1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 #include "SkPathOpsCubic.h" 8 #include "SkPathOpsLine.h" 9 #include "SkPathOpsQuad.h" 10 11 // Sources 12 // computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 13 // online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf 14 15 // This turns a line segment into a parameterized line, of the form 16 // ax + by + c = 0 17 // When a^2 + b^2 == 1, the line is normalized. 18 // The distance to the line for (x, y) is d(x,y) = ax + by + c 19 // 20 // Note that the distances below are not necessarily normalized. To get the true 21 // distance, it's necessary to either call normalize() after xxxEndPoints(), or 22 // divide the result of xxxDistance() by sqrt(normalSquared()) 23 24 class SkLineParameters { 25 public: 26 27 void cubicEndPoints(const SkDCubic& pts) { 28 int endIndex = 1; 29 cubicEndPoints(pts, 0, endIndex); 30 if (dy() != 0) { 31 return; 32 } 33 if (dx() == 0) { 34 cubicEndPoints(pts, 0, ++endIndex); 35 SkASSERT(endIndex == 2); 36 if (dy() != 0) { 37 return; 38 } 39 if (dx() == 0) { 40 cubicEndPoints(pts, 0, ++endIndex); // line 41 SkASSERT(endIndex == 3); 42 return; 43 } 44 } 45 if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie 46 return; 47 } 48 // if cubic tangent is on x axis, look at next control point to break tie 49 // control point may be approximate, so it must move significantly to account for error 50 if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) { 51 if (pts[0].fY > pts[endIndex].fY) { 52 a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) 53 } 54 return; 55 } 56 if (endIndex == 3) { 57 return; 58 } 59 SkASSERT(endIndex == 2); 60 if (pts[0].fY > pts[3].fY) { 61 a = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a) 62 } 63 } 64 65 void cubicEndPoints(const SkDCubic& pts, int s, int e) { 66 a = pts[s].fY - pts[e].fY; 67 b = pts[e].fX - pts[s].fX; 68 c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; 69 } 70 71 double cubicPart(const SkDCubic& part) { 72 cubicEndPoints(part); 73 if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) { 74 return pointDistance(part[3]); 75 } 76 return pointDistance(part[2]); 77 } 78 79 void lineEndPoints(const SkDLine& pts) { 80 a = pts[0].fY - pts[1].fY; 81 b = pts[1].fX - pts[0].fX; 82 c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY; 83 } 84 85 void quadEndPoints(const SkDQuad& pts) { 86 quadEndPoints(pts, 0, 1); 87 if (dy() != 0) { 88 return; 89 } 90 if (dx() == 0) { 91 quadEndPoints(pts, 0, 2); 92 return; 93 } 94 if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie 95 return; 96 } 97 if (pts[0].fY > pts[2].fY) { 98 a = DBL_EPSILON; 99 } 100 } 101 102 void quadEndPoints(const SkDQuad& pts, int s, int e) { 103 a = pts[s].fY - pts[e].fY; 104 b = pts[e].fX - pts[s].fX; 105 c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; 106 } 107 108 double quadPart(const SkDQuad& part) { 109 quadEndPoints(part); 110 return pointDistance(part[2]); 111 } 112 113 double normalSquared() const { 114 return a * a + b * b; 115 } 116 117 bool normalize() { 118 double normal = sqrt(normalSquared()); 119 if (approximately_zero(normal)) { 120 a = b = c = 0; 121 return false; 122 } 123 double reciprocal = 1 / normal; 124 a *= reciprocal; 125 b *= reciprocal; 126 c *= reciprocal; 127 return true; 128 } 129 130 void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const { 131 double oneThird = 1 / 3.0; 132 for (int index = 0; index < 4; ++index) { 133 distance[index].fX = index * oneThird; 134 distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; 135 } 136 } 137 138 void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const { 139 double oneHalf = 1 / 2.0; 140 for (int index = 0; index < 3; ++index) { 141 distance[index].fX = index * oneHalf; 142 distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; 143 } 144 } 145 146 double controlPtDistance(const SkDCubic& pts, int index) const { 147 SkASSERT(index == 1 || index == 2); 148 return a * pts[index].fX + b * pts[index].fY + c; 149 } 150 151 double controlPtDistance(const SkDQuad& pts) const { 152 return a * pts[1].fX + b * pts[1].fY + c; 153 } 154 155 double pointDistance(const SkDPoint& pt) const { 156 return a * pt.fX + b * pt.fY + c; 157 } 158 159 double dx() const { 160 return b; 161 } 162 163 double dy() const { 164 return -a; 165 } 166 167 private: 168 double a; 169 double b; 170 double c; 171 }; 172