1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 version of some decoding functions (idct, loop filtering). 11 // 12 // Author: somnath (at) google.com (Somnath Banerjee) 13 // cduvivier (at) google.com (Christian Duvivier) 14 15 #include "./dsp.h" 16 17 #if defined(__cplusplus) || defined(c_plusplus) 18 extern "C" { 19 #endif 20 21 #if defined(WEBP_USE_SSE2) 22 23 #include <emmintrin.h> 24 #include "../dec/vp8i.h" 25 26 //------------------------------------------------------------------------------ 27 // Transforms (Paragraph 14.4) 28 29 static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) { 30 // This implementation makes use of 16-bit fixed point versions of two 31 // multiply constants: 32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 34 // 35 // To be able to use signed 16-bit integers, we use the following trick to 36 // have constants within range: 37 // - Associated constants are obtained by subtracting the 16-bit fixed point 38 // version of one: 39 // k = K - (1 << 16) => K = k + (1 << 16) 40 // K1 = 85267 => k1 = 20091 41 // K2 = 35468 => k2 = -30068 42 // - The multiplication of a variable by a constant become the sum of the 43 // variable and the multiplication of that variable by the associated 44 // constant: 45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 46 const __m128i k1 = _mm_set1_epi16(20091); 47 const __m128i k2 = _mm_set1_epi16(-30068); 48 __m128i T0, T1, T2, T3; 49 50 // Load and concatenate the transform coefficients (we'll do two transforms 51 // in parallel). In the case of only one transform, the second half of the 52 // vectors will just contain random value we'll never use nor store. 53 __m128i in0, in1, in2, in3; 54 { 55 in0 = _mm_loadl_epi64((__m128i*)&in[0]); 56 in1 = _mm_loadl_epi64((__m128i*)&in[4]); 57 in2 = _mm_loadl_epi64((__m128i*)&in[8]); 58 in3 = _mm_loadl_epi64((__m128i*)&in[12]); 59 // a00 a10 a20 a30 x x x x 60 // a01 a11 a21 a31 x x x x 61 // a02 a12 a22 a32 x x x x 62 // a03 a13 a23 a33 x x x x 63 if (do_two) { 64 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); 65 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); 66 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); 67 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); 68 in0 = _mm_unpacklo_epi64(in0, inB0); 69 in1 = _mm_unpacklo_epi64(in1, inB1); 70 in2 = _mm_unpacklo_epi64(in2, inB2); 71 in3 = _mm_unpacklo_epi64(in3, inB3); 72 // a00 a10 a20 a30 b00 b10 b20 b30 73 // a01 a11 a21 a31 b01 b11 b21 b31 74 // a02 a12 a22 a32 b02 b12 b22 b32 75 // a03 a13 a23 a33 b03 b13 b23 b33 76 } 77 } 78 79 // Vertical pass and subsequent transpose. 80 { 81 // First pass, c and d calculations are longer because of the "trick" 82 // multiplications. 83 const __m128i a = _mm_add_epi16(in0, in2); 84 const __m128i b = _mm_sub_epi16(in0, in2); 85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 86 const __m128i c1 = _mm_mulhi_epi16(in1, k2); 87 const __m128i c2 = _mm_mulhi_epi16(in3, k1); 88 const __m128i c3 = _mm_sub_epi16(in1, in3); 89 const __m128i c4 = _mm_sub_epi16(c1, c2); 90 const __m128i c = _mm_add_epi16(c3, c4); 91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 92 const __m128i d1 = _mm_mulhi_epi16(in1, k1); 93 const __m128i d2 = _mm_mulhi_epi16(in3, k2); 94 const __m128i d3 = _mm_add_epi16(in1, in3); 95 const __m128i d4 = _mm_add_epi16(d1, d2); 96 const __m128i d = _mm_add_epi16(d3, d4); 97 98 // Second pass. 99 const __m128i tmp0 = _mm_add_epi16(a, d); 100 const __m128i tmp1 = _mm_add_epi16(b, c); 101 const __m128i tmp2 = _mm_sub_epi16(b, c); 102 const __m128i tmp3 = _mm_sub_epi16(a, d); 103 104 // Transpose the two 4x4. 