Home | History | Annotate | Download | only in i18n
      1 /*
      2 ******************************************************************************
      3 *   Copyright (C) 1997-2008, International Business Machines
      4 *   Corporation and others.  All Rights Reserved.
      5 ******************************************************************************
      6 *   file name:  nfrule.cpp
      7 *   encoding:   US-ASCII
      8 *   tab size:   8 (not used)
      9 *   indentation:4
     10 *
     11 * Modification history
     12 * Date        Name      Comments
     13 * 10/11/2001  Doug      Ported from ICU4J
     14 */
     15 
     16 #include "nfrule.h"
     17 
     18 #if U_HAVE_RBNF
     19 
     20 #include "unicode/rbnf.h"
     21 #include "unicode/tblcoll.h"
     22 #include "unicode/coleitr.h"
     23 #include "unicode/uchar.h"
     24 #include "nfrs.h"
     25 #include "nfrlist.h"
     26 #include "nfsubs.h"
     27 
     28 #include "util.h"
     29 
     30 U_NAMESPACE_BEGIN
     31 
     32 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
     33   : baseValue((int32_t)0)
     34   , radix(0)
     35   , exponent(0)
     36   , ruleText()
     37   , sub1(NULL)
     38   , sub2(NULL)
     39   , formatter(_rbnf)
     40 {
     41 }
     42 
     43 NFRule::~NFRule()
     44 {
     45   delete sub1;
     46   delete sub2;
     47 }
     48 
     49 static const UChar gLeftBracket = 0x005b;
     50 static const UChar gRightBracket = 0x005d;
     51 static const UChar gColon = 0x003a;
     52 static const UChar gZero = 0x0030;
     53 static const UChar gNine = 0x0039;
     54 static const UChar gSpace = 0x0020;
     55 static const UChar gSlash = 0x002f;
     56 static const UChar gGreaterThan = 0x003e;
     57 static const UChar gLessThan = 0x003c;
     58 static const UChar gComma = 0x002c;
     59 static const UChar gDot = 0x002e;
     60 static const UChar gTick = 0x0027;
     61 //static const UChar gMinus = 0x002d;
     62 static const UChar gSemicolon = 0x003b;
     63 
     64 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
     65 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
     66 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
     67 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
     68 
     69 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
     70 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
     71 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
     72 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
     73 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
     74 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
     75 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
     76 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
     77 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
     78 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
     79 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
     80 static const UChar gEmptyString[] =             {0};                /* "" */
     81 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
     82 
     83 static const UChar * const tokenStrings[] = {
     84     gLessLess, gLessPercent, gLessHash, gLessZero,
     85     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
     86     gEqualPercent, gEqualHash, gEqualZero, NULL
     87 };
     88 
     89 void
     90 NFRule::makeRules(UnicodeString& description,
     91                   const NFRuleSet *ruleSet,
     92                   const NFRule *predecessor,
     93                   const RuleBasedNumberFormat *rbnf,
     94                   NFRuleList& rules,
     95                   UErrorCode& status)
     96 {
     97     // we know we're making at least one rule, so go ahead and
     98     // new it up and initialize its basevalue and divisor
     99     // (this also strips the rule descriptor, if any, off the
    100     // descripton string)
    101     NFRule* rule1 = new NFRule(rbnf);
    102     /* test for NULL */
    103     if (rule1 == 0) {
    104         status = U_MEMORY_ALLOCATION_ERROR;
    105         return;
    106     }
    107     rule1->parseRuleDescriptor(description, status);
    108 
    109     // check the description to see whether there's text enclosed
    110     // in brackets
    111     int32_t brack1 = description.indexOf(gLeftBracket);
    112     int32_t brack2 = description.indexOf(gRightBracket);
    113 
    114     // if the description doesn't contain a matched pair of brackets,
    115     // or if it's of a type that doesn't recognize bracketed text,
    116     // then leave the description alone, initialize the rule's
    117     // rule text and substitutions, and return that rule
    118     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
    119         || rule1->getType() == kProperFractionRule
    120         || rule1->getType() == kNegativeNumberRule) {
    121         rule1->ruleText = description;
    122         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    123         rules.add(rule1);
    124     } else {
    125         // if the description does contain a matched pair of brackets,
    126         // then it's really shorthand for two rules (with one exception)
    127         NFRule* rule2 = NULL;
    128         UnicodeString sbuf;
    129 
    130         // we'll actually only split the rule into two rules if its
    131         // base value is an even multiple of its divisor (or it's one
    132         // of the special rules)
    133         if ((rule1->baseValue > 0
    134             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
    135             || rule1->getType() == kImproperFractionRule
    136             || rule1->getType() == kMasterRule) {
    137 
    138             // if it passes that test, new up the second rule.  If the
    139             // rule set both rules will belong to is a fraction rule
    140             // set, they both have the same base value; otherwise,
    141             // increment the original rule's base value ("rule1" actually
    142             // goes SECOND in the rule set's rule list)
    143             rule2 = new NFRule(rbnf);
    144             /* test for NULL */
    145             if (rule2 == 0) {
    146                 status = U_MEMORY_ALLOCATION_ERROR;
    147                 return;
    148             }
    149             if (rule1->baseValue >= 0) {
    150                 rule2->baseValue = rule1->baseValue;
    151                 if (!ruleSet->isFractionRuleSet()) {
    152                     ++rule1->baseValue;
    153                 }
    154             }
    155 
    156             // if the description began with "x.x" and contains bracketed
    157             // text, it describes both the improper fraction rule and
    158             // the proper fraction rule
    159             else if (rule1->getType() == kImproperFractionRule) {
    160                 rule2->setType(kProperFractionRule);
    161             }
    162 
    163             // if the description began with "x.0" and contains bracketed
    164             // text, it describes both the master rule and the
    165             // improper fraction rule
    166             else if (rule1->getType() == kMasterRule) {
    167                 rule2->baseValue = rule1->baseValue;
    168                 rule1->setType(kImproperFractionRule);
    169             }
    170 
    171             // both rules have the same radix and exponent (i.e., the
    172             // same divisor)
    173             rule2->radix = rule1->radix;
    174             rule2->exponent = rule1->exponent;
    175 
    176             // rule2's rule text omits the stuff in brackets: initalize
    177             // its rule text and substitutions accordingly
    178             sbuf.append(description, 0, brack1);
    179             if (brack2 + 1 < description.length()) {
    180                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
    181             }
    182             rule2->ruleText.setTo(sbuf);
    183             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    184         }
    185 
    186         // rule1's text includes the text in the brackets but omits
    187         // the brackets themselves: initialize _its_ rule text and
    188         // substitutions accordingly
    189         sbuf.setTo(description, 0, brack1);
    190         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
    191         if (brack2 + 1 < description.length()) {
    192             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
    193         }
    194         rule1->ruleText.setTo(sbuf);
    195         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    196 
    197         // if we only have one rule, return it; if we have two, return
    198         // a two-element array containing them (notice that rule2 goes
    199         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
    200         // material in the brackets and rule1 INCLUDES the material
    201         // in the brackets)
    202         if (rule2 != NULL) {
    203             rules.add(rule2);
    204         }
    205         rules.add(rule1);
    206     }
    207 }
    208 
    209 /**
    210  * This function parses the rule's rule descriptor (i.e., the base
    211  * value and/or other tokens that precede the rule's rule text
    212  * in the description) and sets the rule's base value, radix, and
    213  * exponent according to the descriptor.  (If the description doesn't
    214  * include a rule descriptor, then this function sets everything to
    215  * default values and the rule set sets the rule's real base value).
