1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 version of speed-critical encoding functions. 11 // 12 // Author: Christian Duvivier (cduvivier (at) google.com) 13 14 #include "./dsp.h" 15 16 #if defined(__cplusplus) || defined(c_plusplus) 17 extern "C" { 18 #endif 19 20 #if defined(WEBP_USE_SSE2) 21 #include <stdlib.h> // for abs() 22 #include <emmintrin.h> 23 24 #include "../enc/vp8enci.h" 25 26 //------------------------------------------------------------------------------ 27 // Quite useful macro for debugging. Left here for convenience. 28 29 #if 0 30 #include <stdio.h> 31 static void PrintReg(const __m128i r, const char* const name, int size) { 32 int n; 33 union { 34 __m128i r; 35 uint8_t i8[16]; 36 uint16_t i16[8]; 37 uint32_t i32[4]; 38 uint64_t i64[2]; 39 } tmp; 40 tmp.r = r; 41 printf("%s\t: ", name); 42 if (size == 8) { 43 for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]); 44 } else if (size == 16) { 45 for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]); 46 } else if (size == 32) { 47 for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]); 48 } else { 49 for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]); 50 } 51 printf("\n"); 52 } 53 #endif 54 55 //------------------------------------------------------------------------------ 56 // Compute susceptibility based on DCT-coeff histograms: 57 // the higher, the "easier" the macroblock is to compress. 58 59 static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred, 60 int start_block, int end_block, 61 VP8Histogram* const histo) { 62 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); 63 int j; 64 for (j = start_block; j < end_block; ++j) { 65 int16_t out[16]; 66 int k; 67 68 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); 69 70 // Convert coefficients to bin (within out[]). 71 { 72 // Load. 73 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); 74 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); 75 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) 76 const __m128i sign0 = _mm_srai_epi16(out0, 15); 77 const __m128i sign1 = _mm_srai_epi16(out1, 15); 78 // abs(out) = (out ^ sign) - sign 79 const __m128i xor0 = _mm_xor_si128(out0, sign0); 80 const __m128i xor1 = _mm_xor_si128(out1, sign1); 81 const __m128i abs0 = _mm_sub_epi16(xor0, sign0); 82 const __m128i abs1 = _mm_sub_epi16(xor1, sign1); 83 // v = abs(out) >> 3 84 const __m128i v0 = _mm_srai_epi16(abs0, 3); 85 const __m128i v1 = _mm_srai_epi16(abs1, 3); 86 // bin = min(v, MAX_COEFF_THRESH) 87 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); 88 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); 89 // Store. 90 _mm_storeu_si128((__m128i*)&out[0], bin0); 91 _mm_storeu_si128((__m128i*)&out[8], bin1); 92 } 93 94 // Convert coefficients to bin. 95 for (k = 0; k < 16; ++k) { 96 histo->distribution[out[k]]++; 97 } 98 } 99 } 100 101 //------------------------------------------------------------------------------ 102 // Transforms (Paragraph 14.4) 103 104 // Does one or two inverse transforms. 105 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, 106 int do_two) { 107 // This implementation makes use of 16-bit fixed point versions of two 108 // multiply constants: 109 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 110 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 111 // 112 // To be able to use signed 16-bit integers, we use the following trick to 113 // have constants within range: 114 // - Associated constants are obtained by subtracting the 16-bit fixed point 115 // version of one: 116 // k = K - (1 << 16) => K = k + (1 << 16) 117 // K1 = 85267 => k1 = 20091 118 // K2 = 35468 => k2 = -30068 119 // - The multiplication of a variable by a constant become the sum of the 120 // variable and the multiplication of that variable by the associated 121 // constant: 122 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 123 const __m128i k1 = _mm_set1_epi16(20091); 124 const __m128i k2 = _mm_set1_epi16(-30068); 125 __m128i T0, T1, T2, T3; 126 127 // Load and concatenate the transform coefficients (we'll do two inverse 128 // transforms in parallel). In the case of only one inverse transform, the 129 // second half of the vectors will just contain random value we'll never 130 // use nor store. 131 __m128i in0, in1, in2, in3; 132 { 133 in0 = _mm_loadl_epi64((__m128i*)&in[0]); 134 in1 = _mm_loadl_epi64((__m128i*)&in[4]); 135 in2 = _mm_loadl_epi64((__m128i*)&in[8]); 136 in3 = _mm_loadl_epi64((__m128i*)&in[12]); 137 // a00 a10 a20 a30 x x x x 138 // a01 a11 a21 a31 x x x x 139 // a02 a12 a22 a32 x x x x 140 // a03 a13 a23 a33 x x x x 141 if (do_two) { 142 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); 143 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); 144 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); 145 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); 146 in0 = _mm_unpacklo_epi64(in0, inB0); 147 in1 = _mm_unpacklo_epi64(in1, inB1); 148 in2 = _mm_unpacklo_epi64(in2, inB2); 149 in3 = _mm_unpacklo_epi64(in3, inB3); 150 // a00 a10 a20 a30 b00 b10 b20 b30 151 // a01 a11 a21 a31 b01 b11 b21 b31 152 // a02 a12 a22 a32 b02 b12 b22 b32 153 // a03 a13 a23 a33 b03 b13 b23 b33 154 } 155 } 156 157 // Vertical pass and subsequent transpose. 