Home | History | Annotate | Download | only in common
      1 /*
      2 *******************************************************************************
      3 *
      4 *   Copyright (C) 2008-2009, International Business Machines
      5 *   Corporation, Google and others.  All Rights Reserved.
      6 *
      7 *******************************************************************************
      8 */
      9 // Author : eldawy (at) google.com (Mohamed Eldawy)
     10 // ucnvsel.cpp
     11 //
     12 // Purpose: To generate a list of encodings capable of handling
     13 // a given Unicode text
     14 //
     15 // Started 09-April-2008
     16 
     17 /**
     18  * \file
     19  *
     20  * This is an implementation of an encoding selector.
     21  * The goal is, given a unicode string, find the encodings
     22  * this string can be mapped to. To make processing faster
     23  * a trie is built when you call ucnvsel_open() that
     24  * stores all encodings a codepoint can map to
     25  */
     26 
     27 #include "unicode/ucnvsel.h"
     28 
     29 #include <string.h>
     30 
     31 #include "unicode/uchar.h"
     32 #include "unicode/uniset.h"
     33 #include "unicode/ucnv.h"
     34 #include "unicode/ustring.h"
     35 #include "unicode/uchriter.h"
     36 #include "utrie2.h"
     37 #include "propsvec.h"
     38 #include "uassert.h"
     39 #include "ucmndata.h"
     40 #include "uenumimp.h"
     41 #include "cmemory.h"
     42 #include "cstring.h"
     43 
     44 U_NAMESPACE_USE
     45 
     46 struct UConverterSelector {
     47   UTrie2 *trie;              // 16 bit trie containing offsets into pv
     48   uint32_t* pv;              // table of bits!
     49   int32_t pvCount;
     50   char** encodings;          // which encodings did user ask to use?
     51   int32_t encodingsCount;
     52   int32_t encodingStrLength;
     53   uint8_t* swapped;
     54   UBool ownPv, ownEncodingStrings;
     55 };
     56 
     57 static void generateSelectorData(UConverterSelector* result,
     58                                  UPropsVectors *upvec,
     59                                  const USet* excludedCodePoints,
     60                                  const UConverterUnicodeSet whichSet,
     61                                  UErrorCode* status) {
     62   if (U_FAILURE(*status)) {
     63     return;
     64   }
     65 
     66   int32_t columns = (result->encodingsCount+31)/32;
     67 
     68   // set errorValue to all-ones
     69   for (int32_t col = 0; col < columns; col++) {
     70     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
     71                    col, ~0, ~0, status);
     72   }
     73 
     74   for (int32_t i = 0; i < result->encodingsCount; ++i) {
     75     uint32_t mask;
     76     uint32_t column;
     77     int32_t item_count;
     78     int32_t j;
     79     UConverter* test_converter = ucnv_open(result->encodings[i], status);
     80     if (U_FAILURE(*status)) {
     81       return;
     82     }
     83     USet* unicode_point_set;
     84     unicode_point_set = uset_open(1, 0);  // empty set
     85 
     86     ucnv_getUnicodeSet(test_converter, unicode_point_set,
     87                        whichSet, status);
     88     if (U_FAILURE(*status)) {
     89       ucnv_close(test_converter);
     90       return;
     91     }
     92 
     93     column = i / 32;
     94     mask = 1 << (i%32);
     95     // now iterate over intervals on set i!
     96     item_count = uset_getItemCount(unicode_point_set);
     97 
     98     for (j = 0; j < item_count; ++j) {
     99       UChar32 start_char;
    100       UChar32 end_char;
    101       UErrorCode smallStatus = U_ZERO_ERROR;
    102       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
    103                    &smallStatus);
    104       if (U_FAILURE(smallStatus)) {
    105         // this will be reached for the converters that fill the set with
    106         // strings. Those should be ignored by our system
    107       } else {
    108         upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
    109                        status);
    110       }
    111     }
    112     ucnv_close(test_converter);
    113     uset_close(unicode_point_set);
    114     if (U_FAILURE(*status)) {
    115       return;
    116     }
    117   }
    118 
    119   // handle excluded encodings! Simply set their values to all 1's in the upvec
    120   if (excludedCodePoints) {
    121     int32_t item_count = uset_getItemCount(excludedCodePoints);
    122     for (int32_t j = 0; j < item_count; ++j) {
    123       UChar32 start_char;
    124       UChar32 end_char;
    125 
    126       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
    127                    status);
    128       for (int32_t col = 0; col < columns; col++) {
    129         upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
    130                       status);
    131       }
    132     }
    133   }
    134 
    135   // alright. Now, let's put things in the same exact form you'd get when you
    136   // unserialize things.
