Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_
      6 #define THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_
      7 
      8 // Macro with the boilerplate that makes a type move-only in C++03.
      9 //
     10 // USAGE
     11 //
     12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
     13 // a "move-only" type.  Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
     14 // the first line in a class declaration.
     15 //
     16 // A class using this macro must call .Pass() (or somehow be an r-value already)
     17 // before it can be:
     18 //
     19 //   * Passed as a function argument
     20 //   * Used as the right-hand side of an assignment
     21 //   * Returned from a function
     22 //
     23 // Each class will still need to define their own "move constructor" and "move
     24 // operator=" to make this useful.  Here's an example of the macro, the move
     25 // constructor, and the move operator= from the scoped_ptr class:
     26 //
     27 //  template <typename T>
     28 //  class scoped_ptr {
     29 //     TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
     30 //   public:
     31 //    scoped_ptr(RValue& other) : ptr_(other.release()) { }
     32 //    scoped_ptr& operator=(RValue& other) {
     33 //      swap(other);
     34 //      return *this;
     35 //    }
     36 //  };
     37 //
     38 // Note that the constructor must NOT be marked explicit.
     39 //
     40 // For consistency, the second parameter to the macro should always be RValue
     41 // unless you have a strong reason to do otherwise.  It is only exposed as a
     42 // macro parameter so that the move constructor and move operator= don't look
     43 // like they're using a phantom type.
     44 //
     45 //
     46 // HOW THIS WORKS
     47 //
     48 // For a thorough explanation of this technique, see:
     49 //
     50 //   http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
     51 //
     52 // The summary is that we take advantage of 2 properties:
     53 //
     54 //   1) non-const references will not bind to r-values.
     55 //   2) C++ can apply one user-defined conversion when initializing a
     56 //      variable.
     57 //
     58 // The first lets us disable the copy constructor and assignment operator
     59 // by declaring private version of them with a non-const reference parameter.
     60 //
     61 // For l-values, direct initialization still fails like in
     62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
     63 // operators are private.
     64 //
     65 // For r-values, the situation is different. The copy constructor and
     66 // assignment operator are not viable due to (1), so we are trying to call
     67 // a non-existent constructor and non-existing operator= rather than a private
     68 // one.  Since we have not committed an error quite yet, we can provide an
     69 // alternate conversion sequence and a constructor.  We add
     70 //
     71 //   * a private struct named "RValue"
     72 //   * a user-defined conversion "operator RValue()"
     73 //   * a "move constructor" and "move operator=" that take the RValue& as
     74 //     their sole parameter.
     75 //
     76 // Only r-values will trigger this sequence and execute our "move constructor"
     77 // or "move operator=."  L-values will match the private copy constructor and
     78 // operator= first giving a "private in this context" error.  This combination
     79 // gives us a move-only type.
     80 //
     81 // For signaling a destructive transfer of data from an l-value, we provide a
     82 // method named Pass() which creates an r-value for the current instance
     83 // triggering the move constructor or move operator=.
     84 //
     85 // Other ways to get r-values is to use the result of an expression like a
     86 // function call.
     87 //
     88 // Here's an example with comments explaining what gets triggered where:
     89 //
     90 //    class Foo {
     91 //      TALK_MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
     92 //
     93 //     public:
     94 //       ... API ...
     95 //       Foo(RValue other);           // Move constructor.
     96 //       Foo& operator=(RValue rhs);  // Move operator=
     97 //    };
     98 //
     99 //    Foo MakeFoo();  // Function that returns a Foo.
    100 //
    101 //    Foo f;
    102 //    Foo f_copy(f);  // ERROR: Foo(Foo&) is private in this context.
    103 //    Foo f_assign;
    104 //    f_assign = f;   // ERROR: operator=(Foo&) is private in this context.
    105 //
    106 //
    107 //    Foo f(MakeFoo());      // R-value so alternate conversion executed.
    108 //    Foo f_copy(f.Pass());  // R-value so alternate conversion executed.
    109 //    f = f_copy.Pass();     // R-value so alternate conversion executed.