158 { 159 // First pass, c and d calculations are longer because of the "trick" 160 // multiplications. 161 const __m128i a = _mm_add_epi16(in0, in2); 162 const __m128i b = _mm_sub_epi16(in0, in2); 163 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 164 const __m128i c1 = _mm_mulhi_epi16(in1, k2); 165 const __m128i c2 = _mm_mulhi_epi16(in3, k1); 166 const __m128i c3 = _mm_sub_epi16(in1, in3); 167 const __m128i c4 = _mm_sub_epi16(c1, c2); 168 const __m128i c = _mm_add_epi16(c3, c4); 169 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 170 const __m128i d1 = _mm_mulhi_epi16(in1, k1); 171 const __m128i d2 = _mm_mulhi_epi16(in3, k2); 172 const __m128i d3 = _mm_add_epi16(in1, in3); 173 const __m128i d4 = _mm_add_epi16(d1, d2); 174 const __m128i d = _mm_add_epi16(d3, d4); 175 176 // Second pass. 177 const __m128i tmp0 = _mm_add_epi16(a, d); 178 const __m128i tmp1 = _mm_add_epi16(b, c); 179 const __m128i tmp2 = _mm_sub_epi16(b, c); 180 const __m128i tmp3 = _mm_sub_epi16(a, d); 181 182 // Transpose the two 4x4. 183 // a00 a01 a02 a03 b00 b01 b02 b03 184 // a10 a11 a12 a13 b10 b11 b12 b13 185 // a20 a21 a22 a23 b20 b21 b22 b23 186 // a30 a31 a32 a33 b30 b31 b32 b33 187 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); 188 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); 189 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); 190 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); 191 // a00 a10 a01 a11 a02 a12 a03 a13 192 // a20 a30 a21 a31 a22 a32 a23 a33 193 // b00 b10 b01 b11 b02 b12 b03 b13 194 // b20 b30 b21 b31 b22 b32 b23 b33 195 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 196 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 197 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 198 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 199 // a00 a10 a20 a30 a01 a11 a21 a31 200 // b00 b10 b20 b30 b01 b11 b21 b31 201 // a02 a12 a22 a32 a03 a13 a23 a33 202 // b02 b12 a22 b32 b03 b13 b23 b33 203 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 204 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 205 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 206 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 207 // a00 a10 a20 a30 b00 b10 b20 b30 208 // a01 a11 a21 a31 b01 b11 b21 b31 209 // a02 a12 a22 a32 b02 b12 b22 b32 210 // a03 a13 a23 a33 b03 b13 b23 b33 211 } 212 213 // Horizontal pass and subsequent transpose. 214 { 215 // First pass, c and d calculations are longer because of the "trick" 216 // multiplications. 217 const __m128i four = _mm_set1_epi16(4); 218 const __m128i dc = _mm_add_epi16(T0, four); 219 const __m128i a = _mm_add_epi16(dc, T2); 220 const __m128i b = _mm_sub_epi16(dc, T2); 221 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 222 const __m128i c1 = _mm_mulhi_epi16(T1, k2); 223 const __m128i c2 = _mm_mulhi_epi16(T3, k1); 224 const __m128i c3 = _mm_sub_epi16(T1, T3); 225 const __m128i c4 = _mm_sub_epi16(c1, c2); 226 const __m128i c = _mm_add_epi16(c3, c4); 227 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 228 const __m128i d1 = _mm_mulhi_epi16(T1, k1); 229 const __m128i d2 = _mm_mulhi_epi16(T3, k2); 230 const __m128i d3 = _mm_add_epi16(T1, T3); 231 const __m128i d4 = _mm_add_epi16(d1, d2); 232 const __m128i d = _mm_add_epi16(d3, d4); 233 234 // Second pass. 235 const __m128i tmp0 = _mm_add_epi16(a, d); 236 const __m128i tmp1 = _mm_add_epi16(b, c); 237 const __m128i tmp2 = _mm_sub_epi16(b, c); 238 const __m128i tmp3 = _mm_sub_epi16(a, d); 239 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); 240 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); 241 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); 242 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); 243 244 // Transpose the two 4x4. 245 // a00 a01 a02 a03 b00 b01 b02 b03 246 // a10 a11 a12 a13 b10 b11 b12 b13 247 // a20 a21 a22 a23 b20 b21 b22 b23 248 // a30 a31 a32 a33 b30 b31 b32 b33 249 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); 250 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); 251 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); 252 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); 253 // a00 a10 a01 a11 a02 a12 a03 a13 254 // a20 a30 a21 a31 a22 a32 a23 a33 255 // b00 b10 b01 b11 b02 b12 b03 b13 256 // b20 b30 b21 b31 b22 b32 b23 b33 257 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 258 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 259 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 260 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 261 // a00 a10 a20 a30 a01 a11 a21 a31 262 // b00 b10 b20 b30 b01 b11 b21 b31 263 // a02 a12 a22 a32 a03 a13 a23 a33 264 // b02 b12 a22 b32 b03 b13 b23 b33 265 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 266 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 267 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 268 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 269 // a00 a10 a20 a30 b00 b10 b20 b30 270 // a01 a11 a21 a31 b01 b11 b21 b31 271 // a02 a12 a22 a32 b02 b12 b22 b32 272 // a03 a13 a23 a33 b03 b13 b23 b33 273 } 274 275 // Add inverse transform to 'ref' and store. 