    137   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
    138   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
    139   result->pvCount *= columns;  // number of uint32_t = rows * columns
    140   result->ownPv = TRUE;
    141 }
    142 
    143 /* open a selector. If converterListSize is 0, build for all converters.
    144    If excludedCodePoints is NULL, don't exclude any codepoints */
    145 U_CAPI UConverterSelector* U_EXPORT2
    146 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
    147              const USet* excludedCodePoints,
    148              const UConverterUnicodeSet whichSet, UErrorCode* status) {
    149   // check if already failed
    150   if (U_FAILURE(*status)) {
    151     return NULL;
    152   }
    153   // ensure args make sense!
    154   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
    155     *status = U_ILLEGAL_ARGUMENT_ERROR;
    156     return NULL;
    157   }
    158 
    159   // allocate a new converter
    160   LocalUConverterSelectorPointer newSelector(
    161     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
    162   if (newSelector.isNull()) {
    163     *status = U_MEMORY_ALLOCATION_ERROR;
    164     return NULL;
    165   }
    166   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
    167 
    168   if (converterListSize == 0) {
    169     converterList = NULL;
    170     converterListSize = ucnv_countAvailable();
    171   }
    172   newSelector->encodings =
    173     (char**)uprv_malloc(converterListSize * sizeof(char*));
    174   if (!newSelector->encodings) {
    175     *status = U_MEMORY_ALLOCATION_ERROR;
    176     return NULL;
    177   }
    178   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
    179 
    180   // make a backup copy of the list of converters
    181   int32_t totalSize = 0;
    182   int32_t i;
    183   for (i = 0; i < converterListSize; i++) {
    184     totalSize +=
    185       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
    186   }
    187   // 4-align the totalSize to 4-align the size of the serialized form
    188   int32_t encodingStrPadding = totalSize & 3;
    189   if (encodingStrPadding != 0) {
    190     encodingStrPadding = 4 - encodingStrPadding;
    191   }
    192   newSelector->encodingStrLength = totalSize += encodingStrPadding;
    193   char* allStrings = (char*) uprv_malloc(totalSize);
    194   if (!allStrings) {
    195     *status = U_MEMORY_ALLOCATION_ERROR;
    196     return NULL;
    197   }
    198 
    199   for (i = 0; i < converterListSize; i++) {
    200     newSelector->encodings[i] = allStrings;
    201     uprv_strcpy(newSelector->encodings[i],
    202                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
    203     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
    204   }
    205   while (encodingStrPadding > 0) {
    206     *allStrings++ = 0;
    207     --encodingStrPadding;
    208   }
    209 
    210   newSelector->ownEncodingStrings = TRUE;
    211   newSelector->encodingsCount = converterListSize;
    212   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
    213   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
    214   upvec_close(upvec);
    215 
    216   if (U_FAILURE(*status)) {
    217     return NULL;
    218   }
    219 
    220   return newSelector.orphan();
    221 }
    222 
    223 /* close opened selector */
    224 U_CAPI void U_EXPORT2
    225 ucnvsel_close(UConverterSelector *sel) {
    226   if (!sel) {
    227     return;
    228   }
    229   if (sel->ownEncodingStrings) {
    230     uprv_free(sel->encodings[0]);
    231   }
    232   uprv_free(sel->encodings);
    233   if (sel->ownPv) {
    234     uprv_free(sel->pv);
    235   }
    236   utrie2_close(sel->trie);
    237   uprv_free(sel->swapped);
    238   uprv_free(sel);
    239 }
    240 
    241 static const UDataInfo dataInfo = {
    242   sizeof(UDataInfo),
    243   0,
    244 
    245   U_IS_BIG_ENDIAN,
    246   U_CHARSET_FAMILY,
    247   U_SIZEOF_UCHAR,
    248   0,
    249 
    250   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
    251   { 1, 0, 0, 0 },               /* formatVersion */
    252   { 0, 0, 0, 0 }                /* dataVersion */
    253 };
    254 
    255 enum {
    256   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
    257   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
    258   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
    259   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
    260   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
    261   UCNVSEL_INDEX_COUNT = 16
    262 };
    263 
    264 /*
    265  * Serialized form of a UConverterSelector, formatVersion 1:
    266  *
    267  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
    268  * as the template above.
