Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "GrAAHairLinePathRenderer.h"
      9 
     10 #include "GrContext.h"
     11 #include "GrDrawState.h"
     12 #include "GrDrawTargetCaps.h"
     13 #include "GrEffect.h"
     14 #include "GrGpu.h"
     15 #include "GrIndexBuffer.h"
     16 #include "GrPathUtils.h"
     17 #include "GrTBackendEffectFactory.h"
     18 #include "SkGeometry.h"
     19 #include "SkStroke.h"
     20 #include "SkTemplates.h"
     21 
     22 #include "effects/GrBezierEffect.h"
     23 
     24 namespace {
     25 // quadratics are rendered as 5-sided polys in order to bound the
     26 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
     27 // bloat_quad. Quadratics and conics share an index buffer
     28 static const int kVertsPerQuad = 5;
     29 static const int kIdxsPerQuad = 9;
     30 
     31 // lines are rendered as:
     32 //      *______________*
     33 //      |\ -_______   /|
     34 //      | \        \ / |
     35 //      |  *--------*  |
     36 //      | /  ______/ \ |
     37 //      */_-__________\*
     38 // For: 6 vertices and 18 indices (for 6 triangles)
     39 static const int kVertsPerLineSeg = 6;
     40 static const int kIdxsPerLineSeg = 18;
     41 
     42 static const int kNumQuadsInIdxBuffer = 256;
     43 static const size_t kQuadIdxSBufize = kIdxsPerQuad *
     44                                       sizeof(uint16_t) *
     45                                       kNumQuadsInIdxBuffer;
     46 
     47 static const int kNumLineSegsInIdxBuffer = 256;
     48 static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
     49                                          sizeof(uint16_t) *
     50                                          kNumLineSegsInIdxBuffer;
     51 
     52 static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
     53     uint16_t* data = (uint16_t*) qIdxBuffer->lock();
     54     bool tempData = NULL == data;
     55     if (tempData) {
     56         data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
     57     }
     58     for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
     59 
     60         // Each quadratic is rendered as a five sided polygon. This poly bounds
     61         // the quadratic's bounding triangle but has been expanded so that the
     62         // 1-pixel wide area around the curve is inside the poly.
     63         // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
     64         // that is rendered would look like this:
     65         //              b0
     66         //              b
     67         //
     68         //     a0              c0
     69         //      a            c
     70         //       a1       c1
     71         // Each is drawn as three triangles specified by these 9 indices:
     72         int baseIdx = i * kIdxsPerQuad;
     73         uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
     74         data[0 + baseIdx] = baseVert + 0; // a0
     75         data[1 + baseIdx] = baseVert + 1; // a1
     76         data[2 + baseIdx] = baseVert + 2; // b0
     77         data[3 + baseIdx] = baseVert + 2; // b0
     78         data[4 + baseIdx] = baseVert + 4; // c1
     79         data[5 + baseIdx] = baseVert + 3; // c0
     80         data[6 + baseIdx] = baseVert + 1; // a1
     81         data[7 + baseIdx] = baseVert + 4; // c1
     82         data[8 + baseIdx] = baseVert + 2; // b0
     83     }
     84     if (tempData) {
     85         bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
     86         delete[] data;
     87         return ret;
     88     } else {
     89         qIdxBuffer->unlock();
     90         return true;
     91     }
     92 }
     93 
     94 static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
     95     uint16_t* data = (uint16_t*) lIdxBuffer->lock();
     96     bool tempData = NULL == data;
     97     if (tempData) {
     98         data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
     99     }
    100     for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
    101         // Each line segment is rendered as two quads and two triangles.
    102         // p0 and p1 have alpha = 1 while all other points have alpha = 0.
    103         // The four external points are offset 1 pixel perpendicular to the
    104         // line and half a pixel parallel to the line.