105 // a00 a01 a02 a03 b00 b01 b02 b03 106 // a10 a11 a12 a13 b10 b11 b12 b13 107 // a20 a21 a22 a23 b20 b21 b22 b23 108 // a30 a31 a32 a33 b30 b31 b32 b33 109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); 110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); 111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); 112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); 113 // a00 a10 a01 a11 a02 a12 a03 a13 114 // a20 a30 a21 a31 a22 a32 a23 a33 115 // b00 b10 b01 b11 b02 b12 b03 b13 116 // b20 b30 b21 b31 b22 b32 b23 b33 117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 121 // a00 a10 a20 a30 a01 a11 a21 a31 122 // b00 b10 b20 b30 b01 b11 b21 b31 123 // a02 a12 a22 a32 a03 a13 a23 a33 124 // b02 b12 a22 b32 b03 b13 b23 b33 125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 129 // a00 a10 a20 a30 b00 b10 b20 b30 130 // a01 a11 a21 a31 b01 b11 b21 b31 131 // a02 a12 a22 a32 b02 b12 b22 b32 132 // a03 a13 a23 a33 b03 b13 b23 b33 133 } 134 135 // Horizontal pass and subsequent transpose. 136 { 137 // First pass, c and d calculations are longer because of the "trick" 138 // multiplications. 139 const __m128i four = _mm_set1_epi16(4); 140 const __m128i dc = _mm_add_epi16(T0, four); 141 const __m128i a = _mm_add_epi16(dc, T2); 142 const __m128i b = _mm_sub_epi16(dc, T2); 143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 144 const __m128i c1 = _mm_mulhi_epi16(T1, k2); 145 const __m128i c2 = _mm_mulhi_epi16(T3, k1); 146 const __m128i c3 = _mm_sub_epi16(T1, T3); 147 const __m128i c4 = _mm_sub_epi16(c1, c2); 148 const __m128i c = _mm_add_epi16(c3, c4); 149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 150 const __m128i d1 = _mm_mulhi_epi16(T1, k1); 151 const __m128i d2 = _mm_mulhi_epi16(T3, k2); 152 const __m128i d3 = _mm_add_epi16(T1, T3); 153 const __m128i d4 = _mm_add_epi16(d1, d2); 154 const __m128i d = _mm_add_epi16(d3, d4); 155 156 // Second pass. 157 const __m128i tmp0 = _mm_add_epi16(a, d); 158 const __m128i tmp1 = _mm_add_epi16(b, c); 159 const __m128i tmp2 = _mm_sub_epi16(b, c); 160 const __m128i tmp3 = _mm_sub_epi16(a, d); 161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); 162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); 163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); 164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); 165 166 // Transpose the two 4x4. 167 // a00 a01 a02 a03 b00 b01 b02 b03 168 // a10 a11 a12 a13 b10 b11 b12 b13 169 // a20 a21 a22 a23 b20 b21 b22 b23 170 // a30 a31 a32 a33 b30 b31 b32 b33 171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); 172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); 173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); 174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); 175 // a00 a10 a01 a11 a02 a12 a03 a13 176 // a20 a30 a21 a31 a22 a32 a23 a33 177 // b00 b10 b01 b11 b02 b12 b03 b13 178 // b20 b30 b21 b31 b22 b32 b23 b33 179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 183 // a00 a10 a20 a30 a01 a11 a21 a31 184 // b00 b10 b20 b30 b01 b11 b21 b31 185 // a02 a12 a22 a32 a03 a13 a23 a33 186 // b02 b12 a22 b32 b03 b13 b23 b33 187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 191 // a00 a10 a20 a30 b00 b10 b20 b30 192 // a01 a11 a21 a31 b01 b11 b21 b31 193 // a02 a12 a22 a32 b02 b12 b22 b32 194 // a03 a13 a23 a33 b03 b13 b23 b33 195 } 196 197 // Add inverse transform to 'dst' and store. 198 { 199 const __m128i zero = _mm_setzero_si128(); 200 // Load the reference(s). 201 __m128i dst0, dst1, dst2, dst3; 202 if (do_two) { 203 // Load eight bytes/pixels per line. 204 dst0 = _mm_loadl_epi64((__m128i*)&dst[0 * BPS]); 205 dst1 = _mm_loadl_epi64((__m128i*)&dst[1 * BPS]); 206 dst2 = _mm_loadl_epi64((__m128i*)&dst[2 * BPS]); 207 dst3 = _mm_loadl_epi64((__m128i*)&dst[3 * BPS]); 208 } else { 209 // Load four bytes/pixels per line. 210 dst0 = _mm_cvtsi32_si128(*(int*)&dst[0 * BPS]); 211 dst1 = _mm_cvtsi32_si128(*(int*)&dst[1 * BPS]); 212 dst2 = _mm_cvtsi32_si128(*(int*)&dst[2 * BPS]); 213 dst3 = _mm_cvtsi32_si128(*(int*)&dst[3 * BPS]); 214 } 215 // Convert to 16b. 216 dst0 = _mm_unpacklo_epi8(dst0, zero); 217 dst1 = _mm_unpacklo_epi8(dst1, zero); 218 dst2 = _mm_unpacklo_epi8(dst2, zero); 219 dst3 = _mm_unpacklo_epi8(dst3, zero); 220 // Add the inverse transform(s). 