    269  * This is followed by:
    270  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
    271  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
    272  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
    273  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
    274  */
    275 
    276 /* serialize a selector */
    277 U_CAPI int32_t U_EXPORT2
    278 ucnvsel_serialize(const UConverterSelector* sel,
    279                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
    280   // check if already failed
    281   if (U_FAILURE(*status)) {
    282     return 0;
    283   }
    284   // ensure args make sense!
    285   uint8_t *p = (uint8_t *)buffer;
    286   if (bufferCapacity < 0 ||
    287       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    288   ) {
    289     *status = U_ILLEGAL_ARGUMENT_ERROR;
    290     return 0;
    291   }
    292   // add up the size of the serialized form
    293   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
    294   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
    295     return 0;
    296   }
    297   *status = U_ZERO_ERROR;
    298 
    299   DataHeader header;
    300   uprv_memset(&header, 0, sizeof(header));
    301   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
    302   header.dataHeader.magic1 = 0xda;
    303   header.dataHeader.magic2 = 0x27;
    304   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
    305 
    306   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
    307     serializedTrieSize,
    308     sel->pvCount,
    309     sel->encodingsCount,
    310     sel->encodingStrLength
    311   };
    312 
    313   int32_t totalSize =
    314     header.dataHeader.headerSize +
    315     (int32_t)sizeof(indexes) +
    316     serializedTrieSize +
    317     sel->pvCount * 4 +
    318     sel->encodingStrLength;
    319   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
    320   if (totalSize > bufferCapacity) {
    321     *status = U_BUFFER_OVERFLOW_ERROR;
    322     return totalSize;
    323   }
    324   // ok, save!
    325   int32_t length = header.dataHeader.headerSize;
    326   uprv_memcpy(p, &header, sizeof(header));
    327   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
    328   p += length;
    329 
    330   length = (int32_t)sizeof(indexes);
    331   uprv_memcpy(p, indexes, length);
    332   p += length;
    333 
    334   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
    335   p += serializedTrieSize;
    336 
    337   length = sel->pvCount * 4;
    338   uprv_memcpy(p, sel->pv, length);
    339   p += length;
    340 
    341   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
    342   p += sel->encodingStrLength;
    343 
    344   return totalSize;
    345 }
    346 
    347 /**
    348  * swap a selector into the desired Endianness and Asciiness of
    349  * the system. Just as FYI, selectors are always saved in the format
    350  * of the system that created them. They are only converted if used
    351  * on another system. In other words, selectors created on different
    352  * system can be different even if the params are identical (endianness
    353  * and Asciiness differences only)
    354  *
    355  * @param ds pointer to data swapper containing swapping info
    356  * @param inData pointer to incoming data
    357  * @param length length of inData in bytes
    358  * @param outData pointer to output data. Capacity should
    359  *                be at least equal to capacity of inData
    360  * @param status an in/out ICU UErrorCode
    361  * @return 0 on failure, number of bytes swapped on success
    362  *         number of bytes swapped can be smaller than length
    363  */
    364 static int32_t
    365 ucnvsel_swap(const UDataSwapper *ds,
    366              const void *inData, int32_t length,
    367              void *outData, UErrorCode *status) {
    368   /* udata_swapDataHeader checks the arguments */
    369   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
    370   if(U_FAILURE(*status)) {
    371     return 0;
    372   }
    373 
    374   /* check data format and format version */
    375   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
    376   if(!(
    377     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
    378     pInfo->dataFormat[1] == 0x53 &&
    379     pInfo->dataFormat[2] == 0x65 &&
    380     pInfo->dataFormat[3] == 0x6c
    381   )) {
    382     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
    383                      pInfo->dataFormat[0], pInfo->dataFormat[1],
    384                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
    385     *status = U_INVALID_FORMAT_ERROR;
    386     return 0;
    387   }
    388   if(pInfo->formatVersion[0] != 1) {
    389     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
    390                      pInfo->formatVersion[0]);
    391     *status = U_UNSUPPORTED_ERROR;
    392     return 0;
    393   }
    394 
    395   if(length >= 0) {
    396     length -= headerSize;
    397     if(length < 16*4) {
    398       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
    399                        length);