276 { 277 const __m128i zero = _mm_setzero_si128(); 278 // Load the reference(s). 279 __m128i ref0, ref1, ref2, ref3; 280 if (do_two) { 281 // Load eight bytes/pixels per line. 282 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); 283 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); 284 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); 285 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); 286 } else { 287 // Load four bytes/pixels per line. 288 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); 289 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); 290 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); 291 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); 292 } 293 // Convert to 16b. 294 ref0 = _mm_unpacklo_epi8(ref0, zero); 295 ref1 = _mm_unpacklo_epi8(ref1, zero); 296 ref2 = _mm_unpacklo_epi8(ref2, zero); 297 ref3 = _mm_unpacklo_epi8(ref3, zero); 298 // Add the inverse transform(s). 299 ref0 = _mm_add_epi16(ref0, T0); 300 ref1 = _mm_add_epi16(ref1, T1); 301 ref2 = _mm_add_epi16(ref2, T2); 302 ref3 = _mm_add_epi16(ref3, T3); 303 // Unsigned saturate to 8b. 304 ref0 = _mm_packus_epi16(ref0, ref0); 305 ref1 = _mm_packus_epi16(ref1, ref1); 306 ref2 = _mm_packus_epi16(ref2, ref2); 307 ref3 = _mm_packus_epi16(ref3, ref3); 308 // Store the results. 309 if (do_two) { 310 // Store eight bytes/pixels per line. 311 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); 312 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); 313 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); 314 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); 315 } else { 316 // Store four bytes/pixels per line. 317 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); 318 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); 319 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); 320 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); 321 } 322 } 323 } 324 325 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref, 326 int16_t* out) { 327 const __m128i zero = _mm_setzero_si128(); 328 const __m128i seven = _mm_set1_epi16(7); 329 const __m128i k937 = _mm_set1_epi32(937); 330 const __m128i k1812 = _mm_set1_epi32(1812); 331 const __m128i k51000 = _mm_set1_epi32(51000); 332 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); 333 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, 334 5352, 2217, 5352, 2217); 335 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, 336 2217, -5352, 2217, -5352); 337 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); 338 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); 339 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, 340 2217, 5352, 2217, 5352); 341 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, 342 -5352, 2217, -5352, 2217); 343 __m128i v01, v32; 344 345 346 // Difference between src and ref and initial transpose. 347 { 348 // Load src and convert to 16b. 349 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); 350 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); 351 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); 352 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); 353 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); 354 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); 355 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); 356 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); 357 // Load ref and convert to 16b. 358 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); 359 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); 360 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); 361 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); 362 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); 363 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); 364 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); 365 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); 366 // Compute difference. -> 00 01 02 03 00 00 00 00 367 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); 368 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); 369 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); 370 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); 371 372 373 // Unpack and shuffle 374 // 00 01 02 03 0 0 0 0 375 // 