1 2 /* 3 * Copyright 2011 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8 9 10 #include "SkPDFShader.h" 11 12 #include "SkData.h" 13 #include "SkPDFCatalog.h" 14 #include "SkPDFDevice.h" 15 #include "SkPDFFormXObject.h" 16 #include "SkPDFGraphicState.h" 17 #include "SkPDFResourceDict.h" 18 #include "SkPDFUtils.h" 19 #include "SkScalar.h" 20 #include "SkStream.h" 21 #include "SkTemplates.h" 22 #include "SkThread.h" 23 #include "SkTSet.h" 24 #include "SkTypes.h" 25 26 static bool inverseTransformBBox(const SkMatrix& matrix, SkRect* bbox) { 27 SkMatrix inverse; 28 if (!matrix.invert(&inverse)) { 29 return false; 30 } 31 inverse.mapRect(bbox); 32 return true; 33 } 34 35 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) { 36 SkVector vec = pts[1] - pts[0]; 37 SkScalar mag = vec.length(); 38 SkScalar inv = mag ? SkScalarInvert(mag) : 0; 39 40 vec.scale(inv); 41 matrix->setSinCos(vec.fY, vec.fX); 42 matrix->preScale(mag, mag); 43 matrix->postTranslate(pts[0].fX, pts[0].fY); 44 } 45 46 /* Assumes t + startOffset is on the stack and does a linear interpolation on t 47 between startOffset and endOffset from prevColor to curColor (for each color 48 component), leaving the result in component order on the stack. It assumes 49 there are always 3 components per color. 50 @param range endOffset - startOffset 51 @param curColor[components] The current color components. 52 @param prevColor[components] The previous color components. 53 @param result The result ps function. 54 */ 55 static void interpolateColorCode(SkScalar range, SkScalar* curColor, 56 SkScalar* prevColor, SkString* result) { 57 SkASSERT(range != SkIntToScalar(0)); 58 static const int kColorComponents = 3; 59 60 // Figure out how to scale each color component. 61 SkScalar multiplier[kColorComponents]; 62 for (int i = 0; i < kColorComponents; i++) { 63 multiplier[i] = SkScalarDiv(curColor[i] - prevColor[i], range); 64 } 65 66 // Calculate when we no longer need to keep a copy of the input parameter t. 67 // If the last component to use t is i, then dupInput[0..i - 1] = true 68 // and dupInput[i .. components] = false. 69 bool dupInput[kColorComponents]; 70 dupInput[kColorComponents - 1] = false; 71 for (int i = kColorComponents - 2; i >= 0; i--) { 72 dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0; 73 } 74 75 if (!dupInput[0] && multiplier[0] == 0) { 76 result->append("pop "); 77 } 78 79 for (int i = 0; i < kColorComponents; i++) { 80 // If the next components needs t and this component will consume a 81 // copy, make another copy. 82 if (dupInput[i] && multiplier[i] != 0) { 83 result->append("dup "); 84 } 85 86 if (multiplier[i] == 0) { 87 result->appendScalar(prevColor[i]); 88 result->append(" "); 89 } else { 90 if (multiplier[i] != 1) { 91 result->appendScalar(multiplier[i]); 92 result->append(" mul "); 93 } 94 if (prevColor[i] != 0) { 95 result->appendScalar(prevColor[i]); 96 result->append(" add "); 97 } 98 } 99 100 if (dupInput[i]) { 101 result->append("exch\n"); 102 } 103 } 104 } 105 106 /* Generate Type 4 function code to map t=[0,1) to the passed gradient, 107 clamping at the edges of the range. The generated code will be of the form: 108 if (t < 0) { 109 return colorData[0][r,g,b]; 110 } else { 111 if (t < info.fColorOffsets[1]) { 112 return linearinterpolation(colorData[0][r,g,b], 113 colorData[1][r,g,b]); 114 } else { 115 if (t < info.fColorOffsets[2]) { 116 return linearinterpolation(colorData[1][r,g,b], 117 colorData[2][r,g,b]); 118 } else { 119 120 ... } else { 121 return colorData[info.fColorCount - 1][r,g,b]; 122 } 123 ... 