1 /* 2 * libjingle 3 * Copyright 2004--2011, Google Inc. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright notice, 9 * this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 3. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 22 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 23 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 24 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 25 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #ifdef POSIX 29 #include <sys/types.h> 30 #include <sys/socket.h> 31 #include <netinet/in.h> 32 #ifdef OPENBSD 33 #include <netinet/in_systm.h> 34 #endif 35 #include <netinet/ip.h> 36 #include <arpa/inet.h> 37 #include <netdb.h> 38 #include <unistd.h> 39 #endif 40 41 #include <stdio.h> 42 43 #include "talk/base/ipaddress.h" 44 #include "talk/base/byteorder.h" 45 #include "talk/base/nethelpers.h" 46 #include "talk/base/logging.h" 47 #include "talk/base/win32.h" 48 49 namespace talk_base { 50 51 // Prefixes used for categorizing IPv6 addresses. 52 static const in6_addr kULAPrefix = {{{0xfc, 0}}}; 53 static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54 0xFF, 0xFF, 0}}}; 55 static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; 56 static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; 57 static const in6_addr kV4CompatibilityPrefix = {{{0}}}; 58 static const in6_addr kSiteLocalPrefix = {{{0xfe, 0xc0, 0}}}; 59 static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; 60 61 bool IPAddress::strip_sensitive_ = false; 62 63 static bool IsPrivateV4(uint32 ip); 64 static in_addr ExtractMappedAddress(const in6_addr& addr); 65 66 uint32 IPAddress::v4AddressAsHostOrderInteger() const { 67 if (family_ == AF_INET) { 68 return NetworkToHost32(u_.ip4.s_addr); 69 } else { 70 return 0; 71 } 72 } 73 74 size_t IPAddress::Size() const { 75 switch (family_) { 76 case AF_INET: 77 return sizeof(in_addr); 78 case AF_INET6: 79 return sizeof(in6_addr); 80 } 81 return 0; 82 } 83 84 85 bool IPAddress::operator==(const IPAddress &other) const { 86 if (family_ != other.family_) { 87 return false; 88 } 89 if (family_ == AF_INET) { 90 return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; 91 } 92 if (family_ == AF_INET6) { 93 return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; 94 } 95 return family_ == AF_UNSPEC; 96 } 97 98 bool IPAddress::operator!=(const IPAddress &other) const { 99 return !((*this) == other); 100 } 101 102 bool IPAddress::operator >(const IPAddress &other) const { 103 return (*this) != other && !((*this) < other); 104 } 105 106 bool IPAddress::operator <(const IPAddress &other) const { 107 // IPv4 is 'less than' IPv6 108 if (family_ != other.family_) { 109 if (family_ == AF_UNSPEC) { 110 return true; 111 } 112 if (family_ == AF_INET && other.family_ == AF_INET6) { 113 return true; 114 } 115 return false; 116 } 117 // Comparing addresses of the same family. 118 switch (family_) { 119 case AF_INET: { 120 return NetworkToHost32(u_.ip4.s_addr) < 121 NetworkToHost32(other.u_.ip4.s_addr); 122 } 123 case AF_INET6: { 124 return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; 125 } 126 } 127 // Catches AF_UNSPEC and invalid addresses. 128 return false; 129 } 130 131 std::ostream& operator<<(std::ostream& os, const IPAddress& ip) { 132 os << ip.ToString(); 133 return os; 134 } 135 136 in6_addr IPAddress::ipv6_address() const { 137 return u_.ip6; 138 } 139 140 in_addr IPAddress::ipv4_address() const { 141 return u_.ip4; 142 } 143 144 std::string IPAddress::ToString() const { 145 if (family_ != AF_INET && family_ != AF_INET6) { 146 return std::string(); 147 } 148 char buf[INET6_ADDRSTRLEN] = {0}; 149 const void* src = &u_.ip4; 150 if (family_ == AF_INET6) { 151 src = &u_.ip6; 152 } 153 if (!talk_base::inet_ntop(family_, src, buf, sizeof(buf))) { 154 return std::string(); 155 } 156 return std::string(buf); 157 } 158 159 std::string IPAddress::ToSensitiveString() const { 160 if (!strip_sensitive_) 161 return ToString(); 162 163 switch (family_) { 164 case AF_INET: { 165 std::string address = ToString(); 166 size_t find_pos = address.rfind('.'); 167 if (find_pos == std::string::npos) 168 return std::string(); 169 address.resize(find_pos); 170 address += ".x"; 171 return address; 172 } 173 case AF_INET6: { 174 // TODO(grunell): Return a string of format 1:2:3:x:x:x:x:x or such 175 // instead of zeroing out. 176 return TruncateIP(*this, 128 - 80).ToString(); 177 } 178 } 179 return std::string(); 180 } 181 182 IPAddress IPAddress::Normalized() const { 183 if (family_ != AF_INET6) { 184 return *this; 185 } 186 if (!IPIsV4Mapped(*this)) { 187 return *this; 188 } 189 in_addr addr = ExtractMappedAddress(u_.ip6); 190 return IPAddress(addr); 191 } 192 193 IPAddress IPAddress::AsIPv6Address() const { 194 if (family_ != AF_INET) { 195 return *this; 196 } 197 in6_addr v6addr = kV4MappedPrefix; 198 ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); 199 return IPAddress(v6addr); 200 } 201 202 void IPAddress::set_strip_sensitive(bool enable) { 203 strip_sensitive_ = enable; 204 } 205 206 207 bool IsPrivateV4(uint32 ip_in_host_order) { 208 return ((ip_in_host_order >> 24) == 127) || 209 ((ip_in_host_order >> 24) == 10) || 210 ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || 211 ((ip_in_host_order >> 16) == ((192 << 8) | 168)) || 212 ((ip_in_host_order >> 16) == ((169 << 8) | 254)); 213 } 214 215 in_addr ExtractMappedAddress(const in6_addr& in6) { 216 in_addr ipv4; 217 ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); 218 return ipv4; 219 } 220 221 bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { 222 if (!info || !info->ai_addr) { 223 return false; 224 } 225 if (info->ai_addr->sa_family == AF_INET) { 226 sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr); 227 *out = IPAddress(addr->sin_addr); 228 return true; 229 } else if (info->ai_addr->sa_family == AF_INET6) { 230 sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr); 231 *out = IPAddress(addr->sin6_addr); 232 return true; 233 } 234 return false; 235 } 236 237 bool IPFromString(const std::string& str, IPAddress* out) { 238 if (!out) { 239 return false; 240 } 241 in_addr addr; 242 if (talk_base::inet_pton(AF_INET, str.c_str(), &addr) == 0) { 243 in6_addr addr6; 244 if (talk_base::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) { 245 *out = IPAddress(); 246 return false; 247 } 248 *out = IPAddress(addr6); 249 } else { 250 *out = IPAddress(addr); 251 } 252 return true; 253 } 254 255 bool IPIsAny(const IPAddress& ip) { 256 switch (ip.family()) { 257 case AF_INET: 258 return ip == IPAddress(INADDR_ANY); 259 case AF_INET6: 260 return ip == IPAddress(in6addr_any); 261 case AF_UNSPEC: 262 return false; 263 } 264 return false; 265 } 266 267 bool IPIsLoopback(const IPAddress& ip) { 268 switch (ip.family()) { 269 case AF_INET: { 270 return ip == IPAddress(INADDR_LOOPBACK); 271 } 272 case AF_INET6: { 273 return ip == IPAddress(in6addr_loopback); 274 } 275 } 276 return false; 277 } 278 279 bool IPIsPrivate(const IPAddress& ip) { 280 switch (ip.family()) { 281 case AF_INET: { 282 return IsPrivateV4(ip.v4AddressAsHostOrderInteger()); 283 } 284 case AF_INET6: { 285 in6_addr v6 = ip.ipv6_address(); 286 return (v6.s6_addr[0] == 0xFE && v6.s6_addr[1] == 0x80) || 287 IPIsLoopback(ip); 288 } 289 } 290 return false; 291 } 292 293 bool IPIsUnspec(const IPAddress& ip) { 294 return ip.family() == AF_UNSPEC; 295 } 296 297 size_t HashIP(const IPAddress& ip) { 298 switch (ip.family()) { 299 case AF_INET: { 300 return ip.ipv4_address().s_addr; 301 } 302 case AF_INET6: { 303 in6_addr v6addr = ip.ipv6_address(); 304 const uint32* v6_as_ints = 305 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 306 return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; 307 } 308 } 309 return 0; 310 } 311 312 IPAddress TruncateIP(const IPAddress& ip, int length) { 313 if (length < 0) { 314 return IPAddress(); 315 } 316 if (ip.family() == AF_INET) { 317 if (length > 31) { 318 return ip; 319 } 320 if (length == 0) { 321 return IPAddress(INADDR_ANY); 322 } 323 int mask = (0xFFFFFFFF << (32 - length)); 324 uint32 host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); 325 in_addr masked; 326 masked.s_addr = HostToNetwork32(host_order_ip & mask); 327 return IPAddress(masked); 328 } else if (ip.family() == AF_INET6) { 329 if (length > 127) { 330 return ip; 331 } 332 if (length == 0) { 333 return IPAddress(in6addr_any); 334 } 335 in6_addr v6addr = ip.ipv6_address(); 336 int position = length / 32; 337 int inner_length = 32 - (length - (position * 32)); 338 // Note: 64bit mask constant needed to allow possible 32-bit left shift. 