1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkIntersections.h" 9 #include "SkPathOpsCubic.h" 10 #include "SkPathOpsLine.h" 11 #include "SkPathOpsPoint.h" 12 #include "SkPathOpsQuad.h" 13 #include "SkPathOpsRect.h" 14 #include "SkReduceOrder.h" 15 #include "SkTSort.h" 16 17 #if ONE_OFF_DEBUG 18 static const double tLimits1[2][2] = {{0.3, 0.4}, {0.8, 0.9}}; 19 static const double tLimits2[2][2] = {{-0.8, -0.9}, {-0.8, -0.9}}; 20 #endif 21 22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1 23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0 24 #define SWAP_TOP_DEBUG 0 25 26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision 27 28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) { 29 SkDCubic part = cubic.subDivide(tStart, tEnd); 30 SkDQuad quad = part.toQuad(); 31 // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an 32 // extremely shallow quadratic? 33 int order = reducer->reduce(quad); 34 #if DEBUG_QUAD_PART 35 SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" 36 " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY, 37 cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, 38 cubic[3].fX, cubic[3].fY, tStart, tEnd); 39 SkDebugf(" {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n" 40 " {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", 41 part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY, 42 part[3].fX, part[3].fY, quad[0].fX, quad[0].fY, 43 quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY); 44 #if DEBUG_QUAD_PART_SHOW_SIMPLE 45 SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY); 46 if (order > 1) { 47 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY); 48 } 49 if (order > 2) { 50 SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY); 51 } 52 SkDebugf(")\n"); 53 SkASSERT(order < 4 && order > 0); 54 #endif 55 #endif 56 return order; 57 } 58 59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2, 60 int order2, SkIntersections& i) { 61 if (order1 == 3 && order2 == 3) { 62 i.intersect(simple1, simple2); 63 } else if (order1 <= 2 && order2 <= 2) { 64 i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2); 65 } else if (order1 == 3 && order2 <= 2) { 66 i.intersect(simple1, (const SkDLine&) simple2); 67 } else { 68 SkASSERT(order1 <= 2 && order2 == 3); 69 i.intersect(simple2, (const SkDLine&) simple1); 70 i.swapPts(); 71 } 72 } 73 74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently 75 // chase intersections near quadratic ends, requiring odd hacks to find them. 76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2, 77 double t2s, double t2e, double precisionScale, SkIntersections& i) { 78 i.upDepth(); 79 SkDCubic c1 = cubic1.subDivide(t1s, t1e); 80 SkDCubic c2 = cubic2.subDivide(t2s, t2e); 81 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1; 82 // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) 83 c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1); 84 SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2; 85 c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2); 86 double t1Start = t1s; 87 int ts1Count = ts1.count(); 88 for (int i1 = 0; i1 <= ts1Count; ++i1) { 89 const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; 90 const double t1 = t1s + (t1e - t1s) * tEnd1; 91 SkReduceOrder s1; 92 int o1 = quadPart(cubic1, t1Start, t1, &s1); 93 double t2Start = t2s; 94 int ts2Count = ts2.count(); 95 for (int i2 = 0; i2 <= ts2Count; ++i2) { 96 const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; 97 const double t2 = t2s + (t2e - t2s) * tEnd2; 98 if (&cubic1 == &cubic2 && t1Start >= t2Start) { 99 t2Start = t2; 100 continue; 101 } 102 SkReduceOrder s2; 103 int o2 = quadPart(cubic2, t2Start, t2, &s2); 104 #if ONE_OFF_DEBUG 105 char tab[] = " "; 106 if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 107 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { 108 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, 109 __FUNCTION__, t1Start, t1, t2Start, t2); 110 SkIntersections xlocals; 111 xlocals.allowNear(false); 112 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals); 113 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); 114 } 115 #endif 116 SkIntersections locals; 117 locals.allowNear(false); 118 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals); 119 int tCount = locals.used(); 120 for (int tIdx = 0; tIdx < tCount; ++tIdx) { 121 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx]; 122 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx]; 123 // if the computed t is not sufficiently precise, iterate 124 SkDPoint p1 = cubic1.ptAtT(to1); 125 SkDPoint p2 = cubic2.ptAtT(to2); 126 if (p1.approximatelyEqual(p2)) { 127 // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller 128 // SkASSERT(!locals.isCoincident(tIdx)); 129 if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) { 130 if (i.swapped()) { // FIXME: insert should respect swap 131 i.insert(to2, to1, p1); 132 } else { 133 i.insert(to1, to2, p1); 134 } 135 } 136 } else { 137 double offset = precisionScale / 16; // FIME: const is arbitrary: test, refine 138 double c1Bottom = tIdx == 0 ? 