    216  * @param description The rule's description
    217  * @return If "description" included a rule descriptor, this is
    218  * "description" with the descriptor and any trailing whitespace
    219  * stripped off.  Otherwise; it's "descriptor" unchangd.
    220  */
    221 void
    222 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
    223 {
    224     // the description consists of a rule descriptor and a rule body,
    225     // separated by a colon.  The rule descriptor is optional.  If
    226     // it's omitted, just set the base value to 0.
    227     int32_t p = description.indexOf(gColon);
    228     if (p == -1) {
    229         setBaseValue((int32_t)0, status);
    230     } else {
    231         // copy the descriptor out into its own string and strip it,
    232         // along with any trailing whitespace, out of the original
    233         // description
    234         UnicodeString descriptor;
    235         descriptor.setTo(description, 0, p);
    236 
    237         ++p;
    238         while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) {
    239             ++p;
    240         }
    241         description.removeBetween(0, p);
    242 
    243         // check first to see if the rule descriptor matches the token
    244         // for one of the special rules.  If it does, set the base
    245         // value to the correct identfier value
    246         if (descriptor == gMinusX) {
    247             setType(kNegativeNumberRule);
    248         }
    249         else if (descriptor == gXDotX) {
    250             setType(kImproperFractionRule);
    251         }
    252         else if (descriptor == gZeroDotX) {
    253             setType(kProperFractionRule);
    254         }
    255         else if (descriptor == gXDotZero) {
    256             setType(kMasterRule);
    257         }
    258 
    259         // if the rule descriptor begins with a digit, it's a descriptor
    260         // for a normal rule
    261         // since we don't have Long.parseLong, and this isn't much work anyway,
    262         // just build up the value as we encounter the digits.
    263         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
    264             int64_t val = 0;
    265             p = 0;
    266             UChar c = gSpace;
    267 
    268             // begin parsing the descriptor: copy digits
    269             // into "tempValue", skip periods, commas, and spaces,
    270             // stop on a slash or > sign (or at the end of the string),
    271             // and throw an exception on any other character
    272             int64_t ll_10 = 10;
    273             while (p < descriptor.length()) {
    274                 c = descriptor.charAt(p);
    275                 if (c >= gZero && c <= gNine) {
    276                     val = val * ll_10 + (int32_t)(c - gZero);
    277                 }
    278                 else if (c == gSlash || c == gGreaterThan) {
    279                     break;
    280                 }
    281                 else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
    282                 }
    283                 else {
    284                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
    285                     status = U_PARSE_ERROR;
    286                     return;
    287                 }
    288                 ++p;
    289             }
    290 
    291             // we have the base value, so set it
    292             setBaseValue(val, status);
    293 
    294             // if we stopped the previous loop on a slash, we're
    295             // now parsing the rule's radix.  Again, accumulate digits
    296             // in tempValue, skip punctuation, stop on a > mark, and
    297             // throw an exception on anything else
    298             if (c == gSlash) {
    299                 val = 0;
    300                 ++p;
    301                 int64_t ll_10 = 10;
    302                 while (p < descriptor.length()) {
    303                     c = descriptor.charAt(p);
    304                     if (c >= gZero && c <= gNine) {
    305                         val = val * ll_10 + (int32_t)(c - gZero);
    306                     }
    307                     else if (c == gGreaterThan) {
    308                         break;
    309                     }
    310                     else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
    311                     }
    312                     else {
    313                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
    314                         status = U_PARSE_ERROR;
    315                         return;
    316                     }
    317                     ++p;
    318                 }
    319 
    320                 // tempValue now contain's the rule's radix.  Set it
    321                 // accordingly, and recalculate the rule's exponent
    322                 radix = (int32_t)val;
    323                 if (radix == 0) {
    324                     // throw new IllegalArgumentException("Rule can't have radix of 0");
    325                     status = U_PARSE_ERROR;
    326                 }
    327 
    328                 exponent = expectedExponent();
    329             }
    330 
    331             // if we stopped the previous loop on a > sign, then continue
    332             // for as long as we still see > signs.  For each one,
    333             // decrement the exponent (unless the exponent is already 0).
    334             // If we see another character before reaching the end of
    335             // the descriptor, that's also a syntax error.
    336             if (c == gGreaterThan) {
    337                 while (p < descriptor.length()) {
    338                     c = descriptor.charAt(p);
    339                     if (c == gGreaterThan && exponent > 0) {
    340                         --exponent;
    341                     } else {
    342                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
    343                         status = U_PARSE_ERROR;
    344                         return;
    345                     }
    346                     ++p;
    347                 }
    348             }
    349         }
    350     }
    351 
    352     // finally, if the rule body begins with an apostrophe, strip it off
    353     // (this is generally used to put whitespace at the beginning of
    354     // a rule's rule text)
    355     if (description.length() > 0 && description.charAt(0) == gTick) {
    356         description.removeBetween(0, 1);
    357     }
    358 
    359     // return the description with all the stuff we've just waded through
    360     // stripped off the front.  It now contains just the rule body.
    361     // return description;
    362 }
    363 
    364 /**
    365 * Searches the rule's rule text for the substitution tokens,
    366 * creates the substitutions, and removes the substitution tokens
    367 * from the rule's rule text.
    368 * @param owner The rule set containing this rule
    369 * @param predecessor The rule preseding this one in "owners" rule list
    370 * @param ownersOwner The RuleBasedFormat that owns this rule
    371 */
    372 void
    373 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
    374                              const NFRule* predecessor,
    375                              const RuleBasedNumberFormat* rbnf,
    376                              UErrorCode& status)
    377 {
    378     if (U_SUCCESS(status)) {
    379         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
    380         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
    381     }
    382 }
    383 
    384 /**
    385 * Searches the rule's rule text for the first substitution token,
    386 * creates a substitution based on it, and removes the token from
    387 * the rule's rule text.
    388 * @param owner The rule set containing this rule
    389 * @param predecessor The rule preceding this one in the rule set's
    390 * rule list
    391 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
    392 * @return The newly-created substitution.  This is never null; if
    393 * the rule text doesn't contain any substitution tokens, this will
    394 * be a NullSubstitution.