10 11 12 13 0 0 0 0 376 // 20 21 22 23 0 0 0 0 377 // 30 31 32 33 0 0 0 0 378 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); 379 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); 380 // 00 01 10 11 02 03 12 13 381 // 20 21 30 31 22 23 32 33 382 const __m128i shuf01_p = 383 _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1)); 384 const __m128i shuf23_p = 385 _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1)); 386 // 00 01 10 11 03 02 13 12 387 // 20 21 30 31 23 22 33 32 388 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); 389 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); 390 // 00 01 10 11 20 21 30 31 391 // 03 02 13 12 23 22 33 32 392 const __m128i a01 = _mm_add_epi16(s01, s32); 393 const __m128i a32 = _mm_sub_epi16(s01, s32); 394 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] 395 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] 396 397 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] 398 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] 399 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); 400 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); 401 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); 402 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); 403 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); 404 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); 405 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); 406 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); 407 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... 408 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 409 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); 410 v01 = _mm_unpacklo_epi32(s_lo, s_hi); 411 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. 412 } 413 414 // Second pass 415 { 416 // Same operations are done on the (0,3) and (1,2) pairs. 417 // a0 = v0 + v3 418 // a1 = v1 + v2 419 // a3 = v0 - v3 420 // a2 = v1 - v2 421 const __m128i a01 = _mm_add_epi16(v01, v32); 422 const __m128i a32 = _mm_sub_epi16(v01, v32); 423 const __m128i a11 = _mm_unpackhi_epi64(a01, a01); 424 const __m128i a22 = _mm_unpackhi_epi64(a32, a32); 425 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); 426 427 // d0 = (a0 + a1 + 7) >> 4; 428 // d2 = (a0 - a1 + 7) >> 4; 429 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); 430 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); 431 const __m128i d0 = _mm_srai_epi16(c0, 4); 432 const __m128i d2 = _mm_srai_epi16(c2, 4); 433 434 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) 435 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) 436 const __m128i b23 = _mm_unpacklo_epi16(a22, a32); 437 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); 438 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); 439 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); 440 const __m128i d3 = _mm_add_epi32(c3, k51000); 441 const __m128i e1 = _mm_srai_epi32(d1, 16); 442 const __m128i e3 = _mm_srai_epi32(d3, 16); 443 const __m128i f1 = _mm_packs_epi32(e1, e1); 444 const __m128i f3 = _mm_packs_epi32(e3, e3); 445 // f1 = f1 + (a3 != 0); 446 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the 447 // desired (0, 1), we add one earlier through k12000_plus_one. 448 // -> f1 = f1 + 1 - (a3 == 0) 449 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); 450 451 _mm_storel_epi64((__m128i*)&out[ 0], d0); 452 _mm_storel_epi64((__m128i*)&out[ 4], g1); 453 _mm_storel_epi64((__m128i*)&out[ 8], d2); 454 _mm_storel_epi64((__m128i*)&out[12], f3); 455 } 456 } 457 458 static void FTransformWHTSSE2(const int16_t* in, int16_t* out) { 459 int16_t tmp[16]; 460 int i; 461 for (i = 0; i < 4; ++i, in += 64) { 462 const int a0 = (in[0 * 16] + in[2 * 16]); 463 const int a1 = (in[1 * 16] + in[3 * 16]); 464 const int a2 = (in[1 * 16] - in[3 * 16]); 465 const int a3 = (in[0 * 16] - in[2 * 16]); 466 tmp[0 + i * 4] = a0 + a1; 467 tmp[1 + i * 4] = a3 + a2; 468 tmp[2 + i * 4] = a3 - a2; 469 tmp[3 + i * 4] = a0 - a1; 470 } 471 { 472 const __m128i src0 = _mm_loadl_epi64((__m128i*)&tmp[0]); 473 const __m128i src1 = _mm_loadl_epi64((__m128i*)&tmp[4]); 474 const __m128i src2 = _mm_loadl_epi64((__m128i*)&tmp[8]); 475 const __m128i src3 = _mm_loadl_epi64((__m128i*)&tmp[12]); 476 const __m128i a0 = _mm_add_epi16(src0, src2); 477 const __m128i a1 = _mm_add_epi16(src1, src3); 478 const __m128i a2 = _mm_sub_epi16(src1, src3); 479 const __m128i a3 = _mm_sub_epi16(src0, src2); 480 const __m128i b0 = _mm_srai_epi16(_mm_adds_epi16(a0, a1), 1); 481 const __m128i b1 = _mm_srai_epi16(_mm_adds_epi16(a3, a2), 1); 482 const __m128i b2 = _mm_srai_epi16(_mm_subs_epi16(a3, a2), 1); 483 const __m128i b3 = _mm_srai_epi16(_mm_subs_epi16(a0, a1), 1); 484 _mm_storel_epi64((__m128i*)&out[ 0], b0); 485 _mm_storel_epi64((__m128i*)&out[ 4], b1); 486 _mm_storel_epi64((__m128i*)&out[ 8], b2); 487 _mm_storel_epi64((__m128i*)&out[12], b3); 488 } 489 } 490 491 //------------------------------------------------------------------------------ 492 // Metric 493 494 static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b, 495 int num_quads, int do_16) { 496 const __m128i zero = _mm_setzero_si128(); 497 __m128i sum1 = zero; 498 __m128i sum2 = zero; 499 500 while (num_quads-- > 0) { 501 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok, 502 // thanks to buffer over-allocation to that effect. 