    400       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    401       return 0;
    402     }
    403   }
    404 
    405   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
    406   uint8_t *outBytes = (uint8_t *)outData + headerSize;
    407 
    408   /* read the indexes */
    409   const int32_t *inIndexes = (const int32_t *)inBytes;
    410   int32_t indexes[16];
    411   int32_t i;
    412   for(i = 0; i < 16; ++i) {
    413     indexes[i] = udata_readInt32(ds, inIndexes[i]);
    414   }
    415 
    416   /* get the total length of the data */
    417   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
    418   if(length >= 0) {
    419     if(length < size) {
    420       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
    421                        length);
    422       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    423       return 0;
    424     }
    425 
    426     /* copy the data for inaccessible bytes */
    427     if(inBytes != outBytes) {
    428       uprv_memcpy(outBytes, inBytes, size);
    429     }
    430 
    431     int32_t offset = 0, count;
    432 
    433     /* swap the int32_t indexes[] */
    434     count = UCNVSEL_INDEX_COUNT*4;
    435     ds->swapArray32(ds, inBytes, count, outBytes, status);
    436     offset += count;
    437 
    438     /* swap the UTrie2 */
    439     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
    440     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
    441     offset += count;
    442 
    443     /* swap the uint32_t pv[] */
    444     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
    445     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
    446     offset += count;
    447 
    448     /* swap the encoding names */
    449     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    450     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
    451     offset += count;
    452 
    453     U_ASSERT(offset == size);
    454   }
    455 
    456   return headerSize + size;
    457 }
    458 
    459 /* unserialize a selector */
    460 U_CAPI UConverterSelector* U_EXPORT2
    461 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
    462   // check if already failed
    463   if (U_FAILURE(*status)) {
    464     return NULL;
    465   }
    466   // ensure args make sense!
    467   const uint8_t *p = (const uint8_t *)buffer;
    468   if (length <= 0 ||
    469       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    470   ) {
    471     *status = U_ILLEGAL_ARGUMENT_ERROR;
    472     return NULL;
    473   }
    474   // header
    475   if (length < 32) {
    476     // not even enough space for a minimal header
    477     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    478     return NULL;
    479   }
    480   const DataHeader *pHeader = (const DataHeader *)p;
    481   if (!(
    482     pHeader->dataHeader.magic1==0xda &&
    483     pHeader->dataHeader.magic2==0x27 &&
    484     pHeader->info.dataFormat[0] == 0x43 &&
    485     pHeader->info.dataFormat[1] == 0x53 &&
    486     pHeader->info.dataFormat[2] == 0x65 &&
    487     pHeader->info.dataFormat[3] == 0x6c
    488   )) {
    489     /* header not valid or dataFormat not recognized */
    490     *status = U_INVALID_FORMAT_ERROR;
    491     return NULL;
    492   }
    493   if (pHeader->info.formatVersion[0] != 1) {
    494     *status = U_UNSUPPORTED_ERROR;
    495     return NULL;
    496   }
    497   uint8_t* swapped = NULL;
    498   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
    499       pHeader->info.charsetFamily != U_CHARSET_FAMILY
    500   ) {
    501     // swap the data
    502     UDataSwapper *ds =
    503       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
    504     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
    505     if (U_FAILURE(*status)) {
    506       udata_closeSwapper(ds);
    507       return NULL;
    508     }
    509     if (length < totalSize) {
    510       udata_closeSwapper(ds);
    511       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    512       return NULL;
    513     }
    514     swapped = (uint8_t*)uprv_malloc(totalSize);
    515     if (swapped == NULL) {
    516       udata_closeSwapper(ds);
    517       *status = U_MEMORY_ALLOCATION_ERROR;
    518       return NULL;
    519     }
    520     ucnvsel_swap(ds, p, length, swapped, status);
    521     udata_closeSwapper(ds);
    522     if (U_FAILURE(*status)) {
    523       uprv_free(swapped);
    524       return NULL;
    525     }
    526     p = swapped;
    527     pHeader = (const DataHeader *)p;
    528   }
    529   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
    530     // not even enough space for the header and the indexes
    531     uprv_free(swapped);
    532     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    533     return NULL;
    534   }
    535   p += pHeader->dataHeader.headerSize;
    536   length -= pHeader->dataHeader.headerSize;
    537   // indexes
    538   const int32_t *indexes = (const int32_t *)p;
    539   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
    540     uprv_free(swapped);
    541     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    542     return NULL;
