLOCATION_ERROR; 189 goto CleanPartialInitialization; 190 } 191 current[0] = 0; 192 pieces[0] = new UnicodeString[1]; 193 pieces_lengths[0] = 1; 194 if (pieces[0] == 0) { 195 status = U_MEMORY_ALLOCATION_ERROR; 196 goto CleanPartialInitialization; 197 } 198 return; 199 } 200 201 202 list = new UnicodeString[source.length()]; 203 if (list == 0) { 204 status = U_MEMORY_ALLOCATION_ERROR; 205 goto CleanPartialInitialization; 206 } 207 208 // i should initialy be the number of code units at the 209 // start of the string 210 i = UTF16_CHAR_LENGTH(source.char32At(0)); 211 //int32_t i = 1; 212 // find the segments 213 // This code iterates through the source string and 214 // extracts segments that end up on a codepoint that 215 // doesn't start any decompositions. (Analysis is done 216 // on the NFD form - see above). 217 for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { 218 cp = source.char32At(i); 219 if (nfcImpl.isCanonSegmentStarter(cp)) { 220 source.extract(start, i-start, list[list_length++]); // add up to i 221 start = i; 222 } 223 } 224 source.extract(start, i-start, list[list_length++]); // add last one 225 226 227 // allocate the arrays, and find the strings that are CE to each segment 228 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)); 229 pieces_length = list_length; 230 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); 231 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); 232 current_length = list_length; 233 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { 234 status = U_MEMORY_ALLOCATION_ERROR; 235 goto CleanPartialInitialization; 236 } 237 238 for (i = 0; i < current_length; i++) { 239 current[i] = 0; 240 } 241 // for each segment, get all the combinations that can produce 242 // it after NFD normalization 243 for (i = 0; i < pieces_length; ++i) { 244 //if (PROGRESS) printf("SEGMENT\n"); 245 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); 246 } 247 248 delete[] list; 249 return; 250 // Common section to cleanup all local variables and reset object variables. 251 CleanPartialInitialization: 252 if (list != NULL) { 253 delete[] list; 254 } 255 cleanPieces(); 256 } 257 258 /** 259 * Dumb recursive implementation of permutation. 260 * TODO: optimize 261 * @param source the string to find permutations for 262 * @return the results in a set. 263 */ 264 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) { 265 if(U_FAILURE(status)) { 266 return; 267 } 268 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); 269 int32_t i = 0; 270 271 // optimization: 272 // if zero or one character, just return a set with it 273 // we check for length < 2 to keep from counting code points all the time 274 if (source.length() <= 2 && source.countChar32() <= 1) { 275 UnicodeString *toPut = new UnicodeString(source); 276 /* test for NULL */ 277 if (toPut == 0) { 278 status = U_MEMORY_ALLOCATION_ERROR; 279 return; 280 } 281 result->put(source, toPut, status); 282 return; 283 } 284 285 // otherwise iterate through the string, and recursively permute all the other characters 286 UChar32 cp; 287 Hashtable subpermute(status); 288 if(U_FAILURE(status)) { 289 return; 290 } 291 subpermute.setValueDeleter(uhash_deleteUnicodeString); 292 293 for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { 294 cp = source.char32At(i); 295 const UHashElement *ne = NULL; 296 int32_t el = -1; 297 UnicodeString subPermuteString = source; 298 299 // optimization: 300 // if the character is canonical combining class zero, 301 // don't permute it 302 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { 303 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i))); 304 continue; 305 } 306 307 subpermute.removeAll(); 308 309 // see what the permutations of the characters before and after this one are 310 //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp))); 311 permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status); 312 /* Test for buffer overflows */ 313 if(U_FAILURE(status)) { 314 return; 315 } 316 // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents 317 // of source at this point. 318 319 // prefix this character to all of them 320 ne = subpermute.nextElement(el); 321 while (ne != NULL) { 322 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); 323 UnicodeString *chStr = new UnicodeString(cp); 324 //test for NULL 325 if (chStr == NULL) { 326 status = U_MEMORY_ALLOCATION_ERROR; 327 return; 328 } 329 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); 330 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); 331 result->put(*chStr, chStr, status); 332 ne = subpermute.nextElement(el); 333 } 334 } 335 //return result; 336 } 337 338 // privates 339 340 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it. 341 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) { 342 Hashtable result(status); 343 Hashtable permutations(status); 344 Hashtable basic(status); 345 if (U_FAILURE(status)) { 346 return 0; 347 } 348 result.setValueDeleter(uhash_deleteUnicodeString); 349 permutations.setValueDeleter(uhash_deleteUnicodeString); 350 basic.setValueDeleter(uhash_deleteUnicodeString); 351 352 UChar USeg[256]; 353 int32_t segLen = segment.extract(USeg, 256, status); 354 getEquivalents2(&basic, USeg, segLen, status); 355 356 // now get all the permutations 357 // add only the ones that are canonically equivalent 358 // TODO: optimize by not permuting any class zero. 359 360 const UHashElement *ne = NULL; 361 int32_t el = -1; 362 //Iterator it = basic.iterator(); 363 ne = basic.nextElement(el); 364 //while (it.hasNext()) 365 while (ne != NULL) { 366 //String item = (String) it.next(); 367 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); 368 369 permutations.removeAll(); 370 permute(item, CANITER_SKIP_ZEROES, &permutations, status); 371 const UHashElement *ne2 = NULL; 372 int32_t el2 = -1; 373 //Iterator it2 = permutations.iterator(); 374 ne2 = permutations.nextElement(el2); 375 //while (it2.hasNext()) 376 while (ne2 != NULL) { 377 //String possible = (String) it2.next(); 378 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer))); 379 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); 380 UnicodeString attempt; 381 nfd.normalize(possible, attempt, status); 382 383 // TODO: check if operator == is semanticaly the same as attempt.equals(segment) 384 if (attempt==segment) { 385 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible))); 386 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow). 