Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkOpAngle.h"
      9 #include "SkOpSegment.h"
     10 #include "SkPathOpsCurve.h"
     11 #include "SkTSort.h"
     12 
     13 #if DEBUG_ANGLE
     14 #include "SkString.h"
     15 
     16 static const char funcName[] = "SkOpSegment::operator<";
     17 static const int bugChar = strlen(funcName) + 1;
     18 #endif
     19 
     20 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
     21    positive y. The largest angle has a positive x and a zero y. */
     22 
     23 #if DEBUG_ANGLE
     24     static bool CompareResult(SkString* bugOut, const char* append, bool compare) {
     25         bugOut->appendf("%s", append);
     26         bugOut->writable_str()[bugChar] = "><"[compare];
     27         SkDebugf("%s\n", bugOut->c_str());
     28         return compare;
     29     }
     30 
     31     #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
     32 #else
     33     #define COMPARE_RESULT(append, compare) compare
     34 #endif
     35 
     36 bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const{
     37     double absX = fabs(x);
     38     double absY = fabs(y);
     39     double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
     40     int exponent;
     41     (void) frexp(length, &exponent);
     42     double epsilon = ldexp(FLT_EPSILON, exponent);
     43     SkPath::Verb verb = fSegment->verb();
     44     SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
     45     // FIXME: the quad and cubic factors are made up ; determine actual values
     46     double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
     47     double xSlop = slop;
     48     double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
     49     double x1 = x - xSlop;
     50     double y1 = y + ySlop;
     51     double x_ry1 = x1 * ry;
     52     double rx_y1 = rx * y1;
     53     *result = x_ry1 < rx_y1;
     54     double x2 = x + xSlop;
     55     double y2 = y - ySlop;
     56     double x_ry2 = x2 * ry;
     57     double rx_y2 = rx * y2;
     58     bool less2 = x_ry2 < rx_y2;
     59     return *result == less2;
     60 }
     61 
     62 /*
     63 for quads and cubics, set up a parameterized line (e.g. LineParameters )
     64 for points [0] to [1]. See if point [2] is on that line, or on one side
     65 or the other. If it both quads' end points are on the same side, choose
     66 the shorter tangent. If the tangents are equal, choose the better second
     67 tangent angle
     68 
     69 FIXME: maybe I could set up LineParameters lazily
     70 */
     71 bool SkOpAngle::operator<(const SkOpAngle& rh) const {  // this/lh: left-hand; rh: right-hand
     72     double y = dy();
     73     double ry = rh.dy();
     74 #if DEBUG_ANGLE
     75     SkString bugOut;
     76     bugOut.printf("%s _ id=%d segId=%d tStart=%1.9g tEnd=%1.9g"
     77         " | id=%d segId=%d tStart=%1.9g tEnd=%1.9g ", funcName,
     78         fID, fSegment->debugID(), fSegment->t(fStart), fSegment->t(fEnd),
     79         rh.fID, rh.fSegment->debugID(), rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
     80 #endif
     81     double y_ry = y * ry;
     82     if (y_ry < 0) {  // if y's are opposite signs, we can do a quick return
     83         return COMPARE_RESULT("1 y * ry < 0", y < 0);
     84     }
     85     // at this point, both y's must be the same sign, or one (or both) is zero
     86     double x = dx();
     87     double rx = rh.dx();
     88     if (x * rx < 0) {  // if x's are opposite signs, use y to determine first or second half
     89         if (y < 0 && ry < 0) {  // if y's are negative, lh x is smaller if positive
     90             return COMPARE_RESULT("2 x_rx < 0 && y < 0 ...", x > 0);
     91         }
     92         if (y >= 0 && ry >= 0) {  // if y's are zero or positive, lh x is smaller if negative
     93             return COMPARE_RESULT("3 x_rx < 0 && y >= 0 ...", x < 0);
     94         }
     95         SkASSERT((y == 0) ^ (ry == 0));  // if one y is zero and one is negative, neg y is smaller
     96         return COMPARE_RESULT("4 x_rx < 0 && y == 0 ...", y < 0);
     97     }
     98     // at this point, both x's must be the same sign, or one (or both) is zero