339 uint32 inner_mask = 0xFFFFFFFFLL << inner_length; 340 uint32* v6_as_ints = 341 reinterpret_cast<uint32*>(&v6addr.s6_addr); 342 for (int i = 0; i < 4; ++i) { 343 if (i == position) { 344 uint32 host_order_inner = NetworkToHost32(v6_as_ints[i]); 345 v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); 346 } else if (i > position) { 347 v6_as_ints[i] = 0; 348 } 349 } 350 return IPAddress(v6addr); 351 } 352 return IPAddress(); 353 } 354 355 int CountIPMaskBits(IPAddress mask) { 356 uint32 word_to_count = 0; 357 int bits = 0; 358 switch (mask.family()) { 359 case AF_INET: { 360 word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); 361 break; 362 } 363 case AF_INET6: { 364 in6_addr v6addr = mask.ipv6_address(); 365 const uint32* v6_as_ints = 366 reinterpret_cast<const uint32*>(&v6addr.s6_addr); 367 int i = 0; 368 for (; i < 4; ++i) { 369 if (v6_as_ints[i] != 0xFFFFFFFF) { 370 break; 371 } 372 } 373 if (i < 4) { 374 word_to_count = NetworkToHost32(v6_as_ints[i]); 375 } 376 bits = (i * 32); 377 break; 378 } 379 default: { 380 return 0; 381 } 382 } 383 if (word_to_count == 0) { 384 return bits; 385 } 386 387 // Public domain bit-twiddling hack from: 388 // http://graphics.stanford.edu/~seander/bithacks.html 389 // Counts the trailing 0s in the word. 390 unsigned int zeroes = 32; 391 word_to_count &= -static_cast<int32>(word_to_count); 392 if (word_to_count) zeroes--; 393 if (word_to_count & 0x0000FFFF) zeroes -= 16; 394 if (word_to_count & 0x00FF00FF) zeroes -= 8; 395 if (word_to_count & 0x0F0F0F0F) zeroes -= 4; 396 if (word_to_count & 0x33333333) zeroes -= 2; 397 if (word_to_count & 0x55555555) zeroes -= 1; 398 399 return bits + (32 - zeroes); 400 } 401 402 bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { 403 // Helper method for checking IP prefix matches (but only on whole byte 404 // lengths). Length is in bits. 405 in6_addr addr = ip.ipv6_address(); 406 return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; 407 } 408 409 bool IPIs6Bone(const IPAddress& ip) { 410 return IPIsHelper(ip, k6BonePrefix, 16); 411 } 412 413 bool IPIs6To4(const IPAddress& ip) { 414 return IPIsHelper(ip, k6To4Prefix, 16); 415 } 416 417 bool IPIsSiteLocal(const IPAddress& ip) { 418 // Can't use the helper because the prefix is 10 bits. 419 in6_addr addr = ip.ipv6_address(); 420 return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; 421 } 422 423 bool IPIsULA(const IPAddress& ip) { 424 // Can't use the helper because the prefix is 7 bits. 425 in6_addr addr = ip.ipv6_address(); 426 return (addr.s6_addr[0] & 0xFE) == 0xFC; 427 } 428 429 bool IPIsTeredo(const IPAddress& ip) { 430 return IPIsHelper(ip, kTeredoPrefix, 32); 431 } 432 433 bool IPIsV4Compatibility(const IPAddress& ip) { 434 return IPIsHelper(ip, kV4CompatibilityPrefix, 96); 435 } 436 437 bool IPIsV4Mapped(const IPAddress& ip) { 438 return IPIsHelper(ip, kV4MappedPrefix, 96); 439 } 440 441 int IPAddressPrecedence(const IPAddress& ip) { 442 // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. 443 if (ip.family() == AF_INET) { 444 return 30; 445 } else if (ip.family() == AF_INET6) { 446 if (IPIsLoopback(ip)) { 447 return 60; 448 } else if (IPIsULA(ip)) { 449 return 50; 450 } else if (IPIsV4Mapped(ip)) { 451 return 30; 452 } else if (IPIs6To4(ip)) { 453 return 20; 454 } else if (IPIsTeredo(ip)) { 455 return 10; 456 } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { 457 return 1; 458 } else { 459 // A 'normal' IPv6 address. 460 return 40; 461 } 462 } 463 return 0; 464 } 465 466 } // Namespace talk base 467