124 } 125 } 126 */ 127 static void gradientFunctionCode(const SkShader::GradientInfo& info, 128 SkString* result) { 129 /* We want to linearly interpolate from the previous color to the next. 130 Scale the colors from 0..255 to 0..1 and determine the multipliers 131 for interpolation. 132 C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}. 133 */ 134 static const int kColorComponents = 3; 135 typedef SkScalar ColorTuple[kColorComponents]; 136 SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount); 137 ColorTuple *colorData = colorDataAlloc.get(); 138 const SkScalar scale = SkScalarInvert(SkIntToScalar(255)); 139 for (int i = 0; i < info.fColorCount; i++) { 140 colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale); 141 colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale); 142 colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale); 143 } 144 145 // Clamp the initial color. 146 result->append("dup 0 le {pop "); 147 result->appendScalar(colorData[0][0]); 148 result->append(" "); 149 result->appendScalar(colorData[0][1]); 150 result->append(" "); 151 result->appendScalar(colorData[0][2]); 152 result->append(" }\n"); 153 154 // The gradient colors. 155 int gradients = 0; 156 for (int i = 1 ; i < info.fColorCount; i++) { 157 if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) { 158 continue; 159 } 160 gradients++; 161 162 result->append("{dup "); 163 result->appendScalar(info.fColorOffsets[i]); 164 result->append(" le {"); 165 if (info.fColorOffsets[i - 1] != 0) { 166 result->appendScalar(info.fColorOffsets[i - 1]); 167 result->append(" sub\n"); 168 } 169 170 interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1], 171 colorData[i], colorData[i - 1], result); 172 result->append("}\n"); 173 } 174 175 // Clamp the final color. 176 result->append("{pop "); 177 result->appendScalar(colorData[info.fColorCount - 1][0]); 178 result->append(" "); 179 result->appendScalar(colorData[info.fColorCount - 1][1]); 180 result->append(" "); 181 result->appendScalar(colorData[info.fColorCount - 1][2]); 182 183 for (int i = 0 ; i < gradients + 1; i++) { 184 result->append("} ifelse\n"); 185 } 186 } 187 188 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */ 189 static void tileModeCode(SkShader::TileMode mode, SkString* result) { 190 if (mode == SkShader::kRepeat_TileMode) { 191 result->append("dup truncate sub\n"); // Get the fractional part. 192 result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1) 193 return; 194 } 195 196 if (mode == SkShader::kMirror_TileMode) { 197 // Map t mod 2 into [0, 1, 1, 0]. 198 // Code Stack 199 result->append("abs " // Map negative to positive. 200 "dup " // t.s t.s 201 "truncate " // t.s t 202 "dup " // t.s t t 203 "cvi " // t.s t T 204 "2 mod " // t.s t (i mod 2) 205 "1 eq " // t.s t true|false 206 "3 1 roll " // true|false t.s t 207 "sub " // true|false 0.s 208 "exch " // 0.s true|false 209 "{1 exch sub} if\n"); // 1 - 0.s|0.s 210 } 211 } 212 213 /** 214 * Returns PS function code that applies inverse perspective 215 * to a x, y point. 216 * The function assumes that the stack has at least two elements, 217 * and that the top 2 elements are numeric values. 218 * After executing this code on a PS stack, the last 2 elements are updated 219 * while the rest of the stack is preserved intact. 220 * inversePerspectiveMatrix is the inverse perspective matrix. 