0 : 139 (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2; 140 double c1Min = SkTMax(c1Bottom, to1 - offset); 141 double c1Top = tIdx == tCount - 1 ? 1 : 142 (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2; 143 double c1Max = SkTMin(c1Top, to1 + offset); 144 double c2Min = SkTMax(0., to2 - offset); 145 double c2Max = SkTMin(1., to2 + offset); 146 #if ONE_OFF_DEBUG 147 SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 148 __FUNCTION__, 149 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 150 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 151 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 152 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 153 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 154 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 155 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 156 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 157 SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 158 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 159 i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., 160 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 161 SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 162 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 163 c1Max, c2Min, c2Max); 164 #endif 165 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 166 #if ONE_OFF_DEBUG 167 SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 168 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 169 #endif 170 if (tCount > 1) { 171 c1Min = SkTMax(0., to1 - offset); 172 c1Max = SkTMin(1., to1 + offset); 173 double c2Bottom = tIdx == 0 ? to2 : 174 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2; 175 double c2Top = tIdx == tCount - 1 ? to2 : 176 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2; 177 if (c2Bottom > c2Top) { 178 SkTSwap(c2Bottom, c2Top); 179 } 180 if (c2Bottom == to2) { 181 c2Bottom = 0; 182 } 183 if (c2Top == to2) { 184 c2Top = 1; 185 } 186 c2Min = SkTMax(c2Bottom, to2 - offset); 187 c2Max = SkTMin(c2Top, to2 + offset); 188 #if ONE_OFF_DEBUG 189 SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 190 __FUNCTION__, 191 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 192 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 193 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 194 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 195 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 196 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 197 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 198 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 199 SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 200 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 201 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, 202 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 203 SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 204 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 205 c1Max, c2Min, c2Max); 206 #endif 207 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 208 #if ONE_OFF_DEBUG 209 SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 210 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 211 #endif 212 c1Min = SkTMax(c1Bottom, to1 - offset); 213 c1Max = SkTMin(c1Top, to1 + offset); 214 #if ONE_OFF_DEBUG 215 SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, 216 __FUNCTION__, 217 c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max 218 && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, 219 to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset 220 && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, 221 c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max 222 && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, 223 to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset 224 && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); 225 SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" 226 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", 227 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, 228 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); 229 SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" 230 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, 231 c1Max, c2Min, c2Max); 232 #endif 233 intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 234 #if ONE_OFF_DEBUG 235 SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 236 i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1); 237 #endif 238 } 239 // intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); 240 // FIXME: if no intersection is found, either quadratics intersected where 241 // cubics did not, or the intersection was missed. In the former case, expect 242 // the quadratics to be nearly parallel at the point of intersection, and check 243 // for that. 244 } 245 } 246 t2Start = t2; 247 } 248 t1Start = t1; 249 } 250 i.downDepth(); 251 } 252 253 // if two ends intersect, check middle for coincidence 254 bool SkIntersections::cubicCheckCoincidence(const SkDCubic& c1, const SkDCubic& c2) { 255 if (fUsed < 2) { 256 return false; 257 } 258 int last = fUsed - 1; 259 double tRange1 = fT[0][last] - fT[0][0]; 260 double tRange2 = fT[1][last] - fT[1][0]; 261 for (int index = 1; index < 5; ++index) { 262 double testT1 = fT[0][0] + tRange1 * index / 5; 263 double testT2 = fT[1][0] + tRange2 * index / 5; 264 SkDPoint testPt1 = c1.ptAtT(testT1); 265 SkDPoint testPt2 = c2.ptAtT(testT2); 266 if (!testPt1.approximatelyEqual(testPt2)) { 267 return false; 268 } 269 } 270 if (fUsed > 2) { 271 fPt[1] = fPt[last]; 272 fT[0][1] = fT[0][last]; 273 fT[1][1] = fT[1][last]; 274 fUsed = 2; 275 } 276 fIsCoincident[0] = fIsCoincident[1] = 0x03; 277 return true; 278 } 279 280 #define LINE_FRACTION 0.1 281 282 // intersect the end of the cubic with the other. Try lines from the end to control and opposite 283 // end to determine range of t on opposite cubic. 284 bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) { 285 int t1Index = start ? 0 : 3; 286 double testT = (double) !start; 287 bool swap = swapped(); 288 // quad/quad at this point checks to see if exact matches have already been found 289 // cubic/cubic can't reject so easily since cubics can intersect same point more than once 290 SkDLine tmpLine; 291 tmpLine[0] = tmpLine[1] = cubic2[t1Index]; 292 tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY; 293 tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX; 294 SkIntersections impTs; 295 impTs.allowNear(false); 296 impTs.intersectRay(cubic1, tmpLine); 297 for (int index = 0; index < impTs.used(); ++index) { 298 SkDPoint realPt = impTs.pt(index); 299 if (!tmpLine[0].approximatelyEqual(realPt)) { 300 continue; 301 } 302 if (swap) { 303 insert(testT, impTs[0][index], tmpLine[0]); 304 } else { 305 insert(impTs[0][index], testT, tmpLine[0]); 306 } 307 return true; 308 } 309 return false; 310 } 311 312 void SkIntersections::cubicNearEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2, 313 const SkDRect& bounds2) { 314 SkDLine line; 315 int t1Index = start ? 0 : 3; 316 double testT = (double) !start; 317 // don't bother if the two cubics are connnected 318 static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this 319 static const int kMaxLineCubicIntersections = 3; 320 SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals; 321 line[0] = cubic1[t1Index]; 322 // this variant looks for intersections with the end point and lines parallel to other points 323 for (int index = 0; index < kPointsInCubic; ++index) { 324 if (index == t1Index) { 325 continue; 326 } 327 SkDVector dxy1 = cubic1[index] - line[0]; 328 dxy1 /= SkDCubic::gPrecisionUnit; 329 line[1] = line[0] + dxy1; 330 SkDRect lineBounds; 331 lineBounds.setBounds(line); 332 if (!bounds2.intersects(&lineBounds)) { 333 continue; 334 } 335 SkIntersections local; 336 if (!local.intersect(cubic2, line)) { 337 continue; 338 } 339 for (int idx2 = 0; idx2 < local.used(); ++idx2) { 340 double foundT = local[0][idx2]; 341 if (approximately_less_than_zero(foundT) 342 || approximately_greater_than_one(foundT)) { 343 continue; 344 } 345 if (local.pt(idx2).approximatelyEqual(line[0])) { 346 if (swapped()) { // FIXME: insert should respect swap 347 insert(foundT, testT, line[0]); 348 } else { 349 insert(testT, foundT, line[0]); 350 } 351 } else { 352 tVals.push_back(foundT); 353 } 354 } 355 } 356 if (tVals.count() == 0) { 357 return; 358 } 359 SkTQSort<double>(tVals.begin(), tVals.end() - 1); 360 double tMin1 = start ? 