     99     if (y_ry == 0) { // if either y is zero
    100         if (y + ry < 0) { // if the other y is less than zero, it must be smaller
    101             return COMPARE_RESULT("5 y_ry == 0 && y + ry < 0", y < 0);
    102         }
    103         if (y + ry > 0) { // if a y is greater than zero and an x is positive,  non zero is smaller
    104             return COMPARE_RESULT("6 y_ry == 0 && y + ry > 0", (x + rx > 0) ^ (y == 0));
    105         }
    106         // at this point, both y's are zero, so lines are coincident or one is degenerate
    107         SkASSERT(x * rx != 0);  // and a degenerate line should haven't gotten this far
    108     }
    109     // see if either curve can be lengthened before trying the tangent
    110     if (fSegment->other(fEnd) != rh.fSegment  // tangents not absolutely identical
    111             && rh.fSegment->other(rh.fEnd) != fSegment
    112             && y != -DBL_EPSILON
    113             && ry != -DBL_EPSILON) {  // and not intersecting
    114         SkOpAngle longer = *this;
    115         SkOpAngle rhLonger = rh;
    116         if ((longer.lengthen(rh) | rhLonger.lengthen(*this))  // lengthen both
    117                 && (fUnorderable || !longer.fUnorderable)
    118                 && (rh.fUnorderable || !rhLonger.fUnorderable)) {
    119 #if DEBUG_ANGLE
    120             bugOut.prepend("  ");
    121 #endif
    122             return COMPARE_RESULT("10 longer.lengthen(rh) ...", longer < rhLonger);
    123         }
    124     }
    125     SkPath::Verb verb = fSegment->verb();
    126     SkPath::Verb rVerb = rh.fSegment->verb();
    127     if (y_ry != 0) { // if they aren't coincident, look for a stable cross product
    128         // at this point, y's are the same sign, neither is zero
    129         //   and x's are the same sign, or one (or both) is zero
    130         double x_ry = x * ry;
    131         double rx_y = rx * y;
    132         if (!fComputed && !rh.fComputed) {
    133             if (!SkDLine::NearRay(x, y, rx, ry) && x_ry != rx_y) {
    134                 return COMPARE_RESULT("7 !fComputed && !rh.fComputed", x_ry < rx_y);
    135             }
    136             if (fSide2 == 0 && rh.fSide2 == 0) {
    137                 return COMPARE_RESULT("7a !fComputed && !rh.fComputed", x_ry < rx_y);
    138             }
    139         } else {
    140             // if the vector was a result of subdividing a curve, see if it is stable
    141             bool sloppy1 = x_ry < rx_y;
    142             bool sloppy2 = !sloppy1;
    143             if ((!fComputed || calcSlop(x, y, rx, ry, &sloppy1))
    144                     && (!rh.fComputed || rh.calcSlop(rx, ry, x, y, &sloppy2))
    145                     && sloppy1 != sloppy2) {
    146                 return COMPARE_RESULT("8 CalcSlop(x, y ...", sloppy1);
    147             }
    148         }
    149     }
    150     if (fSide2 * rh.fSide2 == 0) {  // one is zero
    151 #if DEBUG_ANGLE
    152         if (fSide2 == rh.fSide2 && y_ry) {  // both is zero; coincidence was undetected
    153             SkDebugf("%s coincidence!\n", __FUNCTION__);
    154         }
    155 #endif
    156         return COMPARE_RESULT("9a fSide2 * rh.fSide2 == 0 ...", fSide2 < rh.fSide2);
    157     }
    158     // at this point, the initial tangent line is nearly coincident
    159     // see if edges curl away from each other
    160     if (fSide * rh.fSide < 0 && (!approximately_zero(fSide) || !approximately_zero(rh.fSide))) {
    161         return COMPARE_RESULT("9b fSide * rh.fSide < 0 ...", fSide < rh.fSide);
    162     }
    163     if (fUnsortable || rh.fUnsortable) {
    164         // even with no solution, return a stable sort
    165         return COMPARE_RESULT("11 fUnsortable || rh.fUnsortable", this < &rh);
    166     }
    167     if ((verb == SkPath::kLine_Verb && approximately_zero(y) && approximately_zero(x))
    168             || (rVerb == SkPath::kLine_Verb
    169             && approximately_zero(ry) && approximately_zero(rx))) {
    170         // See general unsortable comment below. This case can happen when
    171         // one line has a non-zero change in t but no change in x and y.