    543   }
    544   p += UCNVSEL_INDEX_COUNT * 4;
    545   // create and populate the selector object
    546   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
    547   char **encodings =
    548     (char **)uprv_malloc(
    549       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
    550   if (sel == NULL || encodings == NULL) {
    551     uprv_free(swapped);
    552     uprv_free(sel);
    553     uprv_free(encodings);
    554     *status = U_MEMORY_ALLOCATION_ERROR;
    555     return NULL;
    556   }
    557   uprv_memset(sel, 0, sizeof(UConverterSelector));
    558   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
    559   sel->encodings = encodings;
    560   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
    561   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    562   sel->swapped = swapped;
    563   // trie
    564   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    565                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
    566                                         status);
    567   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
    568   if (U_FAILURE(*status)) {
    569     ucnvsel_close(sel);
    570     return NULL;
    571   }
    572   // bit vectors
    573   sel->pv = (uint32_t *)p;
    574   p += sel->pvCount * 4;
    575   // encoding names
    576   char* s = (char*)p;
    577   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
    578     sel->encodings[i] = s;
    579     s += uprv_strlen(s) + 1;
    580   }
    581   p += sel->encodingStrLength;
    582 
    583   return sel;
    584 }
    585 
    586 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
    587 // iterate over the selected encodings
    588 struct Enumerator {
    589   int16_t* index;
    590   int16_t length;
    591   int16_t cur;
    592   const UConverterSelector* sel;
    593 };
    594 
    595 U_CDECL_BEGIN
    596 
    597 static void U_CALLCONV
    598 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
    599   uprv_free(((Enumerator*)(enumerator->context))->index);
    600   uprv_free(enumerator->context);
    601   uprv_free(enumerator);
    602 }
    603 
    604 
    605 static int32_t U_CALLCONV
    606 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
    607   // check if already failed
    608   if (U_FAILURE(*status)) {
    609     return 0;
    610   }
    611   return ((Enumerator*)(enumerator->context))->length;
    612 }
    613 
    614 
    615 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
    616                                                  int32_t* resultLength,
    617                                                  UErrorCode* status) {
    618   // check if already failed
    619   if (U_FAILURE(*status)) {
    620     return NULL;
    621   }
    622 
    623   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
    624   const UConverterSelector* sel;
    625   const char* result;
    626   if (cur >= ((Enumerator*)(enumerator->context))->length) {
    627     return NULL;
    628   }
    629   sel = ((Enumerator*)(enumerator->context))->sel;
    630   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
    631   ((Enumerator*)(enumerator->context))->cur++;
    632   if (resultLength) {
    633     *resultLength = (int32_t)uprv_strlen(result);
    634   }
    635   return result;
    636 }
    637 
    638 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
    639                                            UErrorCode* status) {
    640   // check if already failed
    641   if (U_FAILURE(*status)) {
    642     return ;
    643   }
    644   ((Enumerator*)(enumerator->context))->cur = 0;
    645 }
    646 
    647 U_CDECL_END
    648 
    649 
    650 static const UEnumeration defaultEncodings = {
    651   NULL,
    652     NULL,
    653     ucnvsel_close_selector_iterator,
    654     ucnvsel_count_encodings,
    655     uenum_unextDefault,
    656     ucnvsel_next_encoding,
    657     ucnvsel_reset_iterator
    658 };
    659 
    660 
    661 // internal fn to intersect two sets of masks
    662 // returns whether the mask has reduced to all zeros
    663 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
    664   int32_t i;
    665   uint32_t oredDest = 0;
    666   for (i = 0 ; i < len ; ++i) {
    667     oredDest |= (dest[i] &= source1[i]);
    668   }
    669   return oredDest == 0;
    670 }
    671 
    672 // internal fn to count how many 1's are there in a mask
    673 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
    674 static int16_t countOnes(uint32_t* mask, int32_t len) {
    675   int32_t i, totalOnes = 0;
    676   for (i = 0 ; i < len ; ++i) {
    677     uint32_t ent = mask[i];
    678     for (; ent; totalOnes++)
    679     {
    680       ent &= ent - 1; // clear the least significant bit set
    681     }
    682   }
    683   return totalOnes;
    684 }
    685 
    686 
    687 /* internal function! */
    688 static UEnumeration *selectForMask(const UConverterSelector* sel,
    689                                    uint32_t *mask, UErrorCode *status) {
    690   // this is the context we will use. Store a table of indices to which
    691   // encodings are legit.