221 */ 222 static SkString apply_perspective_to_coordinates( 223 const SkMatrix& inversePerspectiveMatrix) { 224 SkString code; 225 if (!inversePerspectiveMatrix.hasPerspective()) { 226 return code; 227 } 228 229 // Perspective matrix should be: 230 // 1 0 0 231 // 0 1 0 232 // p0 p1 p2 233 234 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0]; 235 const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1]; 236 const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2]; 237 238 // y = y / (p2 + p0 x + p1 y) 239 // x = x / (p2 + p0 x + p1 y) 240 241 // Input on stack: x y 242 code.append(" dup "); // x y y 243 code.appendScalar(p1); // x y y p1 244 code.append(" mul " // x y y*p1 245 " 2 index "); // x y y*p1 x 246 code.appendScalar(p0); // x y y p1 x p0 247 code.append(" mul "); // x y y*p1 x*p0 248 code.appendScalar(p2); // x y y p1 x*p0 p2 249 code.append(" add " // x y y*p1 x*p0+p2 250 "add " // x y y*p1+x*p0+p2 251 "3 1 roll " // y*p1+x*p0+p2 x y 252 "2 index " // z x y y*p1+x*p0+p2 253 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2) 254 "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x 255 "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2 256 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2) 257 "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2) 258 return code; 259 } 260 261 static SkString linearCode(const SkShader::GradientInfo& info, 262 const SkMatrix& perspectiveRemover) { 263 SkString function("{"); 264 265 function.append(apply_perspective_to_coordinates(perspectiveRemover)); 266 267 function.append("pop\n"); // Just ditch the y value. 268 tileModeCode(info.fTileMode, &function); 269 gradientFunctionCode(info, &function); 270 function.append("}"); 271 return function; 272 } 273 274 static SkString radialCode(const SkShader::GradientInfo& info, 275 const SkMatrix& perspectiveRemover) { 276 SkString function("{"); 277 278 function.append(apply_perspective_to_coordinates(perspectiveRemover)); 279 280 // Find the distance from the origin. 281 function.append("dup " // x y y 282 "mul " // x y^2 283 "exch " // y^2 x 284 "dup " // y^2 x x 285 "mul " // y^2 x^2 286 "add " // y^2+x^2 287 "sqrt\n"); // sqrt(y^2+x^2) 288 289 tileModeCode(info.fTileMode, &function); 290 gradientFunctionCode(info, &function); 291 function.append("}"); 292 return function; 293 } 294 295 /* The math here is all based on the description in Two_Point_Radial_Gradient, 296 with one simplification, the coordinate space has been scaled so that 297 Dr = 1. This means we don't need to scale the entire equation by 1/Dr^2. 298 */ 299 static SkString twoPointRadialCode(const SkShader::GradientInfo& info, 300 const SkMatrix& perspectiveRemover) { 301 SkScalar dx = info.fPoint[0].fX - info.fPoint[1].fX; 302 SkScalar dy = info.fPoint[0].fY - info.fPoint[1].fY; 303 SkScalar sr = info.fRadius[0]; 304 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - SK_Scalar1; 305 bool posRoot = info.fRadius[1] > info.fRadius[0]; 306 307 // We start with a stack of (x y), copy it and then consume one copy in 308 // order to calculate b and the other to calculate c. 309 SkString function("{"); 310 311 function.append(apply_perspective_to_coordinates(perspectiveRemover)); 312 313 function.append("2 copy "); 314 315 // Calculate -b and b^2. 