    105         //
    106         // p4                  p5
    107         //      p0         p1
    108         // p2                  p3
    109         //
    110         // Each is drawn as six triangles specified by these 18 indices:
    111         int baseIdx = i * kIdxsPerLineSeg;
    112         uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
    113         data[0 + baseIdx] = baseVert + 0;
    114         data[1 + baseIdx] = baseVert + 1;
    115         data[2 + baseIdx] = baseVert + 3;
    116 
    117         data[3 + baseIdx] = baseVert + 0;
    118         data[4 + baseIdx] = baseVert + 3;
    119         data[5 + baseIdx] = baseVert + 2;
    120 
    121         data[6 + baseIdx] = baseVert + 0;
    122         data[7 + baseIdx] = baseVert + 4;
    123         data[8 + baseIdx] = baseVert + 5;
    124 
    125         data[9 + baseIdx] = baseVert + 0;
    126         data[10+ baseIdx] = baseVert + 5;
    127         data[11+ baseIdx] = baseVert + 1;
    128 
    129         data[12 + baseIdx] = baseVert + 0;
    130         data[13 + baseIdx] = baseVert + 2;
    131         data[14 + baseIdx] = baseVert + 4;
    132 
    133         data[15 + baseIdx] = baseVert + 1;
    134         data[16 + baseIdx] = baseVert + 5;
    135         data[17 + baseIdx] = baseVert + 3;
    136     }
    137     if (tempData) {
    138         bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
    139         delete[] data;
    140         return ret;
    141     } else {
    142         lIdxBuffer->unlock();
    143         return true;
    144     }
    145 }
    146 }
    147 
    148 GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
    149     GrGpu* gpu = context->getGpu();
    150     GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
    151     SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
    152     if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
    153         return NULL;
    154     }
    155     GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
    156     SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
    157     if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
    158         return NULL;
    159     }
    160     return SkNEW_ARGS(GrAAHairLinePathRenderer,
    161                       (context, lIdxBuf, qIdxBuf));
    162 }
    163 
    164 GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
    165                                         const GrContext* context,
    166                                         const GrIndexBuffer* linesIndexBuffer,
    167                                         const GrIndexBuffer* quadsIndexBuffer) {
    168     fLinesIndexBuffer = linesIndexBuffer;
    169     linesIndexBuffer->ref();
    170     fQuadsIndexBuffer = quadsIndexBuffer;
    171     quadsIndexBuffer->ref();
    172 }
    173 
    174 GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
    175     fLinesIndexBuffer->unref();
    176     fQuadsIndexBuffer->unref();
    177 }
    178 
    179 namespace {
    180 
    181 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
    182 
    183 // Takes 178th time of logf on Z600 / VC2010
    184 int get_float_exp(float x) {
    185     GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
    186 #ifdef SK_DEBUG
    187     static bool tested;
    188     if (!tested) {
    189         tested = true;
    190         SkASSERT(get_float_exp(0.25f) == -2);
    191         SkASSERT(get_float_exp(0.3f) == -2);
    192         SkASSERT(get_float_exp(0.5f) == -1);
    193         SkASSERT(get_float_exp(1.f) == 0);
    194         SkASSERT(get_float_exp(2.f) == 1);
    195         SkASSERT(get_float_exp(2.5f) == 1);
    196         SkASSERT(get_float_exp(8.f) == 3);
    197         SkASSERT(get_float_exp(100.f) == 6);
    198         SkASSERT(get_float_exp(1000.f) == 9);
    199         SkASSERT(get_float_exp(1024.f) == 10);
    200         SkASSERT(get_float_exp(3000000.f) == 21);
    201     }
    202 #endif
    203     const int* iptr = (const int*)&x;
    204     return (((*iptr) & 0x7f800000) >> 23) - 127;
    205 }
    206 
    207 // Uses the max curvature function for quads to estimate
    208 // where to chop the conic. If the max curvature is not
    209 // found along the curve segment it will return 1 and
    210 // dst[0] is the original conic. If it returns 2 the dst[0]
    211 // and dst[1] are the two new conics.
    212 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
    213     SkScalar t = SkFindQuadMaxCurvature(src);
    214     if (t == 0) {
    215         if (dst) {
    216             dst[0].set(src, weight);
    217         }
    218         return 1;
    219     } else {
    220         if (dst) {
    221             SkConic conic;
    222             conic.set(src, weight);
    223             conic.chopAt(t, dst);
    224         }
    225         return 2;
    226     }
    227 }
    228 
    229 // Calls split_conic on the entire conic and then once more on each subsection.
    230 // Most cases will result in either 1 conic (chop point is not within t range)
    231 // or 3 points (split once and then one subsection is split again).