503 const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]); 504 const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]); 505 const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]); 506 const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]); 507 const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]); 508 const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]); 509 const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]); 510 const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]); 511 512 // compute clip0(a-b) and clip0(b-a) 513 const __m128i a0p = _mm_subs_epu8(a0, b0); 514 const __m128i a0m = _mm_subs_epu8(b0, a0); 515 const __m128i a1p = _mm_subs_epu8(a1, b1); 516 const __m128i a1m = _mm_subs_epu8(b1, a1); 517 const __m128i a2p = _mm_subs_epu8(a2, b2); 518 const __m128i a2m = _mm_subs_epu8(b2, a2); 519 const __m128i a3p = _mm_subs_epu8(a3, b3); 520 const __m128i a3m = _mm_subs_epu8(b3, a3); 521 522 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a) 523 const __m128i diff0 = _mm_or_si128(a0p, a0m); 524 const __m128i diff1 = _mm_or_si128(a1p, a1m); 525 const __m128i diff2 = _mm_or_si128(a2p, a2m); 526 const __m128i diff3 = _mm_or_si128(a3p, a3m); 527 528 // unpack (only four operations, instead of eight) 529 const __m128i low0 = _mm_unpacklo_epi8(diff0, zero); 530 const __m128i low1 = _mm_unpacklo_epi8(diff1, zero); 531 const __m128i low2 = _mm_unpacklo_epi8(diff2, zero); 532 const __m128i low3 = _mm_unpacklo_epi8(diff3, zero); 533 534 // multiply with self 535 const __m128i low_madd0 = _mm_madd_epi16(low0, low0); 536 const __m128i low_madd1 = _mm_madd_epi16(low1, low1); 537 const __m128i low_madd2 = _mm_madd_epi16(low2, low2); 538 const __m128i low_madd3 = _mm_madd_epi16(low3, low3); 539 540 // collect in a cascading way 541 const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1); 542 const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3); 543 sum1 = _mm_add_epi32(sum1, low_sum0); 544 sum2 = _mm_add_epi32(sum2, low_sum1); 545 546 if (do_16) { // if necessary, process the higher 8 bytes similarly 547 const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero); 548 const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero); 549 const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero); 550 const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero); 551 552 const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0); 553 const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1); 554 const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2); 555 const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3); 556 const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1); 557 const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3); 558 sum1 = _mm_add_epi32(sum1, hi_sum0); 559 sum2 = _mm_add_epi32(sum2, hi_sum1); 560 } 561 a += 4 * BPS; 562 b += 4 * BPS; 563 } 564 { 565 int32_t tmp[4]; 566 const __m128i sum = _mm_add_epi32(sum1, sum2); 567 _mm_storeu_si128((__m128i*)tmp, sum); 568 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); 569 } 570 } 571 572 static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) { 573 return SSE_Nx4SSE2(a, b, 4, 1); 574 } 575 576 static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) { 577 return SSE_Nx4SSE2(a, b, 2, 1); 578 } 579 580 static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) { 581 return SSE_Nx4SSE2(a, b, 2, 0); 582 } 583 584 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) { 585 const __m128i zero = _mm_setzero_si128(); 586 587 // Load values. Note that we read 8 pixels instead of 4, 588 // but the a/b buffers are over-allocated to that effect. 589 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); 590 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); 591 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); 592 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); 593 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); 594 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); 595 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); 596 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); 597 598 // Combine pair of lines and convert to 16b. 599 const __m128i a01 = _mm_unpacklo_epi32(a0, a1); 600 const __m128i a23 = _mm_unpacklo_epi32(a2, a3); 601 const __m128i b01 = _mm_unpacklo_epi32(b0, b1); 602 const __m128i b23 = _mm_unpacklo_epi32(b2, b3); 603 const __m128i a01s = _mm_unpacklo_epi8(a01, zero); 604 const __m128i a23s = _mm_unpacklo_epi8(a23, zero); 605 const __m128i b01s = _mm_unpacklo_epi8(b01, zero); 606 const __m128i b23s = _mm_unpacklo_epi8(b23, zero); 607 608 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 609 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't 610 // need absolute values, there is no need to do calculation 611 // in 8bit as we are already in 16bit, ... Yet this is what 612 // benchmarks the fastest! 