    395 */
    396 NFSubstitution *
    397 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
    398                             const NFRule* predecessor,
    399                             const RuleBasedNumberFormat* rbnf,
    400                             UErrorCode& status)
    401 {
    402     NFSubstitution* result = NULL;
    403 
    404     // search the rule's rule text for the first two characters of
    405     // a substitution token
    406     int32_t subStart = indexOfAny(tokenStrings);
    407     int32_t subEnd = subStart;
    408 
    409     // if we didn't find one, create a null substitution positioned
    410     // at the end of the rule text
    411     if (subStart == -1) {
    412         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
    413             ruleSet, rbnf, gEmptyString, status);
    414     }
    415 
    416     // special-case the ">>>" token, since searching for the > at the
    417     // end will actually find the > in the middle
    418     if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
    419         subEnd = subStart + 2;
    420 
    421         // otherwise the substitution token ends with the same character
    422         // it began with
    423     } else {
    424         UChar c = ruleText.charAt(subStart);
    425         subEnd = ruleText.indexOf(c, subStart + 1);
    426         // special case for '<%foo<<'
    427         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
    428             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
    429             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
    430             // to get around this.  Having the duplicate at the front would cause problems with
    431             // rules like "<<%" to format, say, percents...
    432             ++subEnd;
    433         }
    434    }
    435 
    436     // if we don't find the end of the token (i.e., if we're on a single,
    437     // unmatched token character), create a null substitution positioned
    438     // at the end of the rule
    439     if (subEnd == -1) {
    440         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
    441             ruleSet, rbnf, gEmptyString, status);
    442     }
    443 
    444     // if we get here, we have a real substitution token (or at least
    445     // some text bounded by substitution token characters).  Use
    446     // makeSubstitution() to create the right kind of substitution
    447     UnicodeString subToken;
    448     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
    449     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
    450         rbnf, subToken, status);
    451 
    452     // remove the substitution from the rule text
    453     ruleText.removeBetween(subStart, subEnd+1);
    454 
    455     return result;
    456 }
    457 
    458 /**
    459  * Sets the rule's base value, and causes the radix and exponent
    460  * to be recalculated.  This is used during construction when we
    461  * don't know the rule's base value until after it's been
    462  * constructed.  It should be used at any other time.
    463  * @param The new base value for the rule.
    464  */
    465 void
    466 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
    467 {
    468     // set the base value
    469     baseValue = newBaseValue;
    470 
    471     // if this isn't a special rule, recalculate the radix and exponent
    472     // (the radix always defaults to 10; if it's supposed to be something
    473     // else, it's cleaned up by the caller and the exponent is
    474     // recalculated again-- the only function that does this is
    475     // NFRule.parseRuleDescriptor() )
    476     if (baseValue >= 1) {
    477         radix = 10;
    478         exponent = expectedExponent();
    479 
    480         // this function gets called on a fully-constructed rule whose
    481         // description didn't specify a base value.  This means it
    482         // has substitutions, and some substitutions hold on to copies
    483         // of the rule's divisor.  Fix their copies of the divisor.
    484         if (sub1 != NULL) {
    485             sub1->setDivisor(radix, exponent, status);
    486         }
    487         if (sub2 != NULL) {
    488             sub2->setDivisor(radix, exponent, status);
    489         }
    490 
    491         // if this is a special rule, its radix and exponent are basically
    492         // ignored.  Set them to "safe" default values
    493     } else {
    494         radix = 10;
    495         exponent = 0;
    496     }
    497 }
    498 
    499 /**
    500 * This calculates the rule's exponent based on its radix and base
    501 * value.  This will be the highest power the radix can be raised to
    502 * and still produce a result less than or equal to the base value.
    503 */
    504 int16_t
    505 NFRule::expectedExponent() const
    506 {
    507     // since the log of 0, or the log base 0 of something, causes an
    508     // error, declare the exponent in these cases to be 0 (we also
    509     // deal with the special-rule identifiers here)
    510     if (radix == 0 || baseValue < 1) {
    511         return 0;
    512     }
    513 
    514     // we get rounding error in some cases-- for example, log 1000 / log 10
    515     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
    516     // that into account
    517     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
    518     int64_t temp = util64_pow(radix, tempResult + 1);
    519     if (temp <= baseValue) {
    520         tempResult += 1;
    521     }
    522     return tempResult;
    523 }
    524 
    525 /**
    526  * Searches the rule's rule text for any of the specified strings.
    527  * @param strings An array of strings to search the rule's rule
    528  * text for
    529  * @return The index of the first match in the rule's rule text
    530  * (i.e., the first substring in the rule's rule text that matches
    531  * _any_ of the strings in "strings").  If none of the strings in
    532  * "strings" is found in the rule's rule text, returns -1.
    533  */
    534 int32_t
    535 NFRule::indexOfAny(const UChar* const strings[]) const
    536 {
    537     int result = -1;
    538     for (int i = 0; strings[i]; i++) {
    539         int32_t pos = ruleText.indexOf(*strings[i]);
    540         if (pos != -1 && (result == -1 || pos < result)) {
    541             result = pos;
    542         }
    543     }
    544     return result;
    545 }
    546 
    547 //-----------------------------------------------------------------------
    548 // boilerplate
    549 //-----------------------------------------------------------------------
    550 
    551 /**
    552 * Tests two rules for equality.
    553 * @param that The rule to compare this one against
    554 * @return True is the two rules are functionally equivalent
    555 */
    556 UBool
    557 NFRule::operator==(const NFRule& rhs) const
    558 {
    559     return baseValue == rhs.baseValue
    560         && radix == rhs.radix
    561         && exponent == rhs.exponent
    562         && ruleText == rhs.ruleText
    563         && *sub1 == *rhs.sub1
    564         && *sub2 == *rhs.sub2;
    565 }
    566 
    567 /**
    568 * Returns a textual representation of the rule.  This won't
    569 * necessarily be the same as the description that this rule
    570 * was created with, but it will produce the same result.
    571 * @return A textual description of the rule
    572 */
    573 static void util_append64(UnicodeString& result, int64_t n)
    574 {
    575     UChar buffer[256];
    576     int32_t len = util64_tou(n, buffer, sizeof(buffer));
    577     UnicodeString temp(buffer, len);
    578     result.append(temp);
    579 }
    580 
    581 void
    582 NFRule::_appendRuleText(UnicodeString& result) const
    583 {
    584     switch (getType()) {
    585     case kNegativeNumberRule: result.append(gMinusX); break;
    586     case kImproperFractionRule: result.append(gXDotX); break;
    587     case kProperFractionRule: result.append(gZeroDotX); break;
    588     case kMasterRule: result.append(gXDotZero); break;
    589     default:
    590         // for a normal rule, write out its base value, and if the radix is
    591         // something other than 10, write out the radix (with the preceding
    592         // slash, of course).  Then calculate the expected exponent and if
    593         // if isn't the same as the actual exponent, write an appropriate
    594         // number of > signs.  Finally, terminate the whole thing with
    595         // a colon.