221 dst0 = _mm_add_epi16(dst0, T0); 222 dst1 = _mm_add_epi16(dst1, T1); 223 dst2 = _mm_add_epi16(dst2, T2); 224 dst3 = _mm_add_epi16(dst3, T3); 225 // Unsigned saturate to 8b. 226 dst0 = _mm_packus_epi16(dst0, dst0); 227 dst1 = _mm_packus_epi16(dst1, dst1); 228 dst2 = _mm_packus_epi16(dst2, dst2); 229 dst3 = _mm_packus_epi16(dst3, dst3); 230 // Store the results. 231 if (do_two) { 232 // Store eight bytes/pixels per line. 233 _mm_storel_epi64((__m128i*)&dst[0 * BPS], dst0); 234 _mm_storel_epi64((__m128i*)&dst[1 * BPS], dst1); 235 _mm_storel_epi64((__m128i*)&dst[2 * BPS], dst2); 236 _mm_storel_epi64((__m128i*)&dst[3 * BPS], dst3); 237 } else { 238 // Store four bytes/pixels per line. 239 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(dst0); 240 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(dst1); 241 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(dst2); 242 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(dst3); 243 } 244 } 245 } 246 247 //------------------------------------------------------------------------------ 248 // Loop Filter (Paragraph 15) 249 250 // Compute abs(p - q) = subs(p - q) OR subs(q - p) 251 #define MM_ABS(p, q) _mm_or_si128( \ 252 _mm_subs_epu8((q), (p)), \ 253 _mm_subs_epu8((p), (q))) 254 255 // Shift each byte of "a" by N bits while preserving by the sign bit. 256 // 257 // It first shifts the lower bytes of the words and then the upper bytes and 258 // then merges the results together. 259 #define SIGNED_SHIFT_N(a, N) { \ 260 __m128i t = a; \ 261 t = _mm_slli_epi16(t, 8); \ 262 t = _mm_srai_epi16(t, N); \ 263 t = _mm_srli_epi16(t, 8); \ 264 \ 265 a = _mm_srai_epi16(a, N + 8); \ 266 a = _mm_slli_epi16(a, 8); \ 267 \ 268 a = _mm_or_si128(t, a); \ 269 } 270 271 #define FLIP_SIGN_BIT2(a, b) { \ 272 a = _mm_xor_si128(a, sign_bit); \ 273 b = _mm_xor_si128(b, sign_bit); \ 274 } 275 276 #define FLIP_SIGN_BIT4(a, b, c, d) { \ 277 FLIP_SIGN_BIT2(a, b); \ 278 FLIP_SIGN_BIT2(c, d); \ 279 } 280 281 #define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \ 282 const __m128i zero = _mm_setzero_si128(); \ 283 const __m128i t_1 = MM_ABS(p1, p0); \ 284 const __m128i t_2 = MM_ABS(q1, q0); \ 285 \ 286 const __m128i h = _mm_set1_epi8(hev_thresh); \ 287 const __m128i t_3 = _mm_subs_epu8(t_1, h); /* abs(p1 - p0) - hev_tresh */ \ 288 const __m128i t_4 = _mm_subs_epu8(t_2, h); /* abs(q1 - q0) - hev_tresh */ \ 289 \ 290 not_hev = _mm_or_si128(t_3, t_4); \ 291 not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\ 292 } 293 294 #define GET_BASE_DELTA(p1, p0, q0, q1, o) { \ 295 const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \ 296 o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \ 297 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \ 298 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \ 299 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \ 300 } 301 302 #define DO_SIMPLE_FILTER(p0, q0, fl) { \ 303 const __m128i three = _mm_set1_epi8(3); \ 304 const __m128i four = _mm_set1_epi8(4); \ 305 __m128i v3 = _mm_adds_epi8(fl, three); \ 306 __m128i v4 = _mm_adds_epi8(fl, four); \ 307 \ 308 /* Do +4 side */ \ 309 SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \ 310 q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \ 311 \ 312 /* Now do +3 side */ \ 313 SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \ 314 p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \ 315 } 316 317 // Updates values of 2 pixels at MB edge during complex filtering. 