Home | History | Annotate | Download | only in dsp
      1 // Copyright 2011 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // SSE2 version of speed-critical encoding functions.
     11 //
     12 // Author: Christian Duvivier (cduvivier (at) google.com)
     13 
     14 #include "./dsp.h"
     15 
     16 #if defined(__cplusplus) || defined(c_plusplus)
     17 extern "C" {
     18 #endif
     19 
     20 #if defined(WEBP_USE_SSE2)
     21 #include <stdlib.h>  // for abs()
     22 #include <emmintrin.h>
     23 
     24 #include "../enc/vp8enci.h"
     25 
     26 //------------------------------------------------------------------------------
     27 // Quite useful macro for debugging. Left here for convenience.
     28 
     29 #if 0
     30 #include <stdio.h>
     31 static void PrintReg(const __m128i r, const char* const name, int size) {
     32   int n;
     33   union {
     34     __m128i r;
     35     uint8_t i8[16];
     36     uint16_t i16[8];
     37     uint32_t i32[4];
     38     uint64_t i64[2];
     39   } tmp;
     40   tmp.r = r;
     41   printf("%s\t: ", name);
     42   if (size == 8) {
     43     for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
     44   } else if (size == 16) {
     45     for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
     46   } else if (size == 32) {
     47     for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
     48   } else {
     49     for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
     50   }
     51   printf("\n");
     52 }
     53 #endif
     54 
     55 //------------------------------------------------------------------------------
     56 // Compute susceptibility based on DCT-coeff histograms:
     57 // the higher, the "easier" the macroblock is to compress.
     58 
     59 static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
     60                                  int start_block, int end_block,
     61                                  VP8Histogram* const histo) {
     62   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
     63   int j;
     64   for (j = start_block; j < end_block; ++j) {
     65     int16_t out[16];
     66     int k;
     67 
     68     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
     69 
     70     // Convert coefficients to bin (within out[]).
     71     {
     72       // Load.
     73       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
     74       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
     75       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
     76       const __m128i sign0 = _mm_srai_epi16(out0, 15);
     77       const __m128i sign1 = _mm_srai_epi16(out1, 15);
     78       // abs(out) = (out ^ sign) - sign
     79       const __m128i xor0 = _mm_xor_si128(out0, sign0);
     80       const __m128i xor1 = _mm_xor_si128(out1, sign1);
     81       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
     82       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
     83       // v = abs(out) >> 3
     84       const __m128i v0 = _mm_srai_epi16(abs0, 3);
     85       const __m128i v1 = _mm_srai_epi16(abs1, 3);
     86       // bin = min(v, MAX_COEFF_THRESH)
     87       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
     88       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
     89       // Store.
     90       _mm_storeu_si128((__m128i*)&out[0], bin0);
     91       _mm_storeu_si128((__m128i*)&out[8], bin1);
     92     }
     93 
     94     // Convert coefficients to bin.
     95     for (k = 0; k < 16; ++k) {
     96       histo->distribution[out[k]]++;
     97     }
     98   }
     99 }
    100 
    101 //------------------------------------------------------------------------------
    102 // Transforms (Paragraph 14.4)
    103 
    104 // Does one or two inverse transforms.
    105 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
    106                            int do_two) {
    107   // This implementation makes use of 16-bit fixed point versions of two
    108   // multiply constants:
    109   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
    110   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
    111   //
    112   // To be able to use signed 16-bit integers, we use the following trick to
    113   // have constants within range:
    114   // - Associated constants are obtained by subtracting the 16-bit fixed point
    115   //   version of one:
    116   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
    117   //      K1 = 85267  =>  k1 =  20091
    118   //      K2 = 35468  =>  k2 = -30068
    119   // - The multiplication of a variable by a constant become the sum of the
    120   //   variable and the multiplication of that variable by the associated
    121   //   constant:
    122   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
    123   const __m128i k1 = _mm_set1_epi16(20091);
    124   const __m128i k2 = _mm_set1_epi16(-30068);
    125   __m128i T0, T1, T2, T3;
    126 
    127   // Load and concatenate the transform coefficients (we'll do two inverse
    128   // transforms in parallel). In the case of only one inverse transform, the
    129   // second half of the vectors will just contain random value we'll never
    130   // use nor store.