    596         util_append64(result, baseValue);
    597         if (radix != 10) {
    598             result.append(gSlash);
    599             util_append64(result, radix);
    600         }
    601         int numCarets = expectedExponent() - exponent;
    602         for (int i = 0; i < numCarets; i++) {
    603             result.append(gGreaterThan);
    604         }
    605         break;
    606     }
    607     result.append(gColon);
    608     result.append(gSpace);
    609 
    610     // if the rule text begins with a space, write an apostrophe
    611     // (whitespace after the rule descriptor is ignored; the
    612     // apostrophe is used to make the whitespace significant)
    613     if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
    614         result.append(gTick);
    615     }
    616 
    617     // now, write the rule's rule text, inserting appropriate
    618     // substitution tokens in the appropriate places
    619     UnicodeString ruleTextCopy;
    620     ruleTextCopy.setTo(ruleText);
    621 
    622     UnicodeString temp;
    623     sub2->toString(temp);
    624     ruleTextCopy.insert(sub2->getPos(), temp);
    625     sub1->toString(temp);
    626     ruleTextCopy.insert(sub1->getPos(), temp);
    627 
    628     result.append(ruleTextCopy);
    629 
    630     // and finally, top the whole thing off with a semicolon and
    631     // return the result
    632     result.append(gSemicolon);
    633 }
    634 
    635 //-----------------------------------------------------------------------
    636 // formatting
    637 //-----------------------------------------------------------------------
    638 
    639 /**
    640 * Formats the number, and inserts the resulting text into
    641 * toInsertInto.
    642 * @param number The number being formatted
    643 * @param toInsertInto The string where the resultant text should
    644 * be inserted
    645 * @param pos The position in toInsertInto where the resultant text
    646 * should be inserted
    647 */
    648 void
    649 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
    650 {
    651     // first, insert the rule's rule text into toInsertInto at the
    652     // specified position, then insert the results of the substitutions
    653     // into the right places in toInsertInto (notice we do the
    654     // substitutions in reverse order so that the offsets don't get
    655     // messed up)
    656     toInsertInto.insert(pos, ruleText);
    657     sub2->doSubstitution(number, toInsertInto, pos);
    658     sub1->doSubstitution(number, toInsertInto, pos);
    659 }
    660 
    661 /**
    662 * Formats the number, and inserts the resulting text into
    663 * toInsertInto.
    664 * @param number The number being formatted
    665 * @param toInsertInto The string where the resultant text should
    666 * be inserted
    667 * @param pos The position in toInsertInto where the resultant text
    668 * should be inserted
    669 */
    670 void
    671 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
    672 {
    673     // first, insert the rule's rule text into toInsertInto at the
    674     // specified position, then insert the results of the substitutions
    675     // into the right places in toInsertInto
    676     // [again, we have two copies of this routine that do the same thing
    677     // so that we don't sacrifice precision in a long by casting it
    678     // to a double]
    679     toInsertInto.insert(pos, ruleText);
    680     sub2->doSubstitution(number, toInsertInto, pos);
    681     sub1->doSubstitution(number, toInsertInto, pos);
    682 }
    683 
    684 /**
    685 * Used by the owning rule set to determine whether to invoke the
    686 * rollback rule (i.e., whether this rule or the one that precedes
    687 * it in the rule set's list should be used to format the number)
    688 * @param The number being formatted
    689 * @return True if the rule set should use the rule that precedes
    690 * this one in its list; false if it should use this rule
    691 */
    692 UBool
    693 NFRule::shouldRollBack(double number) const
    694 {
    695     // we roll back if the rule contains a modulus substitution,
    696     // the number being formatted is an even multiple of the rule's
    697     // divisor, and the rule's base value is NOT an even multiple
    698     // of its divisor
    699     // In other words, if the original description had
    700     //    100: << hundred[ >>];
    701     // that expands into
    702     //    100: << hundred;
    703     //    101: << hundred >>;
    704     // internally.  But when we're formatting 200, if we use the rule
    705     // at 101, which would normally apply, we get "two hundred zero".
    706     // To prevent this, we roll back and use the rule at 100 instead.
    707     // This is the logic that makes this happen: the rule at 101 has
    708     // a modulus substitution, its base value isn't an even multiple
    709     // of 100, and the value we're trying to format _is_ an even
    710     // multiple of 100.  This is called the "rollback rule."
    711     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
    712         int64_t re = util64_pow(radix, exponent);
    713         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
    714     }
    715     return FALSE;
    716 }
    717 
    718 //-----------------------------------------------------------------------
    719 // parsing
    720 //-----------------------------------------------------------------------
    721 
    722 /**
    723 * Attempts to parse the string with this rule.
    724 * @param text The string being parsed
    725 * @param parsePosition On entry, the value is ignored and assumed to
    726 * be 0. On exit, this has been updated with the position of the first
    727 * character not consumed by matching the text against this rule
    728 * (if this rule doesn't match the text at all, the parse position
    729 * if left unchanged (presumably at 0) and the function returns
    730 * new Long(0)).
    731 * @param isFractionRule True if this rule is contained within a
    732 * fraction rule set.  This is only used if the rule has no
    733 * substitutions.
    734 * @return If this rule matched the text, this is the rule's base value
    735 * combined appropriately with the results of parsing the substitutions.
    736 * If nothing matched, this is new Long(0) and the parse position is
    737 * left unchanged.  The result will be an instance of Long if the
    738 * result is an integer and Double otherwise.  The result is never null.
    739 */
    740 #ifdef RBNF_DEBUG
    741 #include <stdio.h>
    742 
    743 static void dumpUS(FILE* f, const UnicodeString& us) {
    744   int len = us.length();
    745   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
    746   if (buf != NULL) {
    747 	  us.extract(0, len, buf);
    748 	  buf[len] = 0;
    749 	  fprintf(f, "%s", buf);
    750 	  uprv_free(buf); //delete[] buf;
    751   }
    752 }
    753 #endif
    754 
    755 UBool
    756 NFRule::doParse(const UnicodeString& text,
    757                 ParsePosition& parsePosition,
    758                 UBool isFractionRule,
    759                 double upperBound,
    760                 Formattable& resVal) const
    761 {
    762     // internally we operate on a copy of the string being parsed
    763     // (because we're going to change it) and use our own ParsePosition
    764     ParsePosition pp;
    765     UnicodeString workText(text);
    766 
    767     // check to see whether the text before the first substitution
    768     // matches the text at the beginning of the string being
    769     // parsed.  If it does, strip that off the front of workText;
    770     // otherwise, dump out with a mismatch
    771     UnicodeString prefix;
    772     prefix.setTo(ruleText, 0, sub1->getPos());
    773 
    774 #ifdef RBNF_DEBUG
    775     fprintf(stderr, "doParse %x ", this);
    776     {
    777         UnicodeString rt;
    778         _appendRuleText(rt);
    779         dumpUS(stderr, rt);
    780     }
    781 
    782     fprintf(stderr, " text: '", this);
    783     dumpUS(stderr, text);
    784     fprintf(stderr, "' prefix: '");
    785     dumpUS(stderr, prefix);
    786 #endif
    787     stripPrefix(workText, prefix, pp);
    788     int32_t prefixLength = text.length() - workText.length();
    789 
    790 #ifdef RBNF_DEBUG
    791     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
    792 #endif
    793 
    794     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
    795         // commented out because ParsePosition doesn't have error index in 1.1.x
    796         // restored for ICU4C port
    797         parsePosition.setErrorIndex(pp.getErrorIndex());
    798         resVal.setLong(0);
    799         return TRUE;
    800     }
    801 
    802     // this is the fun part.  The basic guts of the rule-matching
    803     // logic is matchToDelimiter(), which is called twice.  The first
    804     // time it searches the input string for the rule text BETWEEN
    805     // the substitutions and tries to match the intervening text
    806     // in the input string with the first substitution.  If that
    807     // succeeds, it then calls it again, this time to look for the
    808     // rule text after the second substitution and to match the
    809     // intervening input text against the second substitution.