    232 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
    233     SkConic dstTemp[2];
    234     int conicCnt = split_conic(src, dstTemp, weight);
    235     if (2 == conicCnt) {
    236         int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
    237         conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
    238     } else {
    239         dst[0] = dstTemp[0];
    240     }
    241     return conicCnt;
    242 }
    243 
    244 // returns 0 if quad/conic is degen or close to it
    245 // in this case approx the path with lines
    246 // otherwise returns 1
    247 int is_degen_quad_or_conic(const SkPoint p[3]) {
    248     static const SkScalar gDegenerateToLineTol = SK_Scalar1;
    249     static const SkScalar gDegenerateToLineTolSqd =
    250         SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
    251 
    252     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
    253         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
    254         return 1;
    255     }
    256 
    257     SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
    258     if (dsqd < gDegenerateToLineTolSqd) {
    259         return 1;
    260     }
    261 
    262     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
    263         return 1;
    264     }
    265     return 0;
    266 }
    267 
    268 // we subdivide the quads to avoid huge overfill
    269 // if it returns -1 then should be drawn as lines
    270 int num_quad_subdivs(const SkPoint p[3]) {
    271     static const SkScalar gDegenerateToLineTol = SK_Scalar1;
    272     static const SkScalar gDegenerateToLineTolSqd =
    273         SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
    274 
    275     if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
    276         p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
    277         return -1;
    278     }
    279 
    280     SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
    281     if (dsqd < gDegenerateToLineTolSqd) {
    282         return -1;
    283     }
    284 
    285     if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
    286         return -1;
    287     }
    288 
    289     // tolerance of triangle height in pixels
    290     // tuned on windows  Quadro FX 380 / Z600
    291     // trade off of fill vs cpu time on verts
    292     // maybe different when do this using gpu (geo or tess shaders)
    293     static const SkScalar gSubdivTol = 175 * SK_Scalar1;
    294 
    295     if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
    296         return 0;
    297     } else {
    298         static const int kMaxSub = 4;
    299         // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
    300         // = log4(d*d/tol*tol)/2
    301         // = log2(d*d/tol*tol)
    302 
    303 #ifdef SK_SCALAR_IS_FLOAT
    304         // +1 since we're ignoring the mantissa contribution.
    305         int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
    306         log = GrMin(GrMax(0, log), kMaxSub);
    307         return log;
    308 #else
    309         SkScalar log = SkScalarLog(
    310                           SkScalarDiv(dsqd,
    311                                       SkScalarMul(gSubdivTol, gSubdivTol)));
    312         static const SkScalar conv = SkScalarInvert(SkScalarLog(2));
    313         log = SkScalarMul(log, conv);
    314         return  GrMin(GrMax(0, SkScalarCeilToInt(log)),kMaxSub);
    315 #endif
    316     }
    317 }
    318 
    319 /**
    320  * Generates the lines and quads to be rendered. Lines are always recorded in
    321  * device space. We will do a device space bloat to account for the 1pixel
    322  * thickness.
    323  * Quads are recorded in device space unless m contains
    324  * perspective, then in they are in src space. We do this because we will
    325  * subdivide large quads to reduce over-fill. This subdivision has to be
    326  * performed before applying the perspective matrix.
    327  */
    328 int generate_lines_and_quads(const SkPath& path,
    329                              const SkMatrix& m,
    330                              const SkIRect& devClipBounds,
    331                              GrAAHairLinePathRenderer::PtArray* lines,
    332                              GrAAHairLinePathRenderer::PtArray* quads,
    333                              GrAAHairLinePathRenderer::PtArray* conics,
    334                              GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
    335                              GrAAHairLinePathRenderer::FloatArray* conicWeights) {
    336     SkPath::Iter iter(path, false);
    337 
    338     int totalQuadCount = 0;
    339     SkRect bounds;
    340     SkIRect ibounds;
    341 
    342     bool persp = m.hasPerspective();
    343 
    344     for (;;) {
    345         GrPoint pathPts[4];
    346         GrPoint devPts[4];
    347         SkPath::Verb verb = iter.next(pathPts);
    348         switch (verb) {
    349             case SkPath::kConic_Verb: {
    350                 SkConic dst[4];
    351                 // We chop the conics to create tighter clipping to hide error
    352                 // that appears near max curvature of very thin conics. Thin
    353                 // hyperbolas with high weight still show error.
    354                 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
    355                 for (int i = 0; i < conicCnt; ++i) {
    356                     SkPoint* chopPnts = dst[i].fPts;
    357                     m.mapPoints(devPts, chopPnts, 3);
    358                     bounds.setBounds(devPts, 3);
    359                     bounds.outset(SK_Scalar1, SK_Scalar1);
    360                     bounds.roundOut(&ibounds);
    361                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    362                         if (is_degen_quad_or_conic(devPts)) {
    363                             SkPoint* pts = lines->push_back_n(4);
    364                             pts[0] = devPts[0];
    365                             pts[1] = devPts[1];
    366                             pts[2] = devPts[1];
    367                             pts[3] = devPts[2];
    368                         } else {
    369                             // when in perspective keep conics in src space
    370                             SkPoint* cPts = persp ? chopPnts : devPts;
    371                             SkPoint* pts = conics->push_back_n(3);
    372                             pts[0] = cPts[0];
    373                             pts[1] = cPts[1];
    374                             pts[2] = cPts[2];
    375                             conicWeights->push_back() = dst[i].fW;
    376                         }
    377                     }
    378                 }
    379                 break;
    380             }
    381             case SkPath::kMove_Verb:
    382                 break;
    383             case SkPath::kLine_Verb:
    384                 m.mapPoints(devPts, pathPts, 2);
    385                 bounds.setBounds(devPts, 2);
    386                 bounds.outset(SK_Scalar1, SK_Scalar1);
    387                 bounds.roundOut(&ibounds);
    388                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    389                     SkPoint* pts = lines->push_back_n(2);
    390                     pts[0] = devPts[0];
    391                     pts[1] = devPts[1];
    392                 }
    393                 break;
    394             case SkPath::kQuad_Verb: {
    395                 SkPoint choppedPts[5];
    396                 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
    397                 // When it is degenerate it allows the approximation with lines to work since the
    398                 // chop point (if there is one) will be at the parabola's vertex. In the nearly
    399                 // degenerate the QuadUVMatrix computed for the points is almost singular which
    400                 // can cause rendering artifacts.