    172         fUnsortable = true;
    173         return COMPARE_RESULT("12 verb == SkPath::kLine_Verb ...", this < &rh);
    174     }
    175     if (fSegment->isTiny(this) || rh.fSegment->isTiny(&rh)) {
    176         fUnsortable = true;
    177         return COMPARE_RESULT("13 verb == fSegment->isTiny(this) ...", this < &rh);
    178     }
    179     SkASSERT(verb >= SkPath::kQuad_Verb);
    180     SkASSERT(rVerb >= SkPath::kQuad_Verb);
    181     // FIXME: until I can think of something better, project a ray from the
    182     // end of the shorter tangent to midway between the end points
    183     // through both curves and use the resulting angle to sort
    184     // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
    185     double len = fTangentPart.normalSquared();
    186     double rlen = rh.fTangentPart.normalSquared();
    187     SkDLine ray;
    188     SkIntersections i, ri;
    189     int roots, rroots;
    190     bool flip = false;
    191     bool useThis;
    192     bool leftLessThanRight = fSide > 0;
    193     do {
    194         useThis = (len < rlen) ^ flip;
    195         const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart;
    196         SkPath::Verb partVerb = useThis ? verb : rVerb;
    197         ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ?
    198             part[2] : part[1];
    199         ray[1] = SkDPoint::Mid(part[0], part[SkPathOpsVerbToPoints(partVerb)]);
    200         SkASSERT(ray[0] != ray[1]);
    201         roots = (i.*CurveRay[SkPathOpsVerbToPoints(verb)])(fSegment->pts(), ray);
    202         rroots = (ri.*CurveRay[SkPathOpsVerbToPoints(rVerb)])(rh.fSegment->pts(), ray);
    203     } while ((roots == 0 || rroots == 0) && (flip ^= true));
    204     if (roots == 0 || rroots == 0) {
    205         // FIXME: we don't have a solution in this case. The interim solution
    206         // is to mark the edges as unsortable, exclude them from this and
    207         // future computations, and allow the returned path to be fragmented
    208         fUnsortable = true;
    209         return COMPARE_RESULT("roots == 0 || rroots == 0", this < &rh);
    210     }
    211     SkASSERT(fSide != 0 && rh.fSide != 0);
    212     if (fSide * rh.fSide < 0) {
    213         fUnsortable = true;
    214         return COMPARE_RESULT("14 fSide * rh.fSide < 0", this < &rh);
    215     }
    216     SkDPoint lLoc;
    217     double best = SK_ScalarInfinity;
    218 #if DEBUG_SORT
    219     SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n",
    220             fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY,
    221             ray[1].fX, ray[1].fY, "-+"[fSide > 0]);
    222 #endif
    223     for (int index = 0; index < roots; ++index) {
    224         SkDPoint loc = i.pt(index);
    225         SkDVector dxy = loc - ray[0];
    226         double dist = dxy.lengthSquared();
    227 #if DEBUG_SORT
    228         SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
    229                 best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY);
    230 #endif
    231         if (best > dist) {
    232             lLoc = loc;
    233             best = dist;
    234         }
    235     }
    236     flip = false;
    237     SkDPoint rLoc;
    238     for (int index = 0; index < rroots; ++index) {
    239         rLoc = ri.pt(index);
    240         SkDVector dxy = rLoc - ray[0];
    241         double dist = dxy.lengthSquared();
    242 #if DEBUG_SORT
    243         SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n",
    244                 best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY);
    245 #endif
    246         if (best > dist) {
    247             flip = true;
    248             break;
    249         }
    250     }
    251     if (flip) {
    252         leftLessThanRight = !leftLessThanRight;
    253     }
    254     return COMPARE_RESULT("15 leftLessThanRight", leftLessThanRight);
    255 }
    256 
    257 bool SkOpAngle::isHorizontal() const {
    258     return dy() == 0 && fSegment->verb() == SkPath::kLine_Verb;
    259 }
    260 
    261 // lengthen cannot cross opposite angle
    262 bool SkOpAngle::lengthen(const SkOpAngle& opp) {
    263     if (fSegment->other(fEnd) == opp.fSegment) {
    264         return false;
    265     }
    266     // FIXME: make this a while loop instead and make it as large as possible?