    810     //
    811     // For example, say we have a rule that looks like this:
    812     //    first << middle >> last;
    813     // and input text that looks like this:
    814     //    first one middle two last
    815     // First we use stripPrefix() to match "first " in both places and
    816     // strip it off the front, leaving
    817     //    one middle two last
    818     // Then we use matchToDelimiter() to match " middle " and try to
    819     // match "one" against a substitution.  If it's successful, we now
    820     // have
    821     //    two last
    822     // We use matchToDelimiter() a second time to match " last" and
    823     // try to match "two" against a substitution.  If "two" matches
    824     // the substitution, we have a successful parse.
    825     //
    826     // Since it's possible in many cases to find multiple instances
    827     // of each of these pieces of rule text in the input string,
    828     // we need to try all the possible combinations of these
    829     // locations.  This prevents us from prematurely declaring a mismatch,
    830     // and makes sure we match as much input text as we can.
    831     int highWaterMark = 0;
    832     double result = 0;
    833     int start = 0;
    834     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
    835 
    836     UnicodeString temp;
    837     do {
    838         // our partial parse result starts out as this rule's base
    839         // value.  If it finds a successful match, matchToDelimiter()
    840         // will compose this in some way with what it gets back from
    841         // the substitution, giving us a new partial parse result
    842         pp.setIndex(0);
    843 
    844         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
    845         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
    846             temp, pp, sub1,
    847             upperBound);
    848 
    849         // if we got a successful match (or were trying to match a
    850         // null substitution), pp is now pointing at the first unmatched
    851         // character.  Take note of that, and try matchToDelimiter()
    852         // on the input text again
    853         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
    854             start = pp.getIndex();
    855 
    856             UnicodeString workText2;
    857             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
    858             ParsePosition pp2;
    859 
    860             // the second matchToDelimiter() will compose our previous
    861             // partial result with whatever it gets back from its
    862             // substitution if there's a successful match, giving us
    863             // a real result
    864             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
    865             partialResult = matchToDelimiter(workText2, 0, partialResult,
    866                 temp, pp2, sub2,
    867                 upperBound);
    868 
    869             // if we got a successful match on this second
    870             // matchToDelimiter() call, update the high-water mark
    871             // and result (if necessary)
    872             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
    873                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
    874                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
    875                     result = partialResult;
    876                 }
    877             }
    878             // commented out because ParsePosition doesn't have error index in 1.1.x
    879             // restored for ICU4C port
    880             else {
    881                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
    882                 if (temp> parsePosition.getErrorIndex()) {
    883                     parsePosition.setErrorIndex(temp);
    884                 }
    885             }
    886         }
    887         // commented out because ParsePosition doesn't have error index in 1.1.x
    888         // restored for ICU4C port
    889         else {
    890             int32_t temp = sub1->getPos() + pp.getErrorIndex();
    891             if (temp > parsePosition.getErrorIndex()) {
    892                 parsePosition.setErrorIndex(temp);
    893             }
    894         }
    895         // keep trying to match things until the outer matchToDelimiter()
    896         // call fails to make a match (each time, it picks up where it
    897         // left off the previous time)
    898     } while (sub1->getPos() != sub2->getPos()
    899         && pp.getIndex() > 0
    900         && pp.getIndex() < workText.length()
    901         && pp.getIndex() != start);
    902 
    903     // update the caller's ParsePosition with our high-water mark
    904     // (i.e., it now points at the first character this function
    905     // didn't match-- the ParsePosition is therefore unchanged if
    906     // we didn't match anything)
    907     parsePosition.setIndex(highWaterMark);
    908     // commented out because ParsePosition doesn't have error index in 1.1.x
    909     // restored for ICU4C port
    910     if (highWaterMark > 0) {
    911         parsePosition.setErrorIndex(0);
    912     }
    913 
    914     // this is a hack for one unusual condition: Normally, whether this
    915     // rule belong to a fraction rule set or not is handled by its
    916     // substitutions.  But if that rule HAS NO substitutions, then
    917     // we have to account for it here.  By definition, if the matching
    918     // rule in a fraction rule set has no substitutions, its numerator
    919     // is 1, and so the result is the reciprocal of its base value.
    920     if (isFractionRule &&
    921         highWaterMark > 0 &&
    922         sub1->isNullSubstitution()) {
    923         result = 1 / result;
    924     }
    925 
    926     resVal.setDouble(result);
    927     return TRUE; // ??? do we need to worry if it is a long or a double?
    928 }
    929 
    930 /**
    931 * This function is used by parse() to match the text being parsed
    932 * against a possible prefix string.  This function
    933 * matches characters from the beginning of the string being parsed
    934 * to characters from the prospective prefix.  If they match, pp is
    935 * updated to the first character not matched, and the result is
    936 * the unparsed part of the string.  If they don't match, the whole
    937 * string is returned, and pp is left unchanged.
    938 * @param text The string being parsed
    939 * @param prefix The text to match against
    940 * @param pp On entry, ignored and assumed to be 0.  On exit, points
    941 * to the first unmatched character (assuming the whole prefix matched),
    942 * or is unchanged (if the whole prefix didn't match).
    943 * @return If things match, this is the unparsed part of "text";
    944 * if they didn't match, this is "text".
    945 */
    946 void
    947 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
    948 {
    949     // if the prefix text is empty, dump out without doing anything
    950     if (prefix.length() != 0) {
    951     	UErrorCode status = U_ZERO_ERROR;
    952         // use prefixLength() to match the beginning of
    953         // "text" against "prefix".  This function returns the
    954         // number of characters from "text" that matched (or 0 if
    955         // we didn't match the whole prefix)
    956         int32_t pfl = prefixLength(text, prefix, status);
    957         if (U_FAILURE(status)) { // Memory allocation error.