0 : 1 - LINE_FRACTION; 361 double tMax1 = start ? LINE_FRACTION : 1; 362 int tIdx = 0; 363 do { 364 int tLast = tIdx; 365 while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { 366 ++tLast; 367 } 368 double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); 369 double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); 370 int lastUsed = used(); 371 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); 372 if (lastUsed == used()) { 373 tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0); 374 tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0); 375 ::intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, *this); 376 } 377 tIdx = tLast + 1; 378 } while (tIdx < tVals.count()); 379 return; 380 } 381 382 const double CLOSE_ENOUGH = 0.001; 383 384 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { 385 if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) { 386 return false; 387 } 388 pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2); 389 return true; 390 } 391 392 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) { 393 int last = i.used() - 1; 394 if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) { 395 return false; 396 } 397 pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2); 398 return true; 399 } 400 401 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) { 402 // the idea here is to see at minimum do a quick reject by rotating all points 403 // to either side of the line formed by connecting the endpoints 404 // if the opposite curves points are on the line or on the other side, the 405 // curves at most intersect at the endpoints 406 for (int oddMan = 0; oddMan < 4; ++oddMan) { 407 const SkDPoint* endPt[3]; 408 for (int opp = 1; opp < 4; ++opp) { 409 int end = oddMan ^ opp; // choose a value not equal to oddMan 410 endPt[opp - 1] = &c1[end]; 411 } 412 for (int triTest = 0; triTest < 3; ++triTest) { 413 double origX = endPt[triTest]->fX; 414 double origY = endPt[triTest]->fY; 415 int oppTest = triTest + 1; 416 if (3 == oppTest) { 417 oppTest = 0; 418 } 419 double adj = endPt[oppTest]->fX - origX; 420 double opp = endPt[oppTest]->fY - origY; 421 double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp; 422 if (approximately_zero(sign)) { 423 goto tryNextHalfPlane; 424 } 425 for (int n = 0; n < 4; ++n) { 426 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp; 427 if (test * sign > 0 && !precisely_zero(test)) { 428 goto tryNextHalfPlane; 429 } 430 } 431 } 432 return true; 433 tryNextHalfPlane: 434 ; 435 } 436 return false; 437 } 438 439 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) { 440 if (fMax == 0) { 441 fMax = 9; 442 } 443 bool selfIntersect = &c1 == &c2; 444 if (selfIntersect) { 445 if (c1[0].approximatelyEqual(c1[3])) { 446 insert(0, 1, c1[0]); 447 return fUsed; 448 } 449 } else { 450 // OPTIMIZATION: set exact end bits here to avoid cubic exact end later 451 for (int i1 = 0; i1 < 4; i1 += 3) { 452 for (int i2 = 0; i2 < 4; i2 += 3) { 453 if (c1[i1].approximatelyEqual(c2[i2])) { 454 insert(i1 >> 1, i2 >> 1, c1[i1]); 455 } 456 } 457 } 458 } 459 SkASSERT(fUsed < 4); 460 if (!selfIntersect) { 461 if (only_end_pts_in_common(c1, c2)) { 462 return fUsed; 463 } 464 if (only_end_pts_in_common(c2, c1)) { 465 return fUsed; 466 } 467 } 468 // quad/quad does linear test here -- cubic does not 469 // cubics which are really lines should have been detected in reduce step earlier 470 int exactEndBits = 0; 471 if (selfIntersect) { 472 if (fUsed) { 473 return fUsed; 474 } 475 } else { 476 exactEndBits |= cubicExactEnd(c1, false, c2) << 0; 477 exactEndBits |= cubicExactEnd(c1, true, c2) << 1; 478 swap(); 479 exactEndBits |= cubicExactEnd(c2, false, c1) << 2; 480 exactEndBits |= cubicExactEnd(c2, true, c1) << 3; 481 swap(); 482 } 483 if (cubicCheckCoincidence(c1, c2)) { 484 SkASSERT(!selfIntersect); 485 return fUsed; 486 } 487 // FIXME: pass in cached bounds from caller 488 SkDRect c2Bounds; 489 c2Bounds.setBounds(c2); 490 if (!(exactEndBits & 4)) { 491 cubicNearEnd(c1, false, c2, c2Bounds); 492 } 493 if (!(exactEndBits & 8)) { 494 cubicNearEnd(c1, true, c2, c2Bounds); 495 } 496 if (!selfIntersect) { 497 SkDRect c1Bounds; 498 c1Bounds.setBounds(c1); // OPTIMIZE use setRawBounds ? 