    401                 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
    402                 for (int i = 0; i < n; ++i) {
    403                     SkPoint* quadPts = choppedPts + i * 2;
    404                     m.mapPoints(devPts, quadPts, 3);
    405                     bounds.setBounds(devPts, 3);
    406                     bounds.outset(SK_Scalar1, SK_Scalar1);
    407                     bounds.roundOut(&ibounds);
    408 
    409                     if (SkIRect::Intersects(devClipBounds, ibounds)) {
    410                         int subdiv = num_quad_subdivs(devPts);
    411                         SkASSERT(subdiv >= -1);
    412                         if (-1 == subdiv) {
    413                             SkPoint* pts = lines->push_back_n(4);
    414                             pts[0] = devPts[0];
    415                             pts[1] = devPts[1];
    416                             pts[2] = devPts[1];
    417                             pts[3] = devPts[2];
    418                         } else {
    419                             // when in perspective keep quads in src space
    420                             SkPoint* qPts = persp ? quadPts : devPts;
    421                             SkPoint* pts = quads->push_back_n(3);
    422                             pts[0] = qPts[0];
    423                             pts[1] = qPts[1];
    424                             pts[2] = qPts[2];
    425                             quadSubdivCnts->push_back() = subdiv;
    426                             totalQuadCount += 1 << subdiv;
    427                         }
    428                     }
    429                 }
    430                 break;
    431             }
    432             case SkPath::kCubic_Verb:
    433                 m.mapPoints(devPts, pathPts, 4);
    434                 bounds.setBounds(devPts, 4);
    435                 bounds.outset(SK_Scalar1, SK_Scalar1);
    436                 bounds.roundOut(&ibounds);
    437                 if (SkIRect::Intersects(devClipBounds, ibounds)) {
    438                     PREALLOC_PTARRAY(32) q;
    439                     // we don't need a direction if we aren't constraining the subdivision
    440                     static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
    441                     // We convert cubics to quadratics (for now).
    442                     // In perspective have to do conversion in src space.
    443                     if (persp) {
    444                         SkScalar tolScale =
    445                             GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
    446                                                              path.getBounds());
    447                         GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
    448                     } else {
    449                         GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
    450                     }
    451                     for (int i = 0; i < q.count(); i += 3) {
    452                         SkPoint* qInDevSpace;
    453                         // bounds has to be calculated in device space, but q is
    454                         // in src space when there is perspective.
    455                         if (persp) {
    456                             m.mapPoints(devPts, &q[i], 3);
    457                             bounds.setBounds(devPts, 3);
    458                             qInDevSpace = devPts;
    459                         } else {
    460                             bounds.setBounds(&q[i], 3);
    461                             qInDevSpace = &q[i];
    462                         }
    463                         bounds.outset(SK_Scalar1, SK_Scalar1);
    464                         bounds.roundOut(&ibounds);
    465                         if (SkIRect::Intersects(devClipBounds, ibounds)) {
    466                             int subdiv = num_quad_subdivs(qInDevSpace);
    467                             SkASSERT(subdiv >= -1);
    468                             if (-1 == subdiv) {
    469                                 SkPoint* pts = lines->push_back_n(4);
    470                                 // lines should always be in device coords
    471                                 pts[0] = qInDevSpace[0];
    472                                 pts[1] = qInDevSpace[1];
    473                                 pts[2] = qInDevSpace[1];
    474                                 pts[3] = qInDevSpace[2];
    475                             } else {
    476                                 SkPoint* pts = quads->push_back_n(3);
    477                                 // q is already in src space when there is no
    478                                 // perspective and dev coords otherwise.