    958         	return;
    959         }
    960         if (pfl != 0) {
    961             // if we got a successful match, update the parse position
    962             // and strip the prefix off of "text"
    963             pp.setIndex(pp.getIndex() + pfl);
    964             text.remove(0, pfl);
    965         }
    966     }
    967 }
    968 
    969 /**
    970 * Used by parse() to match a substitution and any following text.
    971 * "text" is searched for instances of "delimiter".  For each instance
    972 * of delimiter, the intervening text is tested to see whether it
    973 * matches the substitution.  The longest match wins.
    974 * @param text The string being parsed
    975 * @param startPos The position in "text" where we should start looking
    976 * for "delimiter".
    977 * @param baseValue A partial parse result (often the rule's base value),
    978 * which is combined with the result from matching the substitution
    979 * @param delimiter The string to search "text" for.
    980 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
    981 * on exit this will point to the first unmatched character.
    982 * @param sub If we find "delimiter" in "text", this substitution is used
    983 * to match the text between the beginning of the string and the
    984 * position of "delimiter."  (If "delimiter" is the empty string, then
    985 * this function just matches against this substitution and updates
    986 * everything accordingly.)
    987 * @param upperBound When matching the substitution, it will only
    988 * consider rules with base values lower than this value.
    989 * @return If there's a match, this is the result of composing
    990 * baseValue with the result of matching the substitution.  Otherwise,
    991 * this is new Long(0).  It's never null.  If the result is an integer,
    992 * this will be an instance of Long; otherwise, it's an instance of
    993 * Double.
    994 *
    995 * !!! note {dlf} in point of fact, in the java code the caller always converts
    996 * the result to a double, so we might as well return one.
    997 */
    998 double
    999 NFRule::matchToDelimiter(const UnicodeString& text,
   1000                          int32_t startPos,
   1001                          double _baseValue,
   1002                          const UnicodeString& delimiter,
   1003                          ParsePosition& pp,
   1004                          const NFSubstitution* sub,
   1005                          double upperBound) const
   1006 {
   1007 	UErrorCode status = U_ZERO_ERROR;
   1008     // if "delimiter" contains real (i.e., non-ignorable) text, search
   1009     // it for "delimiter" beginning at "start".  If that succeeds, then
   1010     // use "sub"'s doParse() method to match the text before the
   1011     // instance of "delimiter" we just found.
   1012     if (!allIgnorable(delimiter, status)) {
   1013     	if (U_FAILURE(status)) { //Memory allocation error.
   1014     		return 0;
   1015     	}
   1016         ParsePosition tempPP;
   1017         Formattable result;
   1018 
   1019         // use findText() to search for "delimiter".  It returns a two-
   1020         // element array: element 0 is the position of the match, and
   1021         // element 1 is the number of characters that matched
   1022         // "delimiter".
   1023         int32_t dLen;
   1024         int32_t dPos = findText(text, delimiter, startPos, &dLen);
   1025 
   1026         // if findText() succeeded, isolate the text preceding the
   1027         // match, and use "sub" to match that text
   1028         while (dPos >= 0) {
   1029             UnicodeString subText;
   1030             subText.setTo(text, 0, dPos);
   1031             if (subText.length() > 0) {
   1032                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
   1033 #if UCONFIG_NO_COLLATION
   1034                     FALSE,
   1035 #else
   1036                     formatter->isLenient(),
   1037 #endif
   1038                     result);
   1039 
   1040                 // if the substitution could match all the text up to
   1041                 // where we found "delimiter", then this function has
   1042                 // a successful match.  Bump the caller's parse position
   1043                 // to point to the first character after the text
   1044                 // that matches "delimiter", and return the result
   1045                 // we got from parsing the substitution.
   1046                 if (success && tempPP.getIndex() == dPos) {
   1047                     pp.setIndex(dPos + dLen);
   1048                     return result.getDouble();
   1049                 }
   1050                 // commented out because ParsePosition doesn't have error index in 1.1.x
   1051                 // restored for ICU4C port
   1052                 else {
   1053                     if (tempPP.getErrorIndex() > 0) {
   1054                         pp.setErrorIndex(tempPP.getErrorIndex());
   1055                     } else {
   1056                         pp.setErrorIndex(tempPP.getIndex());
   1057                     }
   1058                 }
   1059             }
   1060 
   1061             // if we didn't match the substitution, search for another
   1062             // copy of "delimiter" in "text" and repeat the loop if
   1063             // we find it
   1064             tempPP.setIndex(0);
   1065             dPos = findText(text, delimiter, dPos + dLen, &dLen);
   1066         }
   1067         // if we make it here, this was an unsuccessful match, and we
   1068         // leave pp unchanged and return 0
   1069         pp.setIndex(0);
   1070         return 0;
   1071 
   1072         // if "delimiter" is empty, or consists only of ignorable characters
   1073         // (i.e., is semantically empty), thwe we obviously can't search
   1074         // for "delimiter".  Instead, just use "sub" to parse as much of
   1075         // "text" as possible.
   1076     } else {
   1077         ParsePosition tempPP;
   1078         Formattable result;
   1079 
   1080         // try to match the whole string against the substitution
   1081         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
   1082 #if UCONFIG_NO_COLLATION
   1083             FALSE,
   1084 #else
   1085             formatter->isLenient(),
   1086 #endif
   1087             result);
   1088         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
   1089             // if there's a successful match (or it's a null
   1090             // substitution), update pp to point to the first
   1091             // character we didn't match, and pass the result from
   1092             // sub.doParse() on through to the caller
   1093             pp.setIndex(tempPP.getIndex());
   1094             return result.getDouble();
   1095         }
   1096         // commented out because ParsePosition doesn't have error index in 1.1.x
   1097         // restored for ICU4C port
   1098         else {
   1099             pp.setErrorIndex(tempPP.getErrorIndex());
   1100         }
   1101 
   1102         // and if we get to here, then nothing matched, so we return
   1103         // 0 and leave pp alone
   1104         return 0;
   1105     }
   1106 }
   1107 
   1108 /**
   1109 * Used by stripPrefix() to match characters.  If lenient parse mode
   1110 * is off, this just calls startsWith().  If lenient parse mode is on,
   1111 * this function uses CollationElementIterators to match characters in
   1112 * the strings (only primary-order differences are significant in
   1113 * determining whether there's a match).
   1114 * @param str The string being tested
   1115 * @param prefix The text we're hoping to see at the beginning
   1116 * of "str"
   1117 * @return If "prefix" is found at the beginning of "str", this
   1118 * is the number of characters in "str" that were matched (this
   1119 * isn't necessarily the same as the length of "prefix" when matching
   1120 * text with a collator).  If there's no match, this is 0.
   1121 */
   1122 int32_t
   1123 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
   1124 {
   1125     // if we're looking for an empty prefix, it obviously matches
   1126     // zero characters.  Just go ahead and return 0.