316 function.appendScalar(dy); 317 function.append(" mul exch "); 318 function.appendScalar(dx); 319 function.append(" mul add "); 320 function.appendScalar(sr); 321 function.append(" sub 2 mul neg dup dup mul\n"); 322 323 // Calculate c 324 function.append("4 2 roll dup mul exch dup mul add "); 325 function.appendScalar(SkScalarMul(sr, sr)); 326 function.append(" sub\n"); 327 328 // Calculate the determinate 329 function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); 330 function.append(" mul sub abs sqrt\n"); 331 332 // And then the final value of t. 333 if (posRoot) { 334 function.append("sub "); 335 } else { 336 function.append("add "); 337 } 338 function.appendScalar(SkScalarMul(SkIntToScalar(2), a)); 339 function.append(" div\n"); 340 341 tileModeCode(info.fTileMode, &function); 342 gradientFunctionCode(info, &function); 343 function.append("}"); 344 return function; 345 } 346 347 /* Conical gradient shader, based on the Canvas spec for radial gradients 348 See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient 349 */ 350 static SkString twoPointConicalCode(const SkShader::GradientInfo& info, 351 const SkMatrix& perspectiveRemover) { 352 SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX; 353 SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY; 354 SkScalar r0 = info.fRadius[0]; 355 SkScalar dr = info.fRadius[1] - info.fRadius[0]; 356 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) - 357 SkScalarMul(dr, dr); 358 359 // First compute t, if the pixel falls outside the cone, then we'll end 360 // with 'false' on the stack, otherwise we'll push 'true' with t below it 361 362 // We start with a stack of (x y), copy it and then consume one copy in 363 // order to calculate b and the other to calculate c. 364 SkString function("{"); 365 366 function.append(apply_perspective_to_coordinates(perspectiveRemover)); 367 368 function.append("2 copy "); 369 370 // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr). 371 function.appendScalar(dy); 372 function.append(" mul exch "); 373 function.appendScalar(dx); 374 function.append(" mul add "); 375 function.appendScalar(SkScalarMul(r0, dr)); 376 function.append(" add -2 mul dup dup mul\n"); 377 378 // c = x^2 + y^2 + radius0^2 379 function.append("4 2 roll dup mul exch dup mul add "); 380 function.appendScalar(SkScalarMul(r0, r0)); 381 function.append(" sub dup 4 1 roll\n"); 382 383 // Contents of the stack at this point: c, b, b^2, c 384 385 // if a = 0, then we collapse to a simpler linear case 386 if (a == 0) { 387 388 // t = -c/b 389 function.append("pop pop div neg dup "); 390 391 // compute radius(t) 392 function.appendScalar(dr); 393 function.append(" mul "); 394 function.appendScalar(r0); 395 function.append(" add\n"); 396 397 // if r(t) < 0, then it's outside the cone 398 function.append("0 lt {pop false} {true} ifelse\n"); 399 400 } else { 401 402 // quadratic case: the Canvas spec wants the largest 403 // root t for which radius(t) > 0 404 405 // compute the discriminant (b^2 - 4ac) 406 function.appendScalar(SkScalarMul(SkIntToScalar(4), a)); 407 function.append(" mul sub dup\n"); 408 409 // if d >= 0, proceed 410 function.append("0 ge {\n"); 411 412 // an intermediate value we'll use to compute the roots: 413 // q = -0.5 * (b +/- sqrt(d)) 414 function.append("sqrt exch dup 0 lt {exch -1 mul} if"); 415 function.append(" add -0.5 mul dup\n"); 416 417 // first root = q / a 418 function.appendScalar(a); 419 function.append(" div\n"); 420 421 // second root = c / q 422 function.append("3 1 roll div\n"); 423 424 // put the larger root on top of the stack 425 function.append("2 copy gt {exch} if\n"); 426 427 // compute radius(t) for larger root 428 function.append("dup "); 429 function.appendScalar(dr); 430 function.append(" mul "); 431 function.appendScalar(r0); 432 function.append(" add\n"); 433 434 // if r(t) > 