318 // Update operations: 319 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] 320 #define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \ 321 const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \ 322 const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \ 323 const __m128i delta = _mm_packs_epi16(a_lo7, a_hi7); \ 324 pi = _mm_adds_epi8(pi, delta); \ 325 qi = _mm_subs_epi8(qi, delta); \ 326 } 327 328 static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0, 329 const __m128i* q1, int thresh, __m128i *mask) { 330 __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) 331 *mask = _mm_set1_epi8(0xFE); 332 t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero 333 t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2 334 335 *mask = MM_ABS(*p0, *q0); // abs(p0 - q0) 336 *mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2 337 *mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2 338 339 t1 = _mm_set1_epi8(thresh); 340 *mask = _mm_subs_epu8(*mask, t1); // mask <= thresh 341 *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128()); 342 } 343 344 //------------------------------------------------------------------------------ 345 // Edge filtering functions 346 347 // Applies filter on 2 pixels (p0 and q0) 348 static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0, 349 const __m128i* q1, int thresh) { 350 __m128i a, mask; 351 const __m128i sign_bit = _mm_set1_epi8(0x80); 352 const __m128i p1s = _mm_xor_si128(*p1, sign_bit); 353 const __m128i q1s = _mm_xor_si128(*q1, sign_bit); 354 355 NeedsFilter(p1, p0, q0, q1, thresh, &mask); 356 357 // convert to signed values 358 FLIP_SIGN_BIT2(*p0, *q0); 359 360 GET_BASE_DELTA(p1s, *p0, *q0, q1s, a); 361 a = _mm_and_si128(a, mask); // mask filter values we don't care about 362 DO_SIMPLE_FILTER(*p0, *q0, a); 363 364 // unoffset 365 FLIP_SIGN_BIT2(*p0, *q0); 366 } 367 368 // Applies filter on 4 pixels (p1, p0, q0 and q1) 369 static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0, 370 __m128i* q0, __m128i* q1, 371 const __m128i* mask, int hev_thresh) { 372 __m128i not_hev; 373 __m128i t1, t2, t3; 374 const __m128i sign_bit = _mm_set1_epi8(0x80); 375 376 // compute hev mask 377 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev); 378 379 // convert to signed values 380 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 381 382 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 383 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) 384 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 385 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) 386 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) 387 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) 388 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about 389 390 // Do +4 side 391 t2 = _mm_set1_epi8(4); 392 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4 393 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 394 t3 = t2; // save t2 395 *q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2 396 397 // Now do +3 side 398 t2 = _mm_set1_epi8(3); 399 t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4 400 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 401 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 402 403 t2 = _mm_set1_epi8(1); 404 t3 = _mm_adds_epi8(t3, t2); 405 SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4 406 407 t3 = _mm_and_si128(not_hev, t3); // if !hev 408 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 409 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 410 411 // unoffset 412 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 413 } 414 415 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) 416 static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0, 417 __m128i* q0, __m128i* q1, __m128i *q2, 418 const __m128i* mask, int hev_thresh) { 419 __m128i a, not_hev; 420 const __m128i sign_bit = _mm_set1_epi8(0x80); 421 422 // compute hev mask 423 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev); 424 425 // convert to signed values 426 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 427 FLIP_SIGN_BIT2(*p2, *q2); 428 429 GET_BASE_DELTA(*p1, *p0, *q0, *q1, a); 430 431 { // do simple filter on pixels with hev 432 const __m128i m = _mm_andnot_si128(not_hev, *mask); 433 const __m128i f = _mm_and_si128(a, m); 434 