    131   __m128i in0, in1, in2, in3;
    132   {
    133     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
    134     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
    135     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
    136     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
    137     // a00 a10 a20 a30   x x x x
    138     // a01 a11 a21 a31   x x x x
    139     // a02 a12 a22 a32   x x x x
    140     // a03 a13 a23 a33   x x x x
    141     if (do_two) {
    142       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
    143       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
    144       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
    145       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
    146       in0 = _mm_unpacklo_epi64(in0, inB0);
    147       in1 = _mm_unpacklo_epi64(in1, inB1);
    148       in2 = _mm_unpacklo_epi64(in2, inB2);
    149       in3 = _mm_unpacklo_epi64(in3, inB3);
    150       // a00 a10 a20 a30   b00 b10 b20 b30
    151       // a01 a11 a21 a31   b01 b11 b21 b31
    152       // a02 a12 a22 a32   b02 b12 b22 b32
    153       // a03 a13 a23 a33   b03 b13 b23 b33
    154     }
    155   }
    156 
    157   // Vertical pass and subsequent transpose.
    158   {
    159     // First pass, c and d calculations are longer because of the "trick"
    160     // multiplications.
    161     const __m128i a = _mm_add_epi16(in0, in2);
    162     const __m128i b = _mm_sub_epi16(in0, in2);
    163     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
    164     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
    165     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
    166     const __m128i c3 = _mm_sub_epi16(in1, in3);
    167     const __m128i c4 = _mm_sub_epi16(c1, c2);
    168     const __m128i c = _mm_add_epi16(c3, c4);
    169     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
    170     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
    171     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
    172     const __m128i d3 = _mm_add_epi16(in1, in3);
    173     const __m128i d4 = _mm_add_epi16(d1, d2);
    174     const __m128i d = _mm_add_epi16(d3, d4);
    175 
    176     // Second pass.
    177     const __m128i tmp0 = _mm_add_epi16(a, d);
    178     const __m128i tmp1 = _mm_add_epi16(b, c);
    179     const __m128i tmp2 = _mm_sub_epi16(b, c);
    180     const __m128i tmp3 = _mm_sub_epi16(a, d);
    181 
    182     // Transpose the two 4x4.
    183     // a00 a01 a02 a03   b00 b01 b02 b03
    184     // a10 a11 a12 a13   b10 b11 b12 b13
    185     // a20 a21 a22 a23   b20 b21 b22 b23
    186     // a30 a31 a32 a33   b30 b31 b32 b33
    187     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
    188     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
    189     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
    190     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
    191     // a00 a10 a01 a11   a02 a12 a03 a13
    192     // a20 a30 a21 a31   a22 a32 a23 a33
    193     // b00 b10 b01 b11   b02 b12 b03 b13
    194     // b20 b30 b21 b31   b22 b32 b23 b33
    195     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    196     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    197     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    198     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    199     // a00 a10 a20 a30 a01 a11 a21 a31
    200     // b00 b10 b20 b30 b01 b11 b21 b31
    201     // a02 a12 a22 a32 a03 a13 a23 a33
    202     // b02 b12 a22 b32 b03 b13 b23 b33
    203     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    204     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    205     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    206     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    207     // a00 a10 a20 a30   b00 b10 b20 b30
    208     // a01 a11 a21 a31   b01 b11 b21 b31
    209     // a02 a12 a22 a32   b02 b12 b22 b32
    210     // a03 a13 a23 a33   b03 b13 b23 b33
    211   }
    212 
    213   // Horizontal pass and subsequent transpose.
    214   {
    215     // First pass, c and d calculations are longer because of the "trick"
    216     // multiplications.
    217     const __m128i four = _mm_set1_epi16(4);
    218     const __m128i dc = _mm_add_epi16(T0, four);
    219     const __m128i a =  _mm_add_epi16(dc, T2);
    220     const __m128i b =  _mm_sub_epi16(dc, T2);
    221     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
    222     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
    223     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
    224     const __m128i c3 = _mm_sub_epi16(T1, T3);
    225     const __m128i c4 = _mm_sub_epi16(c1, c2);
    226     const __m128i c = _mm_add_epi16(c3, c4);
    227     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
    228     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
    229     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
    230     const __m128i d3 = _mm_add_epi16(T1, T3);
    231     const __m128i d4 = _mm_add_epi16(d1, d2);
    232     const __m128i d = _mm_add_epi16(d3, d4);
    233 
    234     // Second pass.