    692   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
    693   if (result == NULL) {
    694     uprv_free(mask);
    695     *status = U_MEMORY_ALLOCATION_ERROR;
    696     return NULL;
    697   }
    698   result->index = NULL;  // this will be allocated later!
    699   result->length = result->cur = 0;
    700   result->sel = sel;
    701 
    702   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
    703   if (en == NULL) {
    704     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
    705     uprv_free(mask);
    706     uprv_free(result);
    707     *status = U_MEMORY_ALLOCATION_ERROR;
    708     return NULL;
    709   }
    710   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
    711   en->context = result;
    712 
    713   int32_t columns = (sel->encodingsCount+31)/32;
    714   int16_t numOnes = countOnes(mask, columns);
    715   // now, we know the exact space we need for index
    716   if (numOnes > 0) {
    717     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
    718 
    719     int32_t i, j;
    720     int16_t k = 0;
    721     for (j = 0 ; j < columns; j++) {
    722       uint32_t v = mask[j];
    723       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
    724         if ((v & 1) != 0) {
    725           result->index[result->length++] = k;
    726         }
    727         v >>= 1;
    728       }
    729     }
    730   } //otherwise, index will remain NULL (and will never be touched by
    731     //the enumerator code anyway)
    732   uprv_free(mask);
    733   return en;
    734 }
    735 
    736 /* check a string against the selector - UTF16 version */
    737 U_CAPI UEnumeration * U_EXPORT2
    738 ucnvsel_selectForString(const UConverterSelector* sel,
    739                         const UChar *s, int32_t length, UErrorCode *status) {
    740   // check if already failed
    741   if (U_FAILURE(*status)) {
    742     return NULL;
    743   }
    744   // ensure args make sense!
    745   if (sel == NULL || (s == NULL && length != 0)) {
    746     *status = U_ILLEGAL_ARGUMENT_ERROR;
    747     return NULL;
    748   }
    749 
    750   int32_t columns = (sel->encodingsCount+31)/32;
    751   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    752   if (mask == NULL) {
    753     *status = U_MEMORY_ALLOCATION_ERROR;
    754     return NULL;
    755   }
    756   uprv_memset(mask, ~0, columns *4);
    757 
    758   const UChar *limit;
    759   if (length >= 0) {
    760     limit = s + length;
    761   } else {
    762     limit = NULL;
    763   }
    764 
    765   while (limit == NULL ? *s != 0 : s != limit) {
    766     UChar32 c;
    767     uint16_t pvIndex;
    768     UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
    769     if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    770       break;
    771     }
    772   }
    773   return selectForMask(sel, mask, status);
    774 }
    775 
    776 /* check a string against the selector - UTF8 version */
    777 U_CAPI UEnumeration * U_EXPORT2
    778 ucnvsel_selectForUTF8(const UConverterSelector* sel,
    779                       const char *s, int32_t length, UErrorCode *status) {
    780   // check if already failed
    781   if (U_FAILURE(*status)) {
    782     return NULL;
    783   }
    784   // ensure args make sense!
    785   if (sel == NULL || (s == NULL && length != 0)) {
    786     *status = U_ILLEGAL_ARGUMENT_ERROR;
    787     return NULL;
    788   }
    789 
    790   int32_t columns = (sel->encodingsCount+31)/32;
    791   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    792   if (mask == NULL) {
    793     *status = U_MEMORY_ALLOCATION_ERROR;
    794     return NULL;
    795   }
    796   uprv_memset(mask, ~0, columns *4);
    797 
    798   if (length < 0) {
    799     length = (int32_t)uprv_strlen(s);
    800   }
    801   const char *limit = s + length;
    802 
    803   while (s != limit) {
    804     uint16_t pvIndex;
    805     UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
    806     if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    807       break;
    808     }
    809   }
    810   return selectForMask(sel, mask, status);
    811 }
    812