    479                                 pts[0] = q[0 + i];
    480                                 pts[1] = q[1 + i];
    481                                 pts[2] = q[2 + i];
    482                                 quadSubdivCnts->push_back() = subdiv;
    483                                 totalQuadCount += 1 << subdiv;
    484                             }
    485                         }
    486                     }
    487                 }
    488                 break;
    489             case SkPath::kClose_Verb:
    490                 break;
    491             case SkPath::kDone_Verb:
    492                 return totalQuadCount;
    493         }
    494     }
    495 }
    496 
    497 struct LineVertex {
    498     GrPoint fPos;
    499     GrColor fCoverage;
    500 };
    501 
    502 struct BezierVertex {
    503     GrPoint fPos;
    504     union {
    505         struct {
    506             SkScalar fK;
    507             SkScalar fL;
    508             SkScalar fM;
    509         } fConic;
    510         GrVec   fQuadCoord;
    511         struct {
    512             SkScalar fBogus[4];
    513         };
    514     };
    515 };
    516 
    517 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint));
    518 
    519 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
    520                      const SkPoint& ptB, const SkVector& normB,
    521                      SkPoint* result) {
    522 
    523     SkScalar lineAW = -normA.dot(ptA);
    524     SkScalar lineBW = -normB.dot(ptB);
    525 
    526     SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
    527         SkScalarMul(normA.fY, normB.fX);
    528     wInv = SkScalarInvert(wInv);
    529 
    530     result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
    531     result->fX = SkScalarMul(result->fX, wInv);
    532 
    533     result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
    534     result->fY = SkScalarMul(result->fY, wInv);
    535 }
    536 
    537 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
    538     // this should be in the src space, not dev coords, when we have perspective
    539     GrPathUtils::QuadUVMatrix DevToUV(qpts);
    540     DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts);
    541 }
    542 
    543 void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
    544                 const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
    545                 SkRect* devBounds) {
    546     SkASSERT(!toDevice == !toSrc);
    547     // original quad is specified by tri a,b,c
    548     SkPoint a = qpts[0];
    549     SkPoint b = qpts[1];
    550     SkPoint c = qpts[2];
    551 
    552     if (toDevice) {
    553         toDevice->mapPoints(&a, 1);
    554         toDevice->mapPoints(&b, 1);
    555         toDevice->mapPoints(&c, 1);
    556     }
    557     // make a new poly where we replace a and c by a 1-pixel wide edges orthog
    558     // to edges ab and bc:
    559     //
    560     //   before       |        after
    561     //                |              b0
    562     //         b      |
    563     //                |
    564     //                |     a0            c0
    565     // a         c    |        a1       c1
    566     //
    567     // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
    568     // respectively.
    569     BezierVertex& a0 = verts[0];
    570     BezierVertex& a1 = verts[1];
    571     BezierVertex& b0 = verts[2];
    572     BezierVertex& c0 = verts[3];
    573     BezierVertex& c1 = verts[4];
    574 
    575     SkVector ab = b;
    576     ab -= a;
    577     SkVector ac = c;
    578     ac -= a;
    579     SkVector cb = b;
    580     cb -= c;
    581 
    582     // We should have already handled degenerates
    583     SkASSERT(ab.length() > 0 && cb.length() > 0);
    584 
    585     ab.normalize();
    586     SkVector abN;
    587     abN.setOrthog(ab, SkVector::kLeft_Side);
    588     if (abN.dot(ac) > 0) {
    589         abN.negate();
    590     }
    591 
    592     cb.normalize();
    593     SkVector cbN;
    594     cbN.setOrthog(cb, SkVector::kLeft_Side);
    595     if (cbN.dot(ac) < 0) {
    596         cbN.negate();
    597     }
    598 
    599     a0.fPos = a;
    600     a0.fPos += abN;
    601     a1.fPos = a;
    602     a1.fPos -= abN;
    603 
    604     c0.fPos = c;
    605     c0.fPos += cbN;
    606     c1.fPos = c;
    607     c1.fPos -= cbN;
    608 
    609     intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
    610     devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
    611 
    612     if (toSrc) {
    613         toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
    614     }
    615 }
    616 
    617 // Equations based off of Loop-Blinn Quadratic GPU Rendering
    618 // Input Parametric:
    619 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
    620 // Output Implicit:
    621 // f(x, y, w) = f(P) = K^2 - LM
    622 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
    623 // k, l, m are calculated in function GrPathUtils::getConicKLM
    624 void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
    625                       const SkScalar weight) {
    626     SkScalar klm[9];
    627 
    628     GrPathUtils::getConicKLM(p, weight, klm);
    629 
    630     for (int i = 0; i < kVertsPerQuad; ++i) {
    631         const SkPoint pnt = verts[i].fPos;