499 swap(); 500 if (!(exactEndBits & 1)) { 501 cubicNearEnd(c2, false, c1, c1Bounds); 502 } 503 if (!(exactEndBits & 2)) { 504 cubicNearEnd(c2, true, c1, c1Bounds); 505 } 506 swap(); 507 } 508 if (cubicCheckCoincidence(c1, c2)) { 509 SkASSERT(!selfIntersect); 510 return fUsed; 511 } 512 SkIntersections i; 513 i.fAllowNear = false; 514 i.fMax = 9; 515 ::intersect(c1, 0, 1, c2, 0, 1, 1, i); 516 int compCount = i.used(); 517 if (compCount) { 518 int exactCount = used(); 519 if (exactCount == 0) { 520 set(i); 521 } else { 522 // at least one is exact or near, and at least one was computed. Eliminate duplicates 523 for (int exIdx = 0; exIdx < exactCount; ++exIdx) { 524 for (int cpIdx = 0; cpIdx < compCount; ) { 525 if (fT[0][0] == i[0][0] && fT[1][0] == i[1][0]) { 526 i.removeOne(cpIdx); 527 --compCount; 528 continue; 529 } 530 double tAvg = (fT[0][exIdx] + i[0][cpIdx]) / 2; 531 SkDPoint pt = c1.ptAtT(tAvg); 532 if (!pt.approximatelyEqual(fPt[exIdx])) { 533 ++cpIdx; 534 continue; 535 } 536 tAvg = (fT[1][exIdx] + i[1][cpIdx]) / 2; 537 pt = c2.ptAtT(tAvg); 538 if (!pt.approximatelyEqual(fPt[exIdx])) { 539 ++cpIdx; 540 continue; 541 } 542 i.removeOne(cpIdx); 543 --compCount; 544 } 545 } 546 // if mid t evaluates to nearly the same point, skip the t 547 for (int cpIdx = 0; cpIdx < compCount - 1; ) { 548 double tAvg = (fT[0][cpIdx] + i[0][cpIdx + 1]) / 2; 549 SkDPoint pt = c1.ptAtT(tAvg); 550 if (!pt.approximatelyEqual(fPt[cpIdx])) { 551 ++cpIdx; 552 continue; 553 } 554 tAvg = (fT[1][cpIdx] + i[1][cpIdx + 1]) / 2; 555 pt = c2.ptAtT(tAvg); 556 if (!pt.approximatelyEqual(fPt[cpIdx])) { 557 ++cpIdx; 558 continue; 559 } 560 i.removeOne(cpIdx); 561 --compCount; 562 } 563 // in addition to adding below missing function, think about how to say 564 append(i); 565 } 566 } 567 // If an end point and a second point very close to the end is returned, the second 568 // point may have been detected because the approximate quads 569 // intersected at the end and close to it. Verify that the second point is valid. 570 if (fUsed <= 1) { 571 return fUsed; 572 } 573 SkDPoint pt[2]; 574 if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1]) 575 && pt[0].approximatelyEqual(pt[1])) { 576 removeOne(1); 577 } 578 if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1]) 579 && pt[0].approximatelyEqual(pt[1])) { 580 removeOne(used() - 2); 581 } 582 // vet the pairs of t values to see if the mid value is also on the curve. If so, mark 583 // the span as coincident 584 if (fUsed >= 2 && !coincidentUsed()) { 585 int last = fUsed - 1; 586 int match = 0; 587 for (int index = 0; index < last; ++index) { 588 double mid1 = (fT[0][index] + fT[0][index + 1]) / 2; 589 double mid2 = (fT[1][index] + fT[1][index + 1]) / 2; 590 pt[0] = c1.ptAtT(mid1); 591 pt[1] = c2.ptAtT(mid2); 592 if (pt[0].approximatelyEqual(pt[1])) { 593 match |= 1 << index; 594 } 595 } 596 if (match) { 597 #if DEBUG_CONCIDENT 598 if (((match + 1) & match) != 0) { 599 SkDebugf("%s coincident hole\n", __FUNCTION__); 600 } 601 #endif 602 // for now, assume that everything from start to finish is coincident 603 if (fUsed > 2) { 604 fPt[1] = fPt[last]; 605 fT[0][1] = fT[0][last]; 606 fT[1][1] = fT[1][last]; 607 fIsCoincident[0] = 0x03; 608 fIsCoincident[1] = 0x03; 609 fUsed = 2; 610 } 611 } 612 } 613 return fUsed; 614 } 615 616 // Up promote the quad to a cubic. 617 // OPTIMIZATION If this is a common use case, optimize by duplicating 618 // the intersect 3 loop to avoid the promotion / demotion code 619 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) { 620 fMax = 6; 621 SkDCubic up = quad.toCubic(); 622 (void) intersect(cubic, up); 623 return used(); 624 } 625 626 /* http://www.ag.jku.at/compass/compasssample.pdf 627 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen 628 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth (at) math.uio.no 629 SINTEF Applied Mathematics http://www.sintef.no ) 630 describes a method to find the self intersection of a cubic by taking the gradient of the implicit 631 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/ 632 633 int SkIntersections::intersect(const SkDCubic& c) { 634 fMax = 1; 635 // check to see if x or y end points are the extrema. Are other quick rejects possible? 636 if (c.endsAreExtremaInXOrY()) { 637 return false; 638 } 639 (void) intersect(c, c); 640 if (used() > 0) { 641 SkASSERT(used() == 1); 642 if (fT[0][0] > fT[1][0]) { 643 swapPts(); 644 } 645 } 646 return used(); 647 } 648