0, we have our t, pop off the smaller root and we're done 435 function.append(" 0 gt {exch pop true}\n"); 436 437 // otherwise, throw out the larger one and try the smaller root 438 function.append("{pop dup\n"); 439 function.appendScalar(dr); 440 function.append(" mul "); 441 function.appendScalar(r0); 442 function.append(" add\n"); 443 444 // if r(t) < 0, push false, otherwise the smaller root is our t 445 function.append("0 le {pop false} {true} ifelse\n"); 446 function.append("} ifelse\n"); 447 448 // d < 0, clear the stack and push false 449 function.append("} {pop pop pop false} ifelse\n"); 450 } 451 452 // if the pixel is in the cone, proceed to compute a color 453 function.append("{"); 454 tileModeCode(info.fTileMode, &function); 455 gradientFunctionCode(info, &function); 456 457 // otherwise, just write black 458 function.append("} {0 0 0} ifelse }"); 459 460 return function; 461 } 462 463 static SkString sweepCode(const SkShader::GradientInfo& info, 464 const SkMatrix& perspectiveRemover) { 465 SkString function("{exch atan 360 div\n"); 466 tileModeCode(info.fTileMode, &function); 467 gradientFunctionCode(info, &function); 468 function.append("}"); 469 return function; 470 } 471 472 class SkPDFShader::State { 473 public: 474 SkShader::GradientType fType; 475 SkShader::GradientInfo fInfo; 476 SkAutoFree fColorData; // This provides storage for arrays in fInfo. 477 SkMatrix fCanvasTransform; 478 SkMatrix fShaderTransform; 479 SkIRect fBBox; 480 481 SkBitmap fImage; 482 uint32_t fPixelGeneration; 483 SkShader::TileMode fImageTileModes[2]; 484 485 State(const SkShader& shader, const SkMatrix& canvasTransform, 486 const SkIRect& bbox); 487 488 bool operator==(const State& b) const; 489 490 SkPDFShader::State* CreateAlphaToLuminosityState() const; 491 SkPDFShader::State* CreateOpaqueState() const; 492 493 bool GradientHasAlpha() const; 494 495 private: 496 State(const State& other); 497 State operator=(const State& rhs); 498 void AllocateGradientInfoStorage(); 499 }; 500 501 class SkPDFFunctionShader : public SkPDFDict, public SkPDFShader { 502 SK_DECLARE_INST_COUNT(SkPDFFunctionShader) 503 public: 504 explicit SkPDFFunctionShader(SkPDFShader::State* state); 505 virtual ~SkPDFFunctionShader() { 506 if (isValid()) { 507 RemoveShader(this); 508 } 509 fResources.unrefAll(); 510 } 511 512 virtual bool isValid() { return fResources.count() > 0; } 513 514 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, 515 SkTSet<SkPDFObject*>* newResourceObjects) { 516 GetResourcesHelper(&fResources, 517 knownResourceObjects, 518 newResourceObjects); 519 } 520 521 private: 522 static SkPDFObject* RangeObject(); 523 524 SkTDArray<SkPDFObject*> fResources; 525 SkAutoTDelete<const SkPDFShader::State> fState; 526 527 SkPDFStream* makePSFunction(const SkString& psCode, SkPDFArray* domain); 528 typedef SkPDFDict INHERITED; 529 }; 530 531 /** 532 * A shader for PDF gradients. This encapsulates the function shader 533 * inside a tiling pattern while providing a common pattern interface. 534 * The encapsulation allows the use of a SMask for transparency gradients. 