613 const __m128i d0 = _mm_subs_epu8(a01s, b01s); 614 const __m128i d1 = _mm_subs_epu8(b01s, a01s); 615 const __m128i d2 = _mm_subs_epu8(a23s, b23s); 616 const __m128i d3 = _mm_subs_epu8(b23s, a23s); 617 618 // Square and add them all together. 619 const __m128i madd0 = _mm_madd_epi16(d0, d0); 620 const __m128i madd1 = _mm_madd_epi16(d1, d1); 621 const __m128i madd2 = _mm_madd_epi16(d2, d2); 622 const __m128i madd3 = _mm_madd_epi16(d3, d3); 623 const __m128i sum0 = _mm_add_epi32(madd0, madd1); 624 const __m128i sum1 = _mm_add_epi32(madd2, madd3); 625 const __m128i sum2 = _mm_add_epi32(sum0, sum1); 626 627 int32_t tmp[4]; 628 _mm_storeu_si128((__m128i*)tmp, sum2); 629 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); 630 } 631 632 //------------------------------------------------------------------------------ 633 // Texture distortion 634 // 635 // We try to match the spectral content (weighted) between source and 636 // reconstructed samples. 637 638 // Hadamard transform 639 // Returns the difference between the weighted sum of the absolute value of 640 // transformed coefficients. 641 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB, 642 const uint16_t* const w) { 643 int32_t sum[4]; 644 __m128i tmp_0, tmp_1, tmp_2, tmp_3; 645 const __m128i zero = _mm_setzero_si128(); 646 647 // Load, combine and tranpose inputs. 648 { 649 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); 650 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); 651 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); 652 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); 653 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); 654 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); 655 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); 656 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); 657 658 // Combine inA and inB (we'll do two transforms in parallel). 659 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); 660 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); 661 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); 662 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); 663 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 664 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 665 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 666 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 667 668 // Transpose the two 4x4, discarding the filling zeroes. 669 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2); 670 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3); 671 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23 672 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33 673 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1); 674 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1); 675 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31 676 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33 677 678 // Convert to 16b. 679 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero); 680 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero); 681 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero); 682 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero); 683 // a00 a10 a20 a30 b00 b10 b20 b30 684 // a01 a11 a21 a31 b01 b11 b21 b31 685 // a02 a12 a22 a32 b02 b12 b22 b32 686 // a03 a13 a23 a33 b03 b13 b23 b33 687 } 688 689 // Horizontal pass and subsequent transpose. 690 { 691 // Calculate a and b (two 4x4 at once). 692 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); 693 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); 694 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); 695 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); 696 const __m128i b0 = _mm_add_epi16(a0, a1); 697 const __m128i b1 = _mm_add_epi16(a3, a2); 698 const __m128i b2 = _mm_sub_epi16(a3, a2); 699 const __m128i b3 = _mm_sub_epi16(a0, a1); 700 // a00 a01 a02 a03 b00 b01 b02 b03 701 // a10 a11 a12 a13 b10 b11 b12 b13 702 // a20 a21 a22 a23 b20 b21 b22 b23 703 // a30 a31 a32 a33 b30 b31 b32 b33 704 705 // Transpose the two 4x4. 