DO_SIMPLE_FILTER(*p0, *q0, f); 435 } 436 { // do strong filter on pixels with not hev 437 const __m128i zero = _mm_setzero_si128(); 438 const __m128i nine = _mm_set1_epi16(0x0900); 439 const __m128i sixty_three = _mm_set1_epi16(63); 440 441 const __m128i m = _mm_and_si128(not_hev, *mask); 442 const __m128i f = _mm_and_si128(a, m); 443 const __m128i f_lo = _mm_unpacklo_epi8(zero, f); 444 const __m128i f_hi = _mm_unpackhi_epi8(zero, f); 445 446 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9 447 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9 448 const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18 449 const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18 450 451 const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63 452 const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63 453 454 const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63 455 const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63 456 457 const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63 458 const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63 459 460 UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi); 461 UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi); 462 UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi); 463 } 464 465 // unoffset 466 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 467 FLIP_SIGN_BIT2(*p2, *q2); 468 } 469 470 // reads 8 rows across a vertical edge. 471 // 472 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into 473 // two Load4x4() to avoid code duplication. 474 static WEBP_INLINE void Load8x4(const uint8_t* b, int stride, 475 __m128i* p, __m128i* q) { 476 __m128i t1, t2; 477 478 // Load 0th, 1st, 4th and 5th rows 479 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00 480 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10 481 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40 482 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50 483 484 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00 485 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10 486 487 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 488 t1 = _mm_unpacklo_epi8(r0, r1); 489 490 // Load 2nd, 3rd, 6th and 7th rows 491 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22 492 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30 493 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60 494 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70 495 496 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20 497 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30 498 499 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 500 t2 = _mm_unpacklo_epi8(r0, r1); 501 502 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 503 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 504 r0 = t1; 505 t1 = _mm_unpacklo_epi16(t1, t2); 506 t2 = _mm_unpackhi_epi16(r0, t2); 507 508 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 509 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 510 *p = _mm_unpacklo_epi32(t1, t2); 511 *q = _mm_unpackhi_epi32(t1, t2); 512 } 513 514 static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8, 515 int stride, 516 __m128i* p1, __m128i* p0, 517 __m128i* q0, __m128i* q1) { 518 __m128i t1, t2; 519 // Assume the pixels around the edge (|) are numbered as follows 520 // 00 01 | 02 03 521 // 10 11 | 12 13 522 // ... | ... 