    632         verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
    633         verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
    634         verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
    635     }
    636 }
    637 
    638 void add_conics(const SkPoint p[3],
    639                 const SkScalar weight,
    640                 const SkMatrix* toDevice,
    641                 const SkMatrix* toSrc,
    642                 BezierVertex** vert,
    643                 SkRect* devBounds) {
    644     bloat_quad(p, toDevice, toSrc, *vert, devBounds);
    645     set_conic_coeffs(p, *vert, weight);
    646     *vert += kVertsPerQuad;
    647 }
    648 
    649 void add_quads(const SkPoint p[3],
    650                int subdiv,
    651                const SkMatrix* toDevice,
    652                const SkMatrix* toSrc,
    653                BezierVertex** vert,
    654                SkRect* devBounds) {
    655     SkASSERT(subdiv >= 0);
    656     if (subdiv) {
    657         SkPoint newP[5];
    658         SkChopQuadAtHalf(p, newP);
    659         add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
    660         add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
    661     } else {
    662         bloat_quad(p, toDevice, toSrc, *vert, devBounds);
    663         set_uv_quad(p, *vert);
    664         *vert += kVertsPerQuad;
    665     }
    666 }
    667 
    668 void add_line(const SkPoint p[2],
    669               const SkMatrix* toSrc,
    670               GrColor coverage,
    671               LineVertex** vert) {
    672     const SkPoint& a = p[0];
    673     const SkPoint& b = p[1];
    674 
    675     SkVector ortho, vec = b;
    676     vec -= a;
    677 
    678     if (vec.setLength(SK_ScalarHalf)) {
    679         // Create a vector orthogonal to 'vec' and of unit length
    680         ortho.fX = 2.0f * vec.fY;
    681         ortho.fY = -2.0f * vec.fX;
    682 
    683         (*vert)[0].fPos = a;
    684         (*vert)[0].fCoverage = coverage;
    685         (*vert)[1].fPos = b;
    686         (*vert)[1].fCoverage = coverage;
    687         (*vert)[2].fPos = a - vec + ortho;
    688         (*vert)[2].fCoverage = 0;
    689         (*vert)[3].fPos = b + vec + ortho;
    690         (*vert)[3].fCoverage = 0;
    691         (*vert)[4].fPos = a - vec - ortho;
    692         (*vert)[4].fCoverage = 0;
    693         (*vert)[5].fPos = b + vec - ortho;
    694         (*vert)[5].fCoverage = 0;
    695 
    696         if (NULL != toSrc) {
    697             toSrc->mapPointsWithStride(&(*vert)->fPos,
    698                                        sizeof(LineVertex),
    699                                        kVertsPerLineSeg);
    700         }
    701     } else {
    702         // just make it degenerate and likely offscreen
    703         for (int i = 0; i < kVertsPerLineSeg; ++i) {
    704             (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
    705         }
    706     }
    707 
    708     *vert += kVertsPerLineSeg;
    709 }
    710 
    711 }
    712 
    713 ///////////////////////////////////////////////////////////////////////////////
    714 
    715 namespace {
    716 
    717 // position + edge
    718 extern const GrVertexAttrib gHairlineBezierAttribs[] = {
    719     {kVec2f_GrVertexAttribType, 0,                  kPosition_GrVertexAttribBinding},
    720     {kVec4f_GrVertexAttribType, sizeof(GrPoint),    kEffect_GrVertexAttribBinding}
    721 };
    722 
    723 // position + coverage
    724 extern const GrVertexAttrib gHairlineLineAttribs[] = {
    725     {kVec2f_GrVertexAttribType,  0,               kPosition_GrVertexAttribBinding},
    726     {kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding},
    727 };
    728 
    729 };
    730 
    731 bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
    732                                               GrDrawTarget* target,
    733                                               const PtArray& lines,
    734                                               int lineCnt,
    735                                               GrDrawTarget::AutoReleaseGeometry* arg,
    736                                               SkRect* devBounds) {
    737     GrDrawState* drawState = target->drawState();
    738 
    739     const SkMatrix& viewM = drawState->getViewMatrix();
    740 
    741     int vertCnt = kVertsPerLineSeg * lineCnt;
    742 
    743     drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
    744     SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
    745 
    746     if (!arg->set(target, vertCnt, 0)) {
    747         return false;
    748     }
    749 
    750     LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
    751 
    752     const SkMatrix* toSrc = NULL;
    753     SkMatrix ivm;
    754 
    755     if (viewM.hasPerspective()) {
    756         if (viewM.invert(&ivm)) {
    757             toSrc = &ivm;
    758         }
    759     }
    760     devBounds->set(lines.begin(), lines.count());
    761     for (int i = 0; i < lineCnt; ++i) {
    762         add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
    763     }
    764     // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
    765     static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
    766     // Add a little extra to account for vector normalization precision.