706 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1); 707 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3); 708 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1); 709 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3); 710 // a00 a10 a01 a11 a02 a12 a03 a13 711 // a20 a30 a21 a31 a22 a32 a23 a33 712 // b00 b10 b01 b11 b02 b12 b03 b13 713 // b20 b30 b21 b31 b22 b32 b23 b33 714 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 715 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 716 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 717 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 718 // a00 a10 a20 a30 a01 a11 a21 a31 719 // b00 b10 b20 b30 b01 b11 b21 b31 720 // a02 a12 a22 a32 a03 a13 a23 a33 721 // b02 b12 a22 b32 b03 b13 b23 b33 722 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 723 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 724 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 725 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 726 // a00 a10 a20 a30 b00 b10 b20 b30 727 // a01 a11 a21 a31 b01 b11 b21 b31 728 // a02 a12 a22 a32 b02 b12 b22 b32 729 // a03 a13 a23 a33 b03 b13 b23 b33 730 } 731 732 // Vertical pass and difference of weighted sums. 733 { 734 // Load all inputs. 735 // TODO(cduvivier): Make variable declarations and allocations aligned so 736 // we can use _mm_load_si128 instead of _mm_loadu_si128. 737 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); 738 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); 739 740 // Calculate a and b (two 4x4 at once). 741 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); 742 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); 743 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); 744 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); 745 const __m128i b0 = _mm_add_epi16(a0, a1); 746 const __m128i b1 = _mm_add_epi16(a3, a2); 747 const __m128i b2 = _mm_sub_epi16(a3, a2); 748 const __m128i b3 = _mm_sub_epi16(a0, a1); 749 750 // Separate the transforms of inA and inB. 751 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); 752 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); 753 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); 754 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); 755 756 { 757 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) 758 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); 759 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); 760 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); 761 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); 762 763 // b = abs(b) = (b ^ sign) - sign 764 A_b0 = _mm_xor_si128(A_b0, sign_A_b0); 765 A_b2 = _mm_xor_si128(A_b2, sign_A_b2); 766 B_b0 = _mm_xor_si128(B_b0, sign_B_b0); 767 B_b2 = _mm_xor_si128(B_b2, sign_B_b2); 768 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); 769 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); 770 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); 771 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); 772 } 773 774 // weighted sums 775 A_b0 = _mm_madd_epi16(A_b0, w_0); 776 A_b2 = _mm_madd_epi16(A_b2, w_8); 777 B_b0 = _mm_madd_epi16(B_b0, w_0); 778 B_b2 = _mm_madd_epi16(B_b2, w_8); 779 A_b0 = _mm_add_epi32(A_b0, A_b2); 780 B_b0 = _mm_add_epi32(B_b0, B_b2); 781 782 // difference of weighted sums 783 A_b0 = _mm_sub_epi32(A_b0, B_b0); 784 _mm_storeu_si128((__m128i*)&sum[0], A_b0); 785 } 786 return sum[0] + sum[1] + sum[2] + sum[3]; 787 } 788 789 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b, 790 const uint16_t* const w) { 791 const int diff_sum = TTransformSSE2(a, b, w); 792 return abs(diff_sum) >> 5; 793 } 794 795 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b, 796 const uint16_t* const w) { 797 int D = 0; 798 int x, y; 799 for (y = 0; y < 16 * BPS; y += 4 * BPS) { 800 for (x = 0; x < 16; x += 4) { 801 D += Disto4x4SSE2(a + x + y, b + x + y, w); 802 } 803 } 804 return D; 805 } 806 807 //------------------------------------------------------------------------------ 808 // Quantization 809 // 810 811 // Simple quantization 812 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16], 813 int n, const VP8Matrix* const mtx) { 814 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); 815 const __m128i zero = _mm_setzero_si128(); 816 __m128i coeff0, coeff8; 817 __m128i out0, out8; 818 __m128i packed_out; 819 820 // Load all inputs. 821 // TODO(cduvivier): Make variable declarations and allocations aligned so that 822 // we can use _mm_load_si128 instead of _mm_loadu_si128. 