523 // e0 e1 | e2 e3 524 // f0 f1 | f2 f3 525 // 526 // r0 is pointing to the 0th row (00) 527 // r8 is pointing to the 8th row (80) 528 529 // Load 530 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 531 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 532 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 533 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 534 Load8x4(r0, stride, p1, q0); 535 Load8x4(r8, stride, p0, q1); 536 537 t1 = *p1; 538 t2 = *q0; 539 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 540 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 541 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 542 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 543 *p1 = _mm_unpacklo_epi64(t1, *p0); 544 *p0 = _mm_unpackhi_epi64(t1, *p0); 545 *q0 = _mm_unpacklo_epi64(t2, *q1); 546 *q1 = _mm_unpackhi_epi64(t2, *q1); 547 } 548 549 static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) { 550 int i; 551 for (i = 0; i < 4; ++i, dst += stride) { 552 *((int32_t*)dst) = _mm_cvtsi128_si32(*x); 553 *x = _mm_srli_si128(*x, 4); 554 } 555 } 556 557 // Transpose back and store 558 static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride, 559 __m128i* p1, __m128i* p0, 560 __m128i* q0, __m128i* q1) { 561 __m128i t1; 562 563 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 564 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 565 t1 = *p0; 566 *p0 = _mm_unpacklo_epi8(*p1, t1); 567 *p1 = _mm_unpackhi_epi8(*p1, t1); 568 569 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 570 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 571 t1 = *q0; 572 *q0 = _mm_unpacklo_epi8(t1, *q1); 573 *q1 = _mm_unpackhi_epi8(t1, *q1); 574 575 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 576 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 577 t1 = *p0; 578 *p0 = _mm_unpacklo_epi16(t1, *q0); 579 *q0 = _mm_unpackhi_epi16(t1, *q0); 580 581 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 582 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 583 t1 = *p1; 584 *p1 = _mm_unpacklo_epi16(t1, *q1); 585 *q1 = _mm_unpackhi_epi16(t1, *q1); 586 587 Store4x4(p0, r0, stride); 588 r0 += 4 * stride; 589 Store4x4(q0, r0, stride); 590 591 Store4x4(p1, r8, stride); 592 r8 += 4 * stride; 593 Store4x4(q1, r8, stride); 594 } 595 596 //------------------------------------------------------------------------------ 597 // Simple In-loop filtering (Paragraph 15.2) 598 599 static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) { 600 // Load 601 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); 602 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); 603 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); 604 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); 605 606 DoFilter2(&p1, &p0, &q0, &q1, thresh); 607 608 // Store 609 _mm_storeu_si128((__m128i*)&p[-stride], p0); 610 _mm_storeu_si128((__m128i*)p, q0); 611 } 612 613 static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) { 614 __m128i p1, p0, q0, q1; 615 616 p -= 2; // beginning of p1 617 618 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 619 DoFilter2(&p1, &p0, &q0, &q1, thresh); 620 Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 621 } 622 623 static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) { 624 int k; 625 for (k = 3; k > 0; --k) { 626 p += 4 * stride; 627 SimpleVFilter16SSE2(p, stride, thresh); 628 } 629 } 630 631 static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) { 632 int k; 633 for (k = 3; k > 0; --k) { 634 p += 4; 635 SimpleHFilter16SSE2(p, stride, thresh); 636 } 637 } 638 639 //------------------------------------------------------------------------------ 640 // Complex In-loop filtering (Paragraph 15.3) 641 642 #define MAX_DIFF1(p3, p2, p1, p0, m) { \ 643 m = MM_ABS(p3, p2); \ 644 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 645 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 646 } 647 648 #define MAX_DIFF2(p3, p2, p1, p0, m) { \ 649 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 650 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 651 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 652 } 653 654 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ 655 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \ 656 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \ 657 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \ 658 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \ 659 } 660 661 #define