    235     const __m128i tmp0 = _mm_add_epi16(a, d);
    236     const __m128i tmp1 = _mm_add_epi16(b, c);
    237     const __m128i tmp2 = _mm_sub_epi16(b, c);
    238     const __m128i tmp3 = _mm_sub_epi16(a, d);
    239     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
    240     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
    241     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
    242     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
    243 
    244     // Transpose the two 4x4.
    245     // a00 a01 a02 a03   b00 b01 b02 b03
    246     // a10 a11 a12 a13   b10 b11 b12 b13
    247     // a20 a21 a22 a23   b20 b21 b22 b23
    248     // a30 a31 a32 a33   b30 b31 b32 b33
    249     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
    250     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
    251     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
    252     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
    253     // a00 a10 a01 a11   a02 a12 a03 a13
    254     // a20 a30 a21 a31   a22 a32 a23 a33
    255     // b00 b10 b01 b11   b02 b12 b03 b13
    256     // b20 b30 b21 b31   b22 b32 b23 b33
    257     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    258     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    259     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    260     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    261     // a00 a10 a20 a30 a01 a11 a21 a31
    262     // b00 b10 b20 b30 b01 b11 b21 b31
    263     // a02 a12 a22 a32 a03 a13 a23 a33
    264     // b02 b12 a22 b32 b03 b13 b23 b33
    265     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    266     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    267     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    268     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    269     // a00 a10 a20 a30   b00 b10 b20 b30
    270     // a01 a11 a21 a31   b01 b11 b21 b31
    271     // a02 a12 a22 a32   b02 b12 b22 b32
    272     // a03 a13 a23 a33   b03 b13 b23 b33
    273   }
    274 
    275   // Add inverse transform to 'ref' and store.
    276   {
    277     const __m128i zero = _mm_setzero_si128();
    278     // Load the reference(s).
    279     __m128i ref0, ref1, ref2, ref3;
    280     if (do_two) {
    281       // Load eight bytes/pixels per line.
    282       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    283       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    284       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    285       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    286     } else {
    287       // Load four bytes/pixels per line.
    288       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
    289       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
    290       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
    291       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
    292     }
    293     // Convert to 16b.
    294     ref0 = _mm_unpacklo_epi8(ref0, zero);
    295     ref1 = _mm_unpacklo_epi8(ref1, zero);
    296     ref2 = _mm_unpacklo_epi8(ref2, zero);
    297     ref3 = _mm_unpacklo_epi8(ref3, zero);
    298     // Add the inverse transform(s).
    299     ref0 = _mm_add_epi16(ref0, T0);
    300     ref1 = _mm_add_epi16(ref1, T1);
    301     ref2 = _mm_add_epi16(ref2, T2);
    302     ref3 = _mm_add_epi16(ref3, T3);
    303     // Unsigned saturate to 8b.
    304     ref0 = _mm_packus_epi16(ref0, ref0);
    305     ref1 = _mm_packus_epi16(ref1, ref1);
    306     ref2 = _mm_packus_epi16(ref2, ref2);
    307     ref3 = _mm_packus_epi16(ref3, ref3);
    308     // Store the results.
    309     if (do_two) {
    310       // Store eight bytes/pixels per line.
    311       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
    312       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
    313       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
    314       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
    315     } else {
    316       // Store four bytes/pixels per line.
    317       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
    318       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
    319       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
    320       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
    321     }
    322   }
    323 }
    324 
    325 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
    326                            int16_t* out) {
    327   const __m128i zero = _mm_setzero_si128();
    328   const __m128i seven = _mm_set1_epi16(7);
    329   const __m128i k937 = _mm_set1_epi32(937);
    330   const __m128i k1812 = _mm_set1_epi32(1812);
    331   const __m128i k51000 = _mm_set1_epi32(51000);
    332   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
    333   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
    334                                            5352,  2217, 5352,  2217);
    335   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
    336                                            2217, -5352, 2217, -5352);
    337   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
    338   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
    339   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
    340                                             2217, 5352, 2217, 5352);
    341   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
    342                                             -5352, 2217, -5352, 2217);
    343   __m128i v01, v32;
    344 
    345 
    346   // Difference between src and ref and initial transpose.
    347   {
    348     // Load src and convert to 16b.