    267     int newEnd = fEnd;
    268     if (fStart < fEnd ? ++newEnd < fSegment->count() : --newEnd >= 0) {
    269         fEnd = newEnd;
    270         setSpans();
    271         return true;
    272     }
    273     return false;
    274 }
    275 
    276 void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
    277     fSegment = segment;
    278     fStart = start;
    279     fEnd = end;
    280     setSpans();
    281 }
    282 
    283 void SkOpAngle::setSpans() {
    284     fUnorderable = fSegment->isTiny(this);
    285     fLastMarked = NULL;
    286     fUnsortable = false;
    287     const SkPoint* pts = fSegment->pts();
    288     if (fSegment->verb() != SkPath::kLine_Verb) {
    289         fComputed = fSegment->subDivide(fStart, fEnd, &fCurvePart);
    290         fSegment->subDivide(fStart, fStart < fEnd ? fSegment->count() - 1 : 0, &fCurveHalf);
    291     }
    292     // FIXME: slight errors in subdivision cause sort trouble later on. As an experiment, try
    293     // rounding the curve part to float precision here
    294     // fCurvePart.round(fSegment->verb());
    295     switch (fSegment->verb()) {
    296     case SkPath::kLine_Verb: {
    297         SkASSERT(fStart != fEnd);
    298         fCurvePart[0].set(pts[fStart > fEnd]);
    299         fCurvePart[1].set(pts[fStart < fEnd]);
    300         fComputed = false;
    301         // OPTIMIZATION: for pure line compares, we never need fTangentPart.c
    302         fTangentPart.lineEndPoints(*SkTCast<SkDLine*>(&fCurvePart));
    303         fSide = 0;
    304         fSide2 = 0;
    305         } break;
    306     case SkPath::kQuad_Verb: {
    307         fSide2 = -fTangentHalf.quadPart(*SkTCast<SkDQuad*>(&fCurveHalf));
    308         SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart);
    309         fTangentPart.quadEndPoints(quad);
    310         fSide = -fTangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
    311         if (fComputed && dx() > 0 && approximately_zero(dy())) {
    312             SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
    313             int last = fSegment->count() - 1;
    314             fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
    315             SkLineParameters origTan;
    316             origTan.quadEndPoints(*SkTCast<SkDQuad*>(&origCurve));
    317             if (origTan.dx() <= 0
    318                     || (dy() != origTan.dy() && dy() * origTan.dy() <= 0)) { // signs match?
    319                 fUnorderable = true;
    320                 return;
    321             }
    322         }
    323         } break;
    324     case SkPath::kCubic_Verb: {
    325         double startT = fSegment->t(fStart);
    326         fSide2 = -fTangentHalf.cubicPart(fCurveHalf);
    327         fTangentPart.cubicEndPoints(fCurvePart);
    328         double testTs[4];
    329         // OPTIMIZATION: keep inflections precomputed with cubic segment?