535 */ 536 class SkPDFAlphaFunctionShader : public SkPDFStream, public SkPDFShader { 537 public: 538 explicit SkPDFAlphaFunctionShader(SkPDFShader::State* state); 539 virtual ~SkPDFAlphaFunctionShader() { 540 if (isValid()) { 541 RemoveShader(this); 542 } 543 } 544 545 virtual bool isValid() { 546 return fColorShader.get() != NULL; 547 } 548 549 private: 550 SkAutoTDelete<const SkPDFShader::State> fState; 551 552 SkPDFGraphicState* CreateSMaskGraphicState(); 553 554 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, 555 SkTSet<SkPDFObject*>* newResourceObjects) { 556 fResourceDict->getReferencedResources(knownResourceObjects, 557 newResourceObjects, 558 true); 559 } 560 561 SkAutoTUnref<SkPDFObject> fColorShader; 562 SkAutoTUnref<SkPDFResourceDict> fResourceDict; 563 }; 564 565 class SkPDFImageShader : public SkPDFStream, public SkPDFShader { 566 public: 567 explicit SkPDFImageShader(SkPDFShader::State* state); 568 virtual ~SkPDFImageShader() { 569 if (isValid()) { 570 RemoveShader(this); 571 } 572 fResources.unrefAll(); 573 } 574 575 virtual bool isValid() { return size() > 0; } 576 577 void getResources(const SkTSet<SkPDFObject*>& knownResourceObjects, 578 SkTSet<SkPDFObject*>* newResourceObjects) { 579 GetResourcesHelper(&fResources.toArray(), 580 knownResourceObjects, 581 newResourceObjects); 582 } 583 584 private: 585 SkTSet<SkPDFObject*> fResources; 586 SkAutoTDelete<const SkPDFShader::State> fState; 587 }; 588 589 SkPDFShader::SkPDFShader() {} 590 591 // static 592 SkPDFObject* SkPDFShader::GetPDFShaderByState(State* inState) { 593 SkPDFObject* result; 594 595 SkAutoTDelete<State> shaderState(inState); 596 if (shaderState.get()->fType == SkShader::kNone_GradientType && 597 shaderState.get()->fImage.isNull()) { 598 // TODO(vandebo) This drops SKComposeShader on the floor. We could 599 // handle compose shader by pulling things up to a layer, drawing with 600 // the first shader, applying the xfer mode and drawing again with the 601 // second shader, then applying the layer to the original drawing. 602 return NULL; 603 } 604 605 ShaderCanonicalEntry entry(NULL, shaderState.get()); 606 int index = CanonicalShaders().find(entry); 607 if (index >= 0) { 608 result = CanonicalShaders()[index].fPDFShader; 609 result->ref(); 610 return result; 611 } 612 613 bool valid = false; 614 // The PDFShader takes ownership of the shaderSate. 615 if (shaderState.get()->fType == SkShader::kNone_GradientType) { 616 SkPDFImageShader* imageShader = 617 new SkPDFImageShader(shaderState.detach()); 618 valid = imageShader->isValid(); 619 result = imageShader; 620 } else { 621 if (shaderState.get()->GradientHasAlpha()) { 622 SkPDFAlphaFunctionShader* gradientShader = 623 SkNEW_ARGS(SkPDFAlphaFunctionShader, (shaderState.detach())); 624 valid = gradientShader->isValid(); 625 result = gradientShader; 626 } else { 627 SkPDFFunctionShader* functionShader = 628 SkNEW_ARGS(SkPDFFunctionShader, (shaderState.detach())); 629 valid = functionShader->isValid(); 630 result = functionShader; 631 } 632 } 633 if (!valid) { 634 delete result; 635 return NULL; 636 } 637 entry.fPDFShader = result; 638 CanonicalShaders().push(entry); 639 return result; // return the reference that came from new. 640 } 641 642 // static 643 void SkPDFShader::RemoveShader(SkPDFObject* shader) { 644 SkAutoMutexAcquire lock(CanonicalShadersMutex()); 645 ShaderCanonicalEntry entry(shader, NULL); 646 int index = CanonicalShaders().find(entry); 647 SkASSERT(index >= 0); 648 CanonicalShaders().removeShuffle(index); 649 } 650 651 // static 652 SkPDFObject* SkPDFShader::GetPDFShader(const SkShader& shader, 653 const SkMatrix& matrix, 654 const SkIRect& surfaceBBox) { 655 SkAutoMutexAcquire lock(CanonicalShadersMutex()); 656 return GetPDFShaderByState( 657 SkNEW_ARGS(State, (shader, matrix, surfaceBBox))); 658 } 659 660 // static 661 SkTDArray<SkPDFShader::ShaderCanonicalEntry>& SkPDFShader::CanonicalShaders() { 662 // This initialization