    349     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
    350     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
    351     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
    352     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
    353     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
    354     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
    355     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
    356     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
    357     // Load ref and convert to 16b.
    358     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
    359     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
    360     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
    361     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
    362     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
    363     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
    364     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
    365     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
    366     // Compute difference. -> 00 01 02 03 00 00 00 00
    367     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
    368     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
    369     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
    370     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
    371 
    372 
    373     // Unpack and shuffle
    374     // 00 01 02 03   0 0 0 0
    375     // 10 11 12 13   0 0 0 0
    376     // 20 21 22 23   0 0 0 0
    377     // 30 31 32 33   0 0 0 0
    378     const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
    379     const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
    380     // 00 01 10 11 02 03 12 13
    381     // 20 21 30 31 22 23 32 33
    382     const __m128i shuf01_p =
    383         _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
    384     const __m128i shuf23_p =
    385         _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
    386     // 00 01 10 11 03 02 13 12
    387     // 20 21 30 31 23 22 33 32
    388     const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
    389     const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
    390     // 00 01 10 11 20 21 30 31
    391     // 03 02 13 12 23 22 33 32
    392     const __m128i a01 = _mm_add_epi16(s01, s32);
    393     const __m128i a32 = _mm_sub_epi16(s01, s32);
    394     // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
    395     // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
    396 
    397     const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
    398     const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
    399     const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
    400     const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
    401     const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
    402     const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
    403     const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
    404     const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
    405     const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
    406     const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
    407     const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
    408     const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
    409     const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
    410     v01 = _mm_unpacklo_epi32(s_lo, s_hi);
    411     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
    412   }
    413 
    414   // Second pass
    415   {
    416     // Same operations are done on the (0,3) and (1,2) pairs.
    417     // a0 = v0 + v3
    418     // a1 = v1 + v2
    419     // a3 = v0 - v3
    420     // a2 = v1 - v2
    421     const __m128i a01 = _mm_add_epi16(v01, v32);
    422     const __m128i a32 = _mm_sub_epi16(v01, v32);
    423     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
    424     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
    425     const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
    426 
    427     // d0 = (a0 + a1 + 7) >> 4;
    428     // d2 = (a0 - a1 + 7) >> 4;
    429     const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
    430     const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
    431     const __m128i d0 = _mm_srai_epi16(c0, 4);
    432     const __m128i d2 = _mm_srai_epi16(c2, 4);
    433 
    434     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
    435     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
    436     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
    437     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
    438     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
    439     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
    440     const __m128i d3 = _mm_add_epi32(c3, k51000);
    441     const __m128i e1 = _mm_srai_epi32(d1, 16);
    442     const __m128i e3 = _mm_srai_epi32(d3, 16);
    443     const __m128i f1 = _mm_packs_epi32(e1, e1);
    444     const __m128i f3 = _mm_packs_epi32(e3, e3);
    445     // f1 = f1 + (a3 != 0);
    446     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
    447     // desired (0, 1), we add one earlier through k12000_plus_one.
    448     // -> f1 = f1 + 1 - (a3 == 0)
    449     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
    450 
    451     _mm_storel_epi64((__m128i*)&out[ 0], d0);
    452     _mm_storel_epi64((__m128i*)&out[ 4], g1);
    453     _mm_storel_epi64((__m128i*)&out[ 8], d2);
    454     _mm_storel_epi64((__m128i*)&out[12], f3);
    455   }
    456 }
    457 
    458 static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
    459   int16_t tmp[16];
    460   int i;
    461   for (i = 0; i < 4; ++i, in += 64) {
    462     const int a0 = (in[0 * 16] + in[2 * 16]);
    463     const int a1 = (in[1 * 16] + in[3 * 16]);
    464     const int a2 = (in[1 * 16] - in[3 * 16]);