    767     static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
    768     devBounds->outset(kOutset, kOutset);
    769 
    770     return true;
    771 }
    772 
    773 bool GrAAHairLinePathRenderer::createBezierGeom(
    774                                           const SkPath& path,
    775                                           GrDrawTarget* target,
    776                                           const PtArray& quads,
    777                                           int quadCnt,
    778                                           const PtArray& conics,
    779                                           int conicCnt,
    780                                           const IntArray& qSubdivs,
    781                                           const FloatArray& cWeights,
    782                                           GrDrawTarget::AutoReleaseGeometry* arg,
    783                                           SkRect* devBounds) {
    784     GrDrawState* drawState = target->drawState();
    785 
    786     const SkMatrix& viewM = drawState->getViewMatrix();
    787 
    788     int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
    789 
    790     target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
    791     SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
    792 
    793     if (!arg->set(target, vertCnt, 0)) {
    794         return false;
    795     }
    796 
    797     BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
    798 
    799     const SkMatrix* toDevice = NULL;
    800     const SkMatrix* toSrc = NULL;
    801     SkMatrix ivm;
    802 
    803     if (viewM.hasPerspective()) {
    804         if (viewM.invert(&ivm)) {
    805             toDevice = &viewM;
    806             toSrc = &ivm;
    807         }
    808     }
    809 
    810     // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
    811     // box to include its vertices.
    812     SkPoint seedPts[2];
    813     if (quadCnt) {
    814         seedPts[0] = quads[0];
    815         seedPts[1] = quads[2];
    816     } else if (conicCnt) {
    817         seedPts[0] = conics[0];
    818         seedPts[1] = conics[2];
    819     }
    820     if (NULL != toDevice) {
    821         toDevice->mapPoints(seedPts, 2);
    822     }
    823     devBounds->set(seedPts[0], seedPts[1]);
    824 
    825     int unsubdivQuadCnt = quads.count() / 3;
    826     for (int i = 0; i < unsubdivQuadCnt; ++i) {
    827         SkASSERT(qSubdivs[i] >= 0);
    828         add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
    829     }
    830 
    831     // Start Conics
    832     for (int i = 0; i < conicCnt; ++i) {
    833         add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
    834     }
    835     return true;
    836 }
    837 
    838 bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
    839                                            const SkStrokeRec& stroke,
    840                                            const GrDrawTarget* target,
    841                                            bool antiAlias) const {
    842     if (!antiAlias) {
    843         return false;
    844     }
    845 
    846     if (!IsStrokeHairlineOrEquivalent(stroke,
    847                                       target->getDrawState().getViewMatrix(),
    848                                       NULL)) {
    849         return false;
    850     }
    851 
    852     if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
    853         target->caps()->shaderDerivativeSupport()) {
    854         return true;
    855     }
    856     return false;
    857 }
    858 
    859 template <class VertexType>
    860 bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
    861 {
    862     SkRect tolDevBounds = devBounds;
    863     // The bounds ought to be tight, but in perspective the below code runs the verts
    864     // through the view matrix to get back to dev coords, which can introduce imprecision.
    865     if (drawState->getViewMatrix().hasPerspective()) {
    866         tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
    867     } else {
    868         // Non-persp matrices cause this path renderer to draw in device space.
    869         SkASSERT(drawState->getViewMatrix().isIdentity());
    870     }
    871     SkRect actualBounds;
    872 
    873     VertexType* verts = reinterpret_cast<VertexType*>(vertices);
    874     bool first = true;
    875     for (int i = 0; i < vCount; ++i) {
    876         SkPoint pos = verts[i].fPos;
    877         // This is a hack to workaround the fact that we move some degenerate segments offscreen.
    878         if (SK_ScalarMax == pos.fX) {
    879             continue;
    880         }
    881         drawState->getViewMatrix().mapPoints(&pos, 1);
    882         if (first) {
    883             actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
    884             first = false;
    885         } else {
    886             actualBounds.growToInclude(pos.fX, pos.fY);
    887         }
    888     }
    889     if (!first) {
    890         return tolDevBounds.contains(actualBounds);
    891     }
    892 
    893     return true;
    894 }
    895 
    896 bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
    897                                           const SkStrokeRec& stroke,
    898                                           GrDrawTarget* target,
    899                                           bool antiAlias) {
    900     GrDrawState* drawState = target->drawState();
    901 
    902     SkScalar hairlineCoverage;
    903     if (IsStrokeHairlineOrEquivalent(stroke,
    904                                      target->getDrawState().getViewMatrix(),
    905                                      &hairlineCoverage)) {
    906         uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
    907                                                  target->getDrawState().getCoverage());
    908         target->drawState()->setCoverage(newCoverage);
    909     }
    910 
    911     SkIRect devClipBounds;
    912     target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
    913 
    914     int lineCnt;
    915     int quadCnt;
    916     int conicCnt;
    917     PREALLOC_PTARRAY(128) lines;
    918     PREALLOC_PTARRAY(128) quads;
    919     PREALLOC_PTARRAY(128) conics;
    920     IntArray qSubdivs;
    921     FloatArray cWeights;
    922     quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
    923                                        &lines, &quads, &conics, &qSubdivs, &cWeights);
    924     lineCnt = lines.count() / 2;
    925     conicCnt = conics.count() / 3;
    926 
    927     // do lines first
    928     if (lineCnt) {
    929         GrDrawTarget::AutoReleaseGeometry arg;
    930         SkRect devBounds;
    931 
    932         if (!this->createLineGeom(path,
    933                                   target,
    934                                   lines,
    935                                   lineCnt,
    936                                   &arg,
    937                                   &devBounds)) {
    938             return false;
    939         }
    940 
    941         GrDrawTarget::AutoStateRestore asr;
    942 
    943         // createLineGeom transforms the geometry to device space when the matrix does not have
    944         // perspective.