   1127     if (prefix.length() == 0) {
   1128         return 0;
   1129     }
   1130 
   1131 #if !UCONFIG_NO_COLLATION
   1132     // go through all this grief if we're in lenient-parse mode
   1133     if (formatter->isLenient()) {
   1134         // get the formatter's collator and use it to create two
   1135         // collation element iterators, one over the target string
   1136         // and another over the prefix (right now, we'll throw an
   1137         // exception if the collator we get back from the formatter
   1138         // isn't a RuleBasedCollator, because RuleBasedCollator defines
   1139         // the CollationElementIterator protocol.  Hopefully, this
   1140         // will change someday.)
   1141         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
   1142         CollationElementIterator* strIter = collator->createCollationElementIterator(str);
   1143         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
   1144         // Check for memory allocation error.
   1145         if (collator == NULL || strIter == NULL || prefixIter == NULL) {
   1146         	delete collator;
   1147         	delete strIter;
   1148         	delete prefixIter;
   1149         	status = U_MEMORY_ALLOCATION_ERROR;
   1150         	return 0;
   1151         }
   1152 
   1153         UErrorCode err = U_ZERO_ERROR;
   1154 
   1155         // The original code was problematic.  Consider this match:
   1156         // prefix = "fifty-"
   1157         // string = " fifty-7"
   1158         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
   1159         // in the string.  Unfortunately, we were getting a match, and then computing where
   1160         // the match terminated by rematching the string.  The rematch code was using as an
   1161         // initial guess the substring of string between 0 and prefix.length.  Because of
   1162         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
   1163         // the position before the hyphen in the string.  Recursing down, we then parsed the
   1164         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
   1165         // This was not pretty, especially since the string "fifty-7" parsed just fine.
   1166         //
   1167         // We have newer APIs now, so we can use calls on the iterator to determine what we
   1168         // matched up to.  If we terminate because we hit the last element in the string,
   1169         // our match terminates at this length.  If we terminate because we hit the last element
   1170         // in the target, our match terminates at one before the element iterator position.
   1171 
   1172         // match collation elements between the strings
   1173         int32_t oStr = strIter->next(err);
   1174         int32_t oPrefix = prefixIter->next(err);
   1175 
   1176         while (oPrefix != CollationElementIterator::NULLORDER) {
   1177             // skip over ignorable characters in the target string
   1178             while (CollationElementIterator::primaryOrder(oStr) == 0
   1179                 && oStr != CollationElementIterator::NULLORDER) {
   1180                 oStr = strIter->next(err);
   1181             }
   1182 
   1183             // skip over ignorable characters in the prefix
   1184             while (CollationElementIterator::primaryOrder(oPrefix) == 0
   1185                 && oPrefix != CollationElementIterator::NULLORDER) {
   1186                 oPrefix = prefixIter->next(err);
   1187             }
   1188 
   1189             // dlf: move this above following test, if we consume the
   1190             // entire target, aren't we ok even if the source was also
   1191             // entirely consumed?
   1192 
   1193             // if skipping over ignorables brought to the end of
   1194             // the prefix, we DID match: drop out of the loop
   1195             if (oPrefix == CollationElementIterator::NULLORDER) {
   1196                 break;
   1197             }
   1198 
   1199             // if skipping over ignorables brought us to the end
   1200             // of the target string, we didn't match and return 0
   1201             if (oStr == CollationElementIterator::NULLORDER) {
   1202                 delete prefixIter;
   1203                 delete strIter;
   1204                 return 0;
   1205             }
   1206 
   1207             // match collation elements from the two strings
   1208             // (considering only primary differences).  If we
   1209             // get a mismatch, dump out and return 0
   1210             if (CollationElementIterator::primaryOrder(oStr)
   1211                 != CollationElementIterator::primaryOrder(oPrefix)) {
   1212                 delete prefixIter;
   1213                 delete strIter;
   1214                 return 0;
   1215 
   1216                 // otherwise, advance to the next character in each string
   1217                 // and loop (we drop out of the loop when we exhaust
   1218                 // collation elements in the prefix)
   1219             } else {
   1220                 oStr = strIter->next(err);
   1221                 oPrefix = prefixIter->next(err);
   1222             }
   1223         }
   1224 
   1225         int32_t result = strIter->getOffset();
   1226         if (oStr != CollationElementIterator::NULLORDER) {
   1227             --result; // back over character that we don't want to consume;
   1228         }
   1229 
   1230 #ifdef RBNF_DEBUG
   1231         fprintf(stderr, "prefix length: %d\n", result);
   1232 #endif
   1233         delete prefixIter;
   1234         delete strIter;
   1235 
   1236         return result;
   1237 #if 0
   1238         //----------------------------------------------------------------
   1239         // JDK 1.2-specific API call
   1240         // return strIter.getOffset();
   1241         //----------------------------------------------------------------
   1242         // JDK 1.1 HACK (take out for 1.2-specific code)
   1243 
   1244         // if we make it to here, we have a successful match.  Now we
   1245         // have to find out HOW MANY characters from the target string
   1246         // matched the prefix (there isn't necessarily a one-to-one
   1247         // mapping between collation elements and characters).
   1248         // In JDK 1.2, there's a simple getOffset() call we can use.
   1249         // In JDK 1.1, on the other hand, we have to go through some
   1250         // ugly contortions.  First, use the collator to compare the
   1251         // same number of characters from the prefix and target string.
   1252         // If they're equal, we're done.
   1253         collator->setStrength(Collator::PRIMARY);
   1254         if (str.length() >= prefix.length()) {
   1255             UnicodeString temp;
   1256             temp.setTo(str, 0, prefix.length());
   1257             if (collator->equals(temp, prefix)) {
   1258 #ifdef RBNF_DEBUG
   1259                 fprintf(stderr, "returning: %d\n", prefix.length());
   1260 #endif
   1261                 return prefix.length();
   1262             }
   1263         }
   1264 
   1265         // if they're not equal, then we have to compare successively
   1266         // larger and larger substrings of the target string until we
   1267         // get to one that matches the prefix.  At that point, we know
   1268         // how many characters matched the prefix, and we can return.
   1269         int32_t p = 1;
   1270         while (p <= str.length()) {
   1271             UnicodeString temp;
   1272             temp.setTo(str, 0, p);
   1273             if (collator->equals(temp, prefix)) {
   1274                 return p;
   1275             } else {
   1276                 ++p;
   1277             }
   1278         }
   1279 
   1280         // SHOULD NEVER GET HERE!!!
   1281         return 0;
   1282         //----------------------------------------------------------------
   1283 #endif
   1284 
   1285         // If lenient parsing is turned off, forget all that crap above.
   1286         // Just use String.startsWith() and be done with it.
   1287   } else
   1288 #endif
   1289   {
   1290       if (str.startsWith(prefix)) {
   1291           return prefix.length();
   1292       } else {
   1293           return 0;
   1294       }
   1295   }
   1296 }
   1297 
   1298 /**
   1299 * Searches a string for another string.  If lenient parsing is off,
   1300 * this just calls indexOf().  If lenient parsing is on, this function
   1301 * uses CollationElementIterator to match characters, and only
   1302 * primary-order differences are significant in determining whether
   1303 * there's a match.