    465     const int a3 = (in[0 * 16] - in[2 * 16]);
    466     tmp[0 + i * 4] = a0 + a1;
    467     tmp[1 + i * 4] = a3 + a2;
    468     tmp[2 + i * 4] = a3 - a2;
    469     tmp[3 + i * 4] = a0 - a1;
    470   }
    471   {
    472     const __m128i src0 = _mm_loadl_epi64((__m128i*)&tmp[0]);
    473     const __m128i src1 = _mm_loadl_epi64((__m128i*)&tmp[4]);
    474     const __m128i src2 = _mm_loadl_epi64((__m128i*)&tmp[8]);
    475     const __m128i src3 = _mm_loadl_epi64((__m128i*)&tmp[12]);
    476     const __m128i a0 = _mm_add_epi16(src0, src2);
    477     const __m128i a1 = _mm_add_epi16(src1, src3);
    478     const __m128i a2 = _mm_sub_epi16(src1, src3);
    479     const __m128i a3 = _mm_sub_epi16(src0, src2);
    480     const __m128i b0 = _mm_srai_epi16(_mm_adds_epi16(a0, a1), 1);
    481     const __m128i b1 = _mm_srai_epi16(_mm_adds_epi16(a3, a2), 1);
    482     const __m128i b2 = _mm_srai_epi16(_mm_subs_epi16(a3, a2), 1);
    483     const __m128i b3 = _mm_srai_epi16(_mm_subs_epi16(a0, a1), 1);
    484     _mm_storel_epi64((__m128i*)&out[ 0], b0);
    485     _mm_storel_epi64((__m128i*)&out[ 4], b1);
    486     _mm_storel_epi64((__m128i*)&out[ 8], b2);
    487     _mm_storel_epi64((__m128i*)&out[12], b3);
    488   }
    489 }
    490 
    491 //------------------------------------------------------------------------------
    492 // Metric
    493 
    494 static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
    495                        int num_quads, int do_16) {
    496   const __m128i zero = _mm_setzero_si128();
    497   __m128i sum1 = zero;
    498   __m128i sum2 = zero;
    499 
    500   while (num_quads-- > 0) {
    501     // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
    502     // thanks to buffer over-allocation to that effect.
    503     const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
    504     const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
    505     const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
    506     const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
    507     const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
    508     const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
    509     const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
    510     const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
    511 
    512     // compute clip0(a-b) and clip0(b-a)
    513     const __m128i a0p = _mm_subs_epu8(a0, b0);
    514     const __m128i a0m = _mm_subs_epu8(b0, a0);
    515     const __m128i a1p = _mm_subs_epu8(a1, b1);
    516     const __m128i a1m = _mm_subs_epu8(b1, a1);
    517     const __m128i a2p = _mm_subs_epu8(a2, b2);
    518     const __m128i a2m = _mm_subs_epu8(b2, a2);
    519     const __m128i a3p = _mm_subs_epu8(a3, b3);
    520     const __m128i a3m = _mm_subs_epu8(b3, a3);
    521 
    522     // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
    523     const __m128i diff0 = _mm_or_si128(a0p, a0m);
    524     const __m128i diff1 = _mm_or_si128(a1p, a1m);
    525     const __m128i diff2 = _mm_or_si128(a2p, a2m);
    526     const __m128i diff3 = _mm_or_si128(a3p, a3m);
    527 
    528     // unpack (only four operations, instead of eight)
    529     const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
    530     const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
    531     const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
    532     const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
    533 
    534     // multiply with self
    535     const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
    536     const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
    537     const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
    538     const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
    539 
    540     // collect in a cascading way
    541     const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
    542     const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
    543     sum1 = _mm_add_epi32(sum1, low_sum0);
    544     sum2 = _mm_add_epi32(sum2, low_sum1);
    545 
    546     if (do_16) {  // if necessary, process the higher 8 bytes similarly
    547       const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
    548       const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
    549       const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
    550       const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
    551 
    552       const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
    553       const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
    554       const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
    555       const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
    556       const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
    557       const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
    558       sum1 = _mm_add_epi32(sum1, hi_sum0);
    559       sum2 = _mm_add_epi32(sum2, hi_sum1);
    560     }
    561     a += 4 * BPS;
    562     b += 4 * BPS;
    563   }
    564   {
    565     int32_t tmp[4];
    566     const __m128i sum = _mm_add_epi32(sum1, sum2);
    567     _mm_storeu_si128((__m128i*)tmp, sum);
    568     return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    569   }
    570 }
    571 
    572 static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
    573   return SSE_Nx4SSE2(a, b, 4, 1);
    574 }
    575 
    576 static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
    577   return SSE_Nx4SSE2(a, b, 2, 1);
    578 }
    579 
    580 static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
    581   return SSE_Nx4SSE2(a, b, 2, 0);
    582 }
    583 
    584 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
    585   const __m128i zero = _mm_setzero_si128();
    586 
    587   // Load values. Note that we read 8 pixels instead of 4,
    588   // but the a/b buffers are over-allocated to that effect.