    945         if (target->getDrawState().getViewMatrix().hasPerspective()) {
    946             asr.set(target, GrDrawTarget::kPreserve_ASRInit);
    947         } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
    948             return false;
    949         }
    950         GrDrawState* drawState = target->drawState();
    951 
    952         // Check devBounds
    953         SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
    954                                           kVertsPerLineSeg * lineCnt));
    955 
    956         {
    957             GrDrawState::AutoRestoreEffects are(drawState);
    958             target->setIndexSourceToBuffer(fLinesIndexBuffer);
    959             int lines = 0;
    960             while (lines < lineCnt) {
    961                 int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
    962                 target->drawIndexed(kTriangles_GrPrimitiveType,
    963                                     kVertsPerLineSeg*lines,     // startV
    964                                     0,                          // startI
    965                                     kVertsPerLineSeg*n,         // vCount
    966                                     kIdxsPerLineSeg*n,          // iCount
    967                                     &devBounds);
    968                 lines += n;
    969             }
    970         }
    971     }
    972 
    973     // then quadratics/conics
    974     if (quadCnt || conicCnt) {
    975         GrDrawTarget::AutoReleaseGeometry arg;
    976         SkRect devBounds;
    977 
    978         if (!this->createBezierGeom(path,
    979                                     target,
    980                                     quads,
    981                                     quadCnt,
    982                                     conics,
    983                                     conicCnt,
    984                                     qSubdivs,
    985                                     cWeights,
    986                                     &arg,
    987                                     &devBounds)) {
    988             return false;
    989         }
    990 
    991         GrDrawTarget::AutoStateRestore asr;
    992 
    993         // createGeom transforms the geometry to device space when the matrix does not have
    994         // perspective.
    995         if (target->getDrawState().getViewMatrix().hasPerspective()) {
    996             asr.set(target, GrDrawTarget::kPreserve_ASRInit);
    997         } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
    998             return false;
    999         }
   1000         GrDrawState* drawState = target->drawState();
   1001 
   1002         static const int kEdgeAttrIndex = 1;
   1003 
   1004         // Check devBounds
   1005         SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
   1006                                             kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
   1007 
   1008         if (quadCnt > 0) {
   1009             GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairAA_GrBezierEdgeType,
   1010                                                                *target->caps());
   1011             SkASSERT(NULL != hairQuadEffect);
   1012             GrDrawState::AutoRestoreEffects are(drawState);
   1013             target->setIndexSourceToBuffer(fQuadsIndexBuffer);
   1014             drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
   1015             int quads = 0;
   1016             while (quads < quadCnt) {
   1017                 int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer);
   1018                 target->drawIndexed(kTriangles_GrPrimitiveType,
   1019                                     kVertsPerQuad*quads,               // startV
   1020                                     0,                                 // startI
   1021                                     kVertsPerQuad*n,                   // vCount
   1022                                     kIdxsPerQuad*n,                    // iCount
   1023                                     &devBounds);
   1024                 quads += n;
   1025             }
   1026         }
   1027 
   1028         if (conicCnt > 0) {
   1029             GrDrawState::AutoRestoreEffects are(drawState);
   1030             GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairAA_GrBezierEdgeType,
   1031                                                                  *target->caps());
   1032             SkASSERT(NULL != hairConicEffect);
   1033             drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
   1034             int conics = 0;
   1035             while (conics < conicCnt) {
   1036                 int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer);
   1037                 target->drawIndexed(kTriangles_GrPrimitiveType,
   1038                                     kVertsPerQuad*(quadCnt + conics),  // startV
   1039                                     0,                                 // startI
   1040                                     kVertsPerQuad*n,                   // vCount
   1041                                     kIdxsPerQuad*n,                    // iCount
   1042                                     &devBounds);
   1043                 conics += n;
   1044             }
   1045         }
   1046     }
   1047 
   1048     target->resetIndexSource();
   1049 
   1050     return true;
   1051 }
   1052