    110 //
    111 //
    112 // IMPLEMENTATION SUBTLETIES WITH RValue
    113 //
    114 // The RValue struct is just a container for a pointer back to the original
    115 // object. It should only ever be created as a temporary, and no external
    116 // class should ever declare it or use it in a parameter.
    117 //
    118 // It is tempting to want to use the RValue type in function parameters, but
    119 // excluding the limited usage here for the move constructor and move
    120 // operator=, doing so would mean that the function could take both r-values
    121 // and l-values equially which is unexpected.  See COMPARED To Boost.Move for
    122 // more details.
    123 //
    124 // An alternate, and incorrect, implementation of the RValue class used by
    125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
    126 // is then used in place of RValue in the various operators.  The RValue& is
    127 // "created" by doing *reinterpret_cast<RValue*>(this).  This has the appeal
    128 // of never creating a temporary RValue struct even with optimizations
    129 // disabled.  Also, by virtue of inheritance you can treat the RValue
    130 // reference as if it were the move-only type itself.  Unfortunately,
    131 // using the result of this reinterpret_cast<> is actually undefined behavior
    132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
    133 // will generate non-working code.
    134 //
    135 // In optimized builds, both implementations generate the same assembly so we
    136 // choose the one that adheres to the standard.
    137 //
    138 //
    139 // COMPARED TO C++11
    140 //
    141 // In C++11, you would implement this functionality using an r-value reference
    142 // and our .Pass() method would be replaced with a call to std::move().
    143 //
    144 // This emulation also has a deficiency where it uses up the single
    145 // user-defined conversion allowed by C++ during initialization.  This can
    146 // cause problems in some API edge cases.  For instance, in scoped_ptr, it is
    147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
    148 // value of type scoped_ptr<Child> even if you add a constructor to
    149 // scoped_ptr<> that would make it look like it should work.  C++11 does not
    150 // have this deficiency.
    151 //
    152 //
    153 // COMPARED TO Boost.Move
    154 //
    155 // Our implementation similar to Boost.Move, but we keep the RValue struct
    156 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
    157 //
    158 // In Boost.Move, RValue is the boost::rv<> template.  This type can be used
    159 // when writing APIs like:
    160 //
    161 //   void MyFunc(boost::rv<Foo>& f)
    162 //
    163 // that can take advantage of rv<> to avoid extra copies of a type.  However you
    164 // would still be able to call this version of MyFunc with an l-value:
    165 //
    166 //   Foo f;
    167 //   MyFunc(f);  // Uh oh, we probably just destroyed |f| w/o calling Pass().
    168 //
    169 // unless someone is very careful to also declare a parallel override like:
    170 //
    171 //   void MyFunc(const Foo& f)
    172 //
    173 // that would catch the l-values first.  This was declared unsafe in C++11 and
    174 // a C++11 compiler will explicitly fail MyFunc(f).  Unfortunately, we cannot
    175 // ensure this in C++03.
    176 //
    177 // Since we have no need for writing such APIs yet, our implementation keeps
    178 // RValue private and uses a .Pass() method to do the conversion instead of
    179 // trying to write a version of "std::move()." Writing an API like std::move()
    180 // would require the RValue struct to be public.
    181 //
    182 //
    183 // CAVEATS
    184 //
    185 // If you include a move-only type as a field inside a class that does not
    186 // explicitly declare a copy constructor, the containing class's implicit
    187 // copy constructor will change from Containing(const Containing&) to
    188 // Containing(Containing&).  This can cause some unexpected errors.
    189 //
    190 //   http://llvm.org/bugs/show_bug.cgi?id=11528
    191 //
    192 // The workaround is to explicitly declare your copy constructor.
    193 //
    194 #define TALK_MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
    195  private: \
    196   struct rvalue_type { \
    197     explicit rvalue_type(type* object) : object(object) {} \
    198     type* object; \
    199   }; \
    200   type(type&); \
    201   void operator=(type&); \
    202  public: \
    203   operator rvalue_type() { return rvalue_type(this); } \
    204   type Pass() { return type(rvalue_type(this)); } \
    205  private:
    206 
    207 #endif  // THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_
    208