    589   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
    590   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
    591   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
    592   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
    593   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
    594   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
    595   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
    596   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
    597 
    598   // Combine pair of lines and convert to 16b.
    599   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
    600   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
    601   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
    602   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
    603   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
    604   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
    605   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
    606   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
    607 
    608   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
    609   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
    610   //                  need absolute values, there is no need to do calculation
    611   //                  in 8bit as we are already in 16bit, ... Yet this is what
    612   //                  benchmarks the fastest!
    613   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
    614   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
    615   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
    616   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
    617 
    618   // Square and add them all together.
    619   const __m128i madd0 = _mm_madd_epi16(d0, d0);
    620   const __m128i madd1 = _mm_madd_epi16(d1, d1);
    621   const __m128i madd2 = _mm_madd_epi16(d2, d2);
    622   const __m128i madd3 = _mm_madd_epi16(d3, d3);
    623   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
    624   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
    625   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
    626 
    627   int32_t tmp[4];
    628   _mm_storeu_si128((__m128i*)tmp, sum2);
    629   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
    630 }
    631 
    632 //------------------------------------------------------------------------------
    633 // Texture distortion
    634 //
    635 // We try to match the spectral content (weighted) between source and
    636 // reconstructed samples.
    637 
    638 // Hadamard transform
    639 // Returns the difference between the weighted sum of the absolute value of
    640 // transformed coefficients.
    641 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
    642                           const uint16_t* const w) {
    643   int32_t sum[4];
    644   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
    645   const __m128i zero = _mm_setzero_si128();
    646 
    647   // Load, combine and tranpose inputs.
    648   {
    649     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
    650     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
    651     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
    652     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
    653     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
    654     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
    655     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
    656     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
    657 
    658     // Combine inA and inB (we'll do two transforms in parallel).
    659     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
    660     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
    661     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
    662     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
    663     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
    664     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
    665     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
    666     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
    667 
    668     // Transpose the two 4x4, discarding the filling zeroes.
    669     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
    670     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
    671     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
    672     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
    673     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
    674     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
    675     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
    676     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
    677 
    678     // Convert to 16b.
    679     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
    680     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
    681     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
    682     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
    683     // a00 a10 a20 a30   b00 b10 b20 b30
    684     // a01 a11 a21 a31   b01 b11 b21 b31
    685     // a02 a12 a22 a32   b02 b12 b22 b32
    686     // a03 a13 a23 a33   b03 b13 b23 b33
    687   }
    688 
    689   // Horizontal pass and subsequent transpose.
    690   {
    691     // Calculate a and b (two 4x4 at once).
    692     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    693     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    694     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    695     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    696     const __m128i b0 = _mm_add_epi16(a0, a1);
    697     const __m128i b1 = _mm_add_epi16(a3, a2);
    698     const __m128i b2 = _mm_sub_epi16(a3, a2);
    699     const __m128i b3 = _mm_sub_epi16(a0, a1);
    700     // a00 a01 a02 a03   b00 b01 b02 b03
    701     // a10 a11 a12 a13   b10 b11 b12 b13
    702     // a20 a21 a22 a23   b20 b21 b22 b23
    703     // a30 a31 a32 a33   b30 b31 b32 b33
    704 
    705     // Transpose the two 4x4.
    706     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
    707     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
    708     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
    709     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
    710     // a00 a10 a01 a11   a02 a12 a03 a13
    711     // a20 a30 a21 a31   a22 a32 a23 a33
    712     // b00 b10 b01 b11   b02 b12 b03 b13
    713     // b20 b30 b21 b31   b22 b32 b23 b33
    714     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
    715     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
    716     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
    717     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
    718     // a00 a10 a20 a30 a01 a11 a21 a31
    719     // b00 b10 b20 b30 b01 b11 b21 b31
    720     // a02 a12 a22 a32 a03 a13 a23 a33
    721     // b02 b12 a22 b32 b03 b13 b23 b33
    722     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
    723     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
    724     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
    725     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
    726     // a00 a10 a20 a30   b00 b10 b20 b30
    727     // a01 a11 a21 a31   b01 b11 b21 b31
    728     // a02 a12 a22 a32   b02 b12 b22 b32
    729     // a03 a13 a23 a33   b03 b13 b23 b33
    730   }
    731 
    732   // Vertical pass and difference of weighted sums.