387 result.put(possible, new UnicodeString(possible), status); //add(possible); 388 } else { 389 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible))); 390 } 391 392 ne2 = permutations.nextElement(el2); 393 } 394 ne = basic.nextElement(el); 395 } 396 397 /* Test for buffer overflows */ 398 if(U_FAILURE(status)) { 399 return 0; 400 } 401 // convert into a String[] to clean up storage 402 //String[] finalResult = new String[result.size()]; 403 UnicodeString *finalResult = NULL; 404 int32_t resultCount; 405 if((resultCount = result.count())) { 406 finalResult = new UnicodeString[resultCount]; 407 if (finalResult == 0) { 408 status = U_MEMORY_ALLOCATION_ERROR; 409 return NULL; 410 } 411 } 412 else { 413 status = U_ILLEGAL_ARGUMENT_ERROR; 414 return NULL; 415 } 416 //result.toArray(finalResult); 417 result_len = 0; 418 el = -1; 419 ne = result.nextElement(el); 420 while(ne != NULL) { 421 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); 422 ne = result.nextElement(el); 423 } 424 425 426 return finalResult; 427 } 428 429 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) { 430 431 if (U_FAILURE(status)) { 432 return NULL; 433 } 434 435 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); 436 437 UnicodeString toPut(segment, segLen); 438 439 fillinResult->put(toPut, new UnicodeString(toPut), status); 440 441 UnicodeSet starts; 442 443 // cycle through all the characters 444 UChar32 cp; 445 for (int32_t i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) { 446 // see if any character is at the start of some decomposition 447 UTF_GET_CHAR(segment, 0, i, segLen, cp); 448 if (!nfcImpl.getCanonStartSet(cp, starts)) { 449 continue; 450 } 451 // if so, see which decompositions match 452 UnicodeSetIterator iter(starts); 453 while (iter.next()) { 454 UChar32 cp2 = iter.getCodepoint(); 455 Hashtable remainder(status); 456 remainder.setValueDeleter(uhash_deleteUnicodeString); 457 if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { 458 continue; 459 } 460 461 // there were some matches, so add all the possibilities to the set. 462 UnicodeString prefix(segment, i); 463 prefix += cp2; 464 465 int32_t el = -1; 466 const UHashElement *ne = remainder.nextElement(el); 467 while (ne != NULL) { 468 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); 469 UnicodeString *toAdd = new UnicodeString(prefix); 470 /* test for NULL */ 471 if (toAdd == 0) { 472 status = U_MEMORY_ALLOCATION_ERROR; 473 return NULL; 474 } 475 *toAdd += item; 476 fillinResult->put(*toAdd, toAdd, status); 477 478 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); 479 480 ne = remainder.nextElement(el); 481 } 482 } 483 } 484 485 /* Test for buffer overflows */ 486 if(U_FAILURE(status)) { 487 return NULL; 488 } 489 return fillinResult; 490 } 491 492 /** 493 * See if the decomposition of cp2 is at segment starting at segmentPos 494 * (with canonical rearrangment!) 495 * If so, take the remainder, and return the equivalents 496 */ 497 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { 498 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { 499 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); 500 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); 501 502 if (U_FAILURE(status)) { 503 return NULL; 504 } 505 506 UnicodeString temp(comp); 507 int32_t inputLen=temp.length(); 508 UnicodeString decompString; 509 nfd.normalize(temp, decompString, status); 510 const UChar *decomp=decompString.getBuffer(); 511 int32_t decompLen=decompString.length(); 512 513 // See if it matches the start of segment (at segmentPos) 514 UBool ok = FALSE; 515 UChar32 cp; 516 int32_t decompPos = 0; 517 UChar32 decompCp; 518 U16_NEXT(decomp, decompPos, decompLen, decompCp); 519 520 int32_t i = segmentPos; 521 while(i < segLen) { 522 U16_NEXT(segment, i, segLen, cp); 523 524 if (cp == decompCp) { // if equal, eat another cp from decomp 525 526 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp)))); 527 528 if (decompPos == decompLen) { // done, have all decomp characters! 529 temp.append(segment+i, segLen-i); 530 ok = TRUE; 531 break; 532 } 533 U16_NEXT(decomp, decompPos, decompLen, decompCp); 534 } else { 535 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))); 536 537 // brute force approach 538 temp.append(cp); 539 540 /* TODO: optimize 541 // since we know that the classes are monotonically increasing, after zero 542 // e.g. 0 5 7 9 0 3 543 // we can do an optimization 544 // there are only a few cases that work: zero, less, same, greater 545 // if both classes are the same, we fail 546 // if the decomp class < the segment class, we fail 547 548 segClass = getClass(cp); 549 if (decompClass <= segClass) return null; 550 */ 551 } 552 } 553 if (!ok) 554 return NULL; // we failed, characters left over 555 556 //if (PROGRESS) printf("Matches\n"); 557 558 if (inputLen == temp.length()) { 559 fillinResult->put(UnicodeString(), new UnicodeString(), status); 560 return fillinResult; // succeed, but no remainder 561 } 562 563 // brute force approach 564 // check to make sure result is canonically equivalent 565 UnicodeString trial; 566 nfd.normalize(temp, trial, status); 567 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) { 568 return NULL; 569 } 570 571 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status); 572 } 573 574 U_NAMESPACE_END 575 576 #endif /* #if !UCONFIG_NO_NORMALIZATION */ 577