    330         int testCount = SkDCubic::FindInflections(pts, testTs);
    331         double endT = fSegment->t(fEnd);
    332         double limitT = endT;
    333         int index;
    334         for (index = 0; index < testCount; ++index) {
    335             if (!between(startT, testTs[index], limitT)) {
    336                 testTs[index] = -1;
    337             }
    338         }
    339         testTs[testCount++] = startT;
    340         testTs[testCount++] = endT;
    341         SkTQSort<double>(testTs, &testTs[testCount - 1]);
    342         double bestSide = 0;
    343         int testCases = (testCount << 1) - 1;
    344         index = 0;
    345         while (testTs[index] < 0) {
    346             ++index;
    347         }
    348         index <<= 1;
    349         for (; index < testCases; ++index) {
    350             int testIndex = index >> 1;
    351             double testT = testTs[testIndex];
    352             if (index & 1) {
    353                 testT = (testT + testTs[testIndex + 1]) / 2;
    354             }
    355             // OPTIMIZE: could avoid call for t == startT, endT
    356             SkDPoint pt = dcubic_xy_at_t(pts, testT);
    357             double testSide = fTangentPart.pointDistance(pt);
    358             if (fabs(bestSide) < fabs(testSide)) {
    359                 bestSide = testSide;
    360             }
    361         }
    362         fSide = -bestSide;  // compare sign only
    363         SkASSERT(fSide == 0 || fSide2 != 0);
    364         if (fComputed && dx() > 0 && approximately_zero(dy())) {
    365             SkDCubic origCurve; // can't use segment's curve in place since it may be flipped
    366             int last = fSegment->count() - 1;
    367             fSegment->subDivide(fStart < fEnd ? 0 : last, fStart < fEnd ? last : 0, &origCurve);
    368             SkDCubicPair split = origCurve.chopAt(startT);
    369             SkLineParameters splitTan;
    370             splitTan.cubicEndPoints(fStart < fEnd ? split.second() : split.first());
    371             if (splitTan.dx() <= 0) {
    372                 fUnorderable = true;
    373                 fUnsortable = fSegment->isTiny(this);
    374                 return;
    375             }
    376             // if one is < 0 and the other is >= 0
    377             if (dy() * splitTan.dy() < 0) {
    378                 fUnorderable = true;
    379                 fUnsortable = fSegment->isTiny(this);
    380                 return;
    381             }
    382         }
    383         } break;
    384     default:
    385         SkASSERT(0);
    386     }
    387     if ((fUnsortable = approximately_zero(dx()) && approximately_zero(dy()))) {
    388         return;
    389     }
    390     if (fSegment->verb() == SkPath::kLine_Verb) {
    391         return;
    392     }
    393     SkASSERT(fStart != fEnd);
    394     int smaller = SkMin32(fStart, fEnd);
    395     int larger = SkMax32(fStart, fEnd);
    396     while (smaller < larger && fSegment->span(smaller).fTiny) {
    397         ++smaller;
    398     }
    399     if (precisely_equal(fSegment->span(smaller).fT, fSegment->span(larger).fT)) {
    400     #if DEBUG_UNSORTABLE
    401         SkPoint iPt = fSegment->xyAtT(fStart);
    402         SkPoint ePt = fSegment->xyAtT(fEnd);
    403         SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
    404             fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
    405     #endif
    406         fUnsortable = true;
    407         return;
    408     }
    409     fUnsortable = fStart < fEnd ? fSegment->span(smaller).fUnsortableStart
    410             : fSegment->span(larger).fUnsortableEnd;
    411 #if DEBUG_UNSORTABLE
    412     if (fUnsortable) {
    413         SkPoint iPt = fSegment->xyAtT(smaller);
    414         SkPoint ePt = fSegment->xyAtT(larger);
    415         SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
    416                 smaller, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
    417     }
    418 #endif
    419     return;
    420 }
    421 
    422 #ifdef SK_DEBUG
    423 void SkOpAngle::dump() const {
    424     const SkOpSpan& spanStart = fSegment->span(fStart);
    425     const SkOpSpan& spanEnd = fSegment->span(fEnd);
    426     const SkOpSpan& spanMin = fStart < fEnd ? spanStart : spanEnd;
    427     SkDebugf("id=%d (%1.9g,%1.9g) start=%d (%1.9g) end=%d (%1.9g) sumWind=",
    428             fSegment->debugID(), fSegment->xAtT(fStart), fSegment->yAtT(fStart),
    429             fStart, spanStart.fT, fEnd, spanEnd.fT);
    430     SkPathOpsDebug::WindingPrintf(spanMin.fWindSum);
    431     SkDebugf(" oppWind=");
    432     SkPathOpsDebug::WindingPrintf(spanMin.fOppSum),
    433     SkDebugf(" done=%d\n", spanMin.fDone);
    434 }
    435 #endif
    436