    733   {
    734     // Load all inputs.
    735     // TODO(cduvivier): Make variable declarations and allocations aligned so
    736     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    737     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
    738     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
    739 
    740     // Calculate a and b (two 4x4 at once).
    741     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
    742     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
    743     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
    744     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
    745     const __m128i b0 = _mm_add_epi16(a0, a1);
    746     const __m128i b1 = _mm_add_epi16(a3, a2);
    747     const __m128i b2 = _mm_sub_epi16(a3, a2);
    748     const __m128i b3 = _mm_sub_epi16(a0, a1);
    749 
    750     // Separate the transforms of inA and inB.
    751     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
    752     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
    753     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
    754     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
    755 
    756     {
    757       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
    758       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
    759       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
    760       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
    761       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
    762 
    763       // b = abs(b) = (b ^ sign) - sign
    764       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
    765       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
    766       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
    767       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
    768       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
    769       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
    770       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
    771       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
    772     }
    773 
    774     // weighted sums
    775     A_b0 = _mm_madd_epi16(A_b0, w_0);
    776     A_b2 = _mm_madd_epi16(A_b2, w_8);
    777     B_b0 = _mm_madd_epi16(B_b0, w_0);
    778     B_b2 = _mm_madd_epi16(B_b2, w_8);
    779     A_b0 = _mm_add_epi32(A_b0, A_b2);
    780     B_b0 = _mm_add_epi32(B_b0, B_b2);
    781 
    782     // difference of weighted sums
    783     A_b0 = _mm_sub_epi32(A_b0, B_b0);
    784     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
    785   }
    786   return sum[0] + sum[1] + sum[2] + sum[3];
    787 }
    788 
    789 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
    790                         const uint16_t* const w) {
    791   const int diff_sum = TTransformSSE2(a, b, w);
    792   return abs(diff_sum) >> 5;
    793 }
    794 
    795 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
    796                           const uint16_t* const w) {
    797   int D = 0;
    798   int x, y;
    799   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
    800     for (x = 0; x < 16; x += 4) {
    801       D += Disto4x4SSE2(a + x + y, b + x + y, w);
    802     }
    803   }
    804   return D;
    805 }
    806 
    807 //------------------------------------------------------------------------------
    808 // Quantization
    809 //
    810 
    811 // Simple quantization
    812 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
    813                              int n, const VP8Matrix* const mtx) {
    814   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
    815   const __m128i zero = _mm_setzero_si128();
    816   __m128i coeff0, coeff8;
    817   __m128i out0, out8;
    818   __m128i packed_out;
    819 
    820   // Load all inputs.
    821   // TODO(cduvivier): Make variable declarations and allocations aligned so that
    822   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
    823   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
    824   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
    825   const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
    826   const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
    827   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
    828   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
    829   const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
    830   const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
    831   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
    832   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
    833   const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
    834   const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
    835 
    836   // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
    837   const __m128i sign0 = _mm_srai_epi16(in0, 15);
    838   const __m128i sign8 = _mm_srai_epi16(in8, 15);
    839 
    840   // coeff = abs(in) = (in ^ sign) - sign
    841   coeff0 = _mm_xor_si128(in0, sign0);
    842   coeff8 = _mm_xor_si128(in8, sign8);
    843   coeff0 = _mm_sub_epi16(coeff0, sign0);