LOADUV_H_EDGE(p, u, v, stride) { \ 662 p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ 663 p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \ 664 } 665 666 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ 667 LOADUV_H_EDGE(e1, u, v, 0 * stride); \ 668 LOADUV_H_EDGE(e2, u, v, 1 * stride); \ 669 LOADUV_H_EDGE(e3, u, v, 2 * stride); \ 670 LOADUV_H_EDGE(e4, u, v, 3 * stride); \ 671 } 672 673 #define STOREUV(p, u, v, stride) { \ 674 _mm_storel_epi64((__m128i*)&u[(stride)], p); \ 675 p = _mm_srli_si128(p, 8); \ 676 _mm_storel_epi64((__m128i*)&v[(stride)], p); \ 677 } 678 679 #define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \ 680 __m128i fl_yes; \ 681 const __m128i it = _mm_set1_epi8(ithresh); \ 682 mask = _mm_subs_epu8(mask, it); \ 683 mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \ 684 NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \ 685 mask = _mm_and_si128(mask, fl_yes); \ 686 } 687 688 // on macroblock edges 689 static void VFilter16SSE2(uint8_t* p, int stride, 690 int thresh, int ithresh, int hev_thresh) { 691 __m128i t1; 692 __m128i mask; 693 __m128i p2, p1, p0, q0, q1, q2; 694 695 // Load p3, p2, p1, p0 696 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); 697 MAX_DIFF1(t1, p2, p1, p0, mask); 698 699 // Load q0, q1, q2, q3 700 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); 701 MAX_DIFF2(t1, q2, q1, q0, mask); 702 703 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 704 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 705 706 // Store 707 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); 708 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 709 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 710 _mm_storeu_si128((__m128i*)&p[0 * stride], q0); 711 _mm_storeu_si128((__m128i*)&p[1 * stride], q1); 712 _mm_storeu_si128((__m128i*)&p[2 * stride], q2); 713 } 714 715 static void HFilter16SSE2(uint8_t* p, int stride, 716 int thresh, int ithresh, int hev_thresh) { 717 __m128i mask; 718 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 719 720 uint8_t* const b = p - 4; 721 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 722 MAX_DIFF1(p3, p2, p1, p0, mask); 723 724 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 725 MAX_DIFF2(q3, q2, q1, q0, mask); 726 727 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 728 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 729 730 Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); 731 Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); 732 } 733 734 // on three inner edges 735 static void VFilter16iSSE2(uint8_t* p, int stride, 736 int thresh, int ithresh, int hev_thresh) { 737 int k; 738 __m128i mask; 739 __m128i t1, t2, p1, p0, q0, q1; 740 741 for (k = 3; k > 0; --k) { 742 // Load p3, p2, p1, p0 743 LOAD_H_EDGES4(p, stride, t2, t1, p1, p0); 744 MAX_DIFF1(t2, t1, p1, p0, mask); 745 746 p += 4 * stride; 747 748 // Load q0, q1, q2, q3 749 LOAD_H_EDGES4(p, stride, q0, q1, t1, t2); 750 MAX_DIFF2(t2, t1, q1, q0, mask); 751 752 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 753 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 754 755 // Store 756 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 757 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 758 _mm_storeu_si128((__m128i*)&p[0 * stride], q0); 759 _mm_storeu_si128((__m128i*)&p[1 * stride], q1); 760 } 761 } 762 763 static void HFilter16iSSE2(uint8_t* p, int stride, 764 int thresh, int ithresh, int hev_thresh) { 765 int k; 766 uint8_t* b; 767 __m128i mask; 768 __m128i t1, t2, p1, p0, q0, q1; 769 770 for (k = 3; k > 0; --k) { 771 b = p; 772 Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 773 MAX_DIFF1(t2, t1, p1, p0, mask); 774 775 b += 4; // beginning of q0 776 Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 777 MAX_DIFF2(t2, t1, q1, q0, mask); 778 779 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 780 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 