823 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); 824 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); 825 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]); 826 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]); 827 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); 828 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); 829 const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); 830 const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); 831 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); 832 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); 833 const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]); 834 const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]); 835 836 // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative) 837 const __m128i sign0 = _mm_srai_epi16(in0, 15); 838 const __m128i sign8 = _mm_srai_epi16(in8, 15); 839 840 // coeff = abs(in) = (in ^ sign) - sign 841 coeff0 = _mm_xor_si128(in0, sign0); 842 coeff8 = _mm_xor_si128(in8, sign8); 843 coeff0 = _mm_sub_epi16(coeff0, sign0); 844 coeff8 = _mm_sub_epi16(coeff8, sign8); 845 846 // coeff = abs(in) + sharpen 847 coeff0 = _mm_add_epi16(coeff0, sharpen0); 848 coeff8 = _mm_add_epi16(coeff8, sharpen8); 849 850 // out = (coeff * iQ + B) >> QFIX; 851 { 852 // doing calculations with 32b precision (QFIX=17) 853 // out = (coeff * iQ) 854 __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); 855 __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); 856 __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); 857 __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); 858 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); 859 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); 860 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); 861 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); 862 // expand bias from 16b to 32b 863 __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero); 864 __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero); 865 __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero); 866 __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero); 867 // out = (coeff * iQ + B) 868 out_00 = _mm_add_epi32(out_00, bias_00); 869 out_04 = _mm_add_epi32(out_04, bias_04); 870 out_08 = _mm_add_epi32(out_08, bias_08); 871 out_12 = _mm_add_epi32(out_12, bias_12); 872 // out = (coeff * iQ + B) >> QFIX; 873 out_00 = _mm_srai_epi32(out_00, QFIX); 874 out_04 = _mm_srai_epi32(out_04, QFIX); 875 out_08 = _mm_srai_epi32(out_08, QFIX); 876 out_12 = _mm_srai_epi32(out_12, QFIX); 877 878 // pack result as 16b 879 out0 = _mm_packs_epi32(out_00, out_04); 880 out8 = _mm_packs_epi32(out_08, out_12); 881 882 // if (coeff > 2047) coeff = 2047 883 out0 = _mm_min_epi16(out0, max_coeff_2047); 884 out8 = _mm_min_epi16(out8, max_coeff_2047); 885 } 886 887 // get sign back (if (sign[j]) out_n = -out_n) 888 out0 = _mm_xor_si128(out0, sign0); 889 out8 = _mm_xor_si128(out8, sign8); 890 out0 = _mm_sub_epi16(out0, sign0); 891 out8 = _mm_sub_epi16(out8, sign8); 892 893 // in = out * Q 894 in0 = _mm_mullo_epi16(out0, q0); 895 in8 = _mm_mullo_epi16(out8, q8); 896 897 // if (coeff <= mtx->zthresh_) {in=0; out=0;} 898 { 899 __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0); 900 __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8); 901 in0 = _mm_and_si128(in0, cmp0); 902 in8 = _mm_and_si128(in8, cmp8); 903 _mm_storeu_si128((__m128i*)&in[0], in0); 904 _mm_storeu_si128((__m128i*)&in[8], in8); 905 out0 = _mm_and_si128(out0, cmp0); 906 out8 = _mm_and_si128(out8, cmp8); 907 } 908 909 // zigzag the output before storing it. 910 // 911 // The zigzag pattern can almost be reproduced with a small sequence of 912 // shuffles. After it, we only need to swap the 7th (ending up in third 913 // position instead of twelfth) and 8th values. 914 { 915 __m128i outZ0, outZ8; 916 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); 917 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); 918 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); 919 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); 920 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); 921 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); 922 _mm_storeu_si128((__m128i*)&out[0], outZ0); 923 _mm_storeu_si128((__m128i*)&out[8], outZ8); 924 packed_out = _mm_packs_epi16(outZ0, outZ8); 925 } 926 { 927 const int16_t outZ_12 = out[12]; 928 const int16_t outZ_3 = out[3]; 929 out[3] = outZ_12; 930 out[12] = outZ_3; 931 } 932 933 // detect if all 'out' values are zeroes or not 934 { 935 int32_t tmp[4]; 936 _mm_storeu_si128((__m128i*)tmp, packed_out); 937 if (n) { 938 tmp[0] &= ~0xff; 939 } 940 return (tmp[3] || tmp[2] || tmp[1] || tmp[0]); 941 } 942 } 943 944 #endif // WEBP_USE_SSE2 945 946 //------------------------------------------------------------------------------ 947 // Entry point 948 949 extern void VP8EncDspInitSSE2(void); 950 951 void VP8EncDspInitSSE2(void) { 952 #if defined(WEBP_USE_SSE2) 953 VP8CollectHistogram = CollectHistogramSSE2; 954 VP8EncQuantizeBlock = QuantizeBlockSSE2; 955 VP8ITransform = ITransformSSE2; 956 VP8FTransform = FTransformSSE2; 957 VP8FTransformWHT = FTransformWHTSSE2; 958 VP8SSE16x16 = SSE16x16SSE2; 959 VP8SSE16x8 = SSE16x8SSE2; 960 VP8SSE8x8 = SSE8x8SSE2; 961 VP8SSE4x4 = SSE4x4SSE2; 962 VP8TDisto4x4 = Disto4x4SSE2; 963 VP8TDisto16x16 = Disto16x16SSE2; 964 #endif // WEBP_USE_SSE2 965 } 966 967 #if defined(__cplusplus) || defined(c_plusplus) 968 } // extern "C" 969 #endif 970