   1304 * @param str The string to search
   1305 * @param key The string to search "str" for
   1306 * @param startingAt The index into "str" where the search is to
   1307 * begin
   1308 * @return A two-element array of ints.  Element 0 is the position
   1309 * of the match, or -1 if there was no match.  Element 1 is the
   1310 * number of characters in "str" that matched (which isn't necessarily
   1311 * the same as the length of "key")
   1312 */
   1313 int32_t
   1314 NFRule::findText(const UnicodeString& str,
   1315                  const UnicodeString& key,
   1316                  int32_t startingAt,
   1317                  int32_t* length) const
   1318 {
   1319 #if !UCONFIG_NO_COLLATION
   1320     // if lenient parsing is turned off, this is easy: just call
   1321     // String.indexOf() and we're done
   1322     if (!formatter->isLenient()) {
   1323         *length = key.length();
   1324         return str.indexOf(key, startingAt);
   1325 
   1326         // but if lenient parsing is turned ON, we've got some work
   1327         // ahead of us
   1328     } else
   1329 #endif
   1330     {
   1331         //----------------------------------------------------------------
   1332         // JDK 1.1 HACK (take out of 1.2-specific code)
   1333 
   1334         // in JDK 1.2, CollationElementIterator provides us with an
   1335         // API to map between character offsets and collation elements
   1336         // and we can do this by marching through the string comparing
   1337         // collation elements.  We can't do that in JDK 1.1.  Insted,
   1338         // we have to go through this horrible slow mess:
   1339         int32_t p = startingAt;
   1340         int32_t keyLen = 0;
   1341 
   1342         // basically just isolate smaller and smaller substrings of
   1343         // the target string (each running to the end of the string,
   1344         // and with the first one running from startingAt to the end)
   1345         // and then use prefixLength() to see if the search key is at
   1346         // the beginning of each substring.  This is excruciatingly
   1347         // slow, but it will locate the key and tell use how long the
   1348         // matching text was.
   1349         UnicodeString temp;
   1350         UErrorCode status = U_ZERO_ERROR;
   1351         while (p < str.length() && keyLen == 0) {
   1352             temp.setTo(str, p, str.length() - p);
   1353             keyLen = prefixLength(temp, key, status);
   1354             if (U_FAILURE(status)) {
   1355             	break;
   1356             }
   1357             if (keyLen != 0) {
   1358                 *length = keyLen;
   1359                 return p;
   1360             }
   1361             ++p;
   1362         }
   1363         // if we make it to here, we didn't find it.  Return -1 for the
   1364         // location.  The length should be ignored, but set it to 0,
   1365         // which should be "safe"
   1366         *length = 0;
   1367         return -1;
   1368 
   1369         //----------------------------------------------------------------
   1370         // JDK 1.2 version of this routine
   1371         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
   1372         //
   1373         //CollationElementIterator strIter = collator.getCollationElementIterator(str);
   1374         //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
   1375         //
   1376         //int keyStart = -1;
   1377         //
   1378         //str.setOffset(startingAt);
   1379         //
   1380         //int oStr = strIter.next();
   1381         //int oKey = keyIter.next();
   1382         //while (oKey != CollationElementIterator.NULLORDER) {
   1383         //    while (oStr != CollationElementIterator.NULLORDER &&
   1384         //                CollationElementIterator.primaryOrder(oStr) == 0)
   1385         //        oStr = strIter.next();
   1386         //
   1387         //    while (oKey != CollationElementIterator.NULLORDER &&
   1388         //                CollationElementIterator.primaryOrder(oKey) == 0)
   1389         //        oKey = keyIter.next();
   1390         //
   1391         //    if (oStr == CollationElementIterator.NULLORDER) {
   1392         //        return new int[] { -1, 0 };
   1393         //    }
   1394         //
   1395         //    if (oKey == CollationElementIterator.NULLORDER) {
   1396         //        break;
   1397         //    }
   1398         //
   1399         //    if (CollationElementIterator.primaryOrder(oStr) ==
   1400         //            CollationElementIterator.primaryOrder(oKey)) {
   1401         //        keyStart = strIter.getOffset();
   1402         //        oStr = strIter.next();
   1403         //        oKey = keyIter.next();
   1404         //    } else {
   1405         //        if (keyStart != -1) {
   1406         //            keyStart = -1;
   1407         //            keyIter.reset();
   1408         //        } else {
   1409         //            oStr = strIter.next();
   1410         //        }
   1411         //    }
   1412         //}
   1413         //
   1414         //if (oKey == CollationElementIterator.NULLORDER) {
   1415         //    return new int[] { keyStart, strIter.getOffset() - keyStart };
   1416         //} else {
   1417         //    return new int[] { -1, 0 };
   1418         //}
   1419     }
   1420 }
   1421 
   1422 /**
   1423 * Checks to see whether a string consists entirely of ignorable
   1424 * characters.
   1425 * @param str The string to test.
   1426 * @return true if the string is empty of consists entirely of
   1427 * characters that the number formatter's collator says are
   1428 * ignorable at the primary-order level.  false otherwise.
   1429 */
   1430 UBool
   1431 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
   1432 {
   1433     // if the string is empty, we can just return true
   1434     if (str.length() == 0) {
   1435         return TRUE;
   1436     }
   1437 
   1438 #if !UCONFIG_NO_COLLATION
   1439     // if lenient parsing is turned on, walk through the string with
   1440     // a collation element iterator and make sure each collation
   1441     // element is 0 (ignorable) at the primary level
   1442     if (formatter->isLenient()) {
   1443         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
   1444         CollationElementIterator* iter = collator->createCollationElementIterator(str);
   1445 
   1446         // Memory allocation error check.
   1447         if (collator == NULL || iter == NULL) {
   1448         	delete collator;
   1449         	delete iter;
   1450         	status = U_MEMORY_ALLOCATION_ERROR;
   1451         	return FALSE;
   1452         }
   1453 
   1454         UErrorCode err = U_ZERO_ERROR;
   1455         int32_t o = iter->next(err);
   1456         while (o != CollationElementIterator::NULLORDER
   1457             && CollationElementIterator::primaryOrder(o) == 0) {
   1458             o = iter->next(err);
   1459         }
   1460 
   1461         delete iter;
   1462         return o == CollationElementIterator::NULLORDER;
   1463     }
   1464 #endif
   1465 
   1466     // if lenient parsing is turned off, there is no such thing as
   1467     // an ignorable character: return true only if the string is empty
   1468     return FALSE;
   1469 }
   1470 
   1471 U_NAMESPACE_END
   1472 
   1473 /* U_HAVE_RBNF */
   1474 #endif
   1475 
   1476 
   1477