781 782 b -= 2; // beginning of p1 783 Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1); 784 785 p += 4; 786 } 787 } 788 789 // 8-pixels wide variant, for chroma filtering 790 static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride, 791 int thresh, int ithresh, int hev_thresh) { 792 __m128i mask; 793 __m128i t1, p2, p1, p0, q0, q1, q2; 794 795 // Load p3, p2, p1, p0 796 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); 797 MAX_DIFF1(t1, p2, p1, p0, mask); 798 799 // Load q0, q1, q2, q3 800 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); 801 MAX_DIFF2(t1, q2, q1, q0, mask); 802 803 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 804 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 805 806 // Store 807 STOREUV(p2, u, v, -3 * stride); 808 STOREUV(p1, u, v, -2 * stride); 809 STOREUV(p0, u, v, -1 * stride); 810 STOREUV(q0, u, v, 0 * stride); 811 STOREUV(q1, u, v, 1 * stride); 812 STOREUV(q2, u, v, 2 * stride); 813 } 814 815 static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride, 816 int thresh, int ithresh, int hev_thresh) { 817 __m128i mask; 818 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 819 820 uint8_t* const tu = u - 4; 821 uint8_t* const tv = v - 4; 822 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 823 MAX_DIFF1(p3, p2, p1, p0, mask); 824 825 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 826 MAX_DIFF2(q3, q2, q1, q0, mask); 827 828 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 829 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 830 831 Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0); 832 Store16x4(u, v, stride, &q0, &q1, &q2, &q3); 833 } 834 835 static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride, 836 int thresh, int ithresh, int hev_thresh) { 837 __m128i mask; 838 __m128i t1, t2, p1, p0, q0, q1; 839 840 // Load p3, p2, p1, p0 841 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); 842 MAX_DIFF1(t2, t1, p1, p0, mask); 843 844 u += 4 * stride; 845 v += 4 * stride; 846 847 // Load q0, q1, q2, q3 848 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); 849 MAX_DIFF2(t2, t1, q1, q0, mask); 850 851 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 852 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 853 854 // Store 855 STOREUV(p1, u, v, -2 * stride); 856 STOREUV(p0, u, v, -1 * stride); 857 STOREUV(q0, u, v, 0 * stride); 858 STOREUV(q1, u, v, 1 * stride); 859 } 860 861 static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride, 862 int thresh, int ithresh, int hev_thresh) { 863 __m128i mask; 864 __m128i t1, t2, p1, p0, q0, q1; 865 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 866 MAX_DIFF1(t2, t1, p1, p0, mask); 867 868 u += 4; // beginning of q0 869 v += 4; 870 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 871 MAX_DIFF2(t2, t1, q1, q0, mask); 872 873 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 874 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 875 876 u -= 2; // beginning of p1 877 v -= 2; 878 Store16x4(u, v, stride, &p1, &p0, &q0, &q1); 879 } 880 881 #endif // WEBP_USE_SSE2 882 883 //------------------------------------------------------------------------------ 884 // Entry point 885 886 extern void VP8DspInitSSE2(void); 887 888 void VP8DspInitSSE2(void) { 889 #if defined(WEBP_USE_SSE2) 890 VP8Transform = TransformSSE2; 891 892 VP8VFilter16 = VFilter16SSE2; 893 VP8HFilter16 = HFilter16SSE2; 894 VP8VFilter8 = VFilter8SSE2; 895 VP8HFilter8 = HFilter8SSE2; 896 VP8VFilter16i = VFilter16iSSE2; 897 VP8HFilter16i = HFilter16iSSE2; 898 VP8VFilter8i = VFilter8iSSE2; 899 VP8HFilter8i = HFilter8iSSE2; 900 901 VP8SimpleVFilter16 = SimpleVFilter16SSE2; 902 VP8SimpleHFilter16 = SimpleHFilter16SSE2; 903 VP8SimpleVFilter16i = SimpleVFilter16iSSE2; 904 VP8SimpleHFilter16i = SimpleHFilter16iSSE2; 905 #endif // WEBP_USE_SSE2 906 } 907 908 #if defined(__cplusplus) || defined(c_plusplus) 909 } // extern "C" 910 #endif 911