    844   coeff8 = _mm_sub_epi16(coeff8, sign8);
    845 
    846   // coeff = abs(in) + sharpen
    847   coeff0 = _mm_add_epi16(coeff0, sharpen0);
    848   coeff8 = _mm_add_epi16(coeff8, sharpen8);
    849 
    850   // out = (coeff * iQ + B) >> QFIX;
    851   {
    852     // doing calculations with 32b precision (QFIX=17)
    853     // out = (coeff * iQ)
    854     __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
    855     __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
    856     __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
    857     __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
    858     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
    859     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
    860     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
    861     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
    862     // expand bias from 16b to 32b
    863     __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
    864     __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
    865     __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
    866     __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
    867     // out = (coeff * iQ + B)
    868     out_00 = _mm_add_epi32(out_00, bias_00);
    869     out_04 = _mm_add_epi32(out_04, bias_04);
    870     out_08 = _mm_add_epi32(out_08, bias_08);
    871     out_12 = _mm_add_epi32(out_12, bias_12);
    872     // out = (coeff * iQ + B) >> QFIX;
    873     out_00 = _mm_srai_epi32(out_00, QFIX);
    874     out_04 = _mm_srai_epi32(out_04, QFIX);
    875     out_08 = _mm_srai_epi32(out_08, QFIX);
    876     out_12 = _mm_srai_epi32(out_12, QFIX);
    877 
    878     // pack result as 16b
    879     out0 = _mm_packs_epi32(out_00, out_04);
    880     out8 = _mm_packs_epi32(out_08, out_12);
    881 
    882     // if (coeff > 2047) coeff = 2047
    883     out0 = _mm_min_epi16(out0, max_coeff_2047);
    884     out8 = _mm_min_epi16(out8, max_coeff_2047);
    885   }
    886 
    887   // get sign back (if (sign[j]) out_n = -out_n)
    888   out0 = _mm_xor_si128(out0, sign0);
    889   out8 = _mm_xor_si128(out8, sign8);
    890   out0 = _mm_sub_epi16(out0, sign0);
    891   out8 = _mm_sub_epi16(out8, sign8);
    892 
    893   // in = out * Q
    894   in0 = _mm_mullo_epi16(out0, q0);
    895   in8 = _mm_mullo_epi16(out8, q8);
    896 
    897   // if (coeff <= mtx->zthresh_) {in=0; out=0;}
    898   {
    899     __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
    900     __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
    901     in0 = _mm_and_si128(in0, cmp0);
    902     in8 = _mm_and_si128(in8, cmp8);
    903     _mm_storeu_si128((__m128i*)&in[0], in0);
    904     _mm_storeu_si128((__m128i*)&in[8], in8);
    905     out0 = _mm_and_si128(out0, cmp0);
    906     out8 = _mm_and_si128(out8, cmp8);
    907   }
    908 
    909   // zigzag the output before storing it.
    910   //
    911   // The zigzag pattern can almost be reproduced with a small sequence of
    912   // shuffles. After it, we only need to swap the 7th (ending up in third
    913   // position instead of twelfth) and 8th values.
    914   {
    915     __m128i outZ0, outZ8;
    916     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
    917     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
    918     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
    919     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
    920     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
    921     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
    922     _mm_storeu_si128((__m128i*)&out[0], outZ0);
    923     _mm_storeu_si128((__m128i*)&out[8], outZ8);
    924     packed_out = _mm_packs_epi16(outZ0, outZ8);
    925   }
    926   {
    927     const int16_t outZ_12 = out[12];
    928     const int16_t outZ_3 = out[3];
    929     out[3] = outZ_12;
    930     out[12] = outZ_3;
    931   }
    932 
    933   // detect if all 'out' values are zeroes or not
    934   {
    935     int32_t tmp[4];
    936     _mm_storeu_si128((__m128i*)tmp, packed_out);
    937     if (n) {
    938       tmp[0] &= ~0xff;
    939     }
    940     return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
    941   }
    942 }
    943 
    944 #endif   // WEBP_USE_SSE2
    945 
    946 //------------------------------------------------------------------------------
    947 // Entry point
    948 
    949 extern void VP8EncDspInitSSE2(void);
    950 
    951 void VP8EncDspInitSSE2(void) {
    952 #if defined(WEBP_USE_SSE2)
    953   VP8CollectHistogram = CollectHistogramSSE2;
    954   VP8EncQuantizeBlock = QuantizeBlockSSE2;
    955   VP8ITransform = ITransformSSE2;
    956   VP8FTransform = FTransformSSE2;
    957   VP8FTransformWHT = FTransformWHTSSE2;
    958   VP8SSE16x16 = SSE16x16SSE2;
    959   VP8SSE16x8 = SSE16x8SSE2;
    960   VP8SSE8x8 = SSE8x8SSE2;
    961   VP8SSE4x4 = SSE4x4SSE2;
    962   VP8TDisto4x4 = Disto4x4SSE2;
    963   VP8TDisto16x16 = Disto16x16SSE2;
    964 #endif   // WEBP_USE_SSE2
    965 }
    966 
    967 #if defined(__cplusplus) || defined(c_plusplus)
    968 }    // extern "C"
    969 #endif
    970