is only thread safe with gcc. 663 static SkTDArray<ShaderCanonicalEntry> gCanonicalShaders; 664 return gCanonicalShaders; 665 } 666 667 // static 668 SkBaseMutex& SkPDFShader::CanonicalShadersMutex() { 669 // This initialization is only thread safe with gcc or when 670 // POD-style mutex initialization is used. 671 SK_DECLARE_STATIC_MUTEX(gCanonicalShadersMutex); 672 return gCanonicalShadersMutex; 673 } 674 675 // static 676 SkPDFObject* SkPDFFunctionShader::RangeObject() { 677 // This initialization is only thread safe with gcc. 678 static SkPDFArray* range = NULL; 679 // This method is only used with CanonicalShadersMutex, so it's safe to 680 // populate domain. 681 if (range == NULL) { 682 range = new SkPDFArray; 683 range->reserve(6); 684 range->appendInt(0); 685 range->appendInt(1); 686 range->appendInt(0); 687 range->appendInt(1); 688 range->appendInt(0); 689 range->appendInt(1); 690 } 691 return range; 692 } 693 694 static SkPDFResourceDict* get_gradient_resource_dict( 695 SkPDFObject* functionShader, 696 SkPDFObject* gState) { 697 SkPDFResourceDict* dict = new SkPDFResourceDict(); 698 699 if (functionShader != NULL) { 700 dict->insertResourceAsReference( 701 SkPDFResourceDict::kPattern_ResourceType, 0, functionShader); 702 } 703 if (gState != NULL) { 704 dict->insertResourceAsReference( 705 SkPDFResourceDict::kExtGState_ResourceType, 0, gState); 706 } 707 708 return dict; 709 } 710 711 static void populate_tiling_pattern_dict(SkPDFDict* pattern, 712 SkRect& bbox, SkPDFDict* resources, 713 const SkMatrix& matrix) { 714 const int kTiling_PatternType = 1; 715 const int kColoredTilingPattern_PaintType = 1; 716 const int kConstantSpacing_TilingType = 1; 717 718 pattern->insertName("Type", "Pattern"); 719 pattern->insertInt("PatternType", kTiling_PatternType); 720 pattern->insertInt("PaintType", kColoredTilingPattern_PaintType); 721 pattern->insertInt("TilingType", kConstantSpacing_TilingType); 722 pattern->insert("BBox", SkPDFUtils::RectToArray(bbox))->unref(); 723 pattern->insertScalar("XStep", bbox.width()); 724 pattern->insertScalar("YStep", bbox.height()); 725 pattern->insert("Resources", resources); 726 if (!matrix.isIdentity()) { 727 pattern->insert("Matrix", SkPDFUtils::MatrixToArray(matrix))->unref(); 728 } 729 } 730 731 /** 732 * Creates a content stream which fills the pattern P0 across bounds. 733 * @param gsIndex A graphics state resource index to apply, or <0 if no 734 * graphics state to apply. 735 */ 736 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) { 737 SkDynamicMemoryWStream content; 738 if (gsIndex >= 0) { 739 SkPDFUtils::ApplyGraphicState(gsIndex, &content); 740 } 741 SkPDFUtils::ApplyPattern(0, &content); 742 SkPDFUtils::AppendRectangle(bounds, &content); 743 SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType, 744 &content); 745 746 return content.detachAsStream(); 747 } 748 749 /** 750 * Creates a ExtGState with the SMask set to the luminosityShader in 751 * luminosity mode. The shader pattern extends to the bbox. 752 */ 753 SkPDFGraphicState* SkPDFAlphaFunctionShader::CreateSMaskGraphicState() { 754 SkRect bbox; 755 bbox.set(fState.get()->fBBox); 756 757 SkAutoTUnref<SkPDFObject> luminosityShader( 758 SkPDFShader::GetPDFShaderByState( 759 fState->CreateAlphaToLuminosityState())); 760 761 SkAutoTUnref<SkStream> alphaStream(create_pattern_fill_content(-1, bbox)); 762 763 SkAutoTUnref<SkPDFResourceDict> 764 resources(get_gradient_resource_dict(luminosityShader, NULL)); 765 766 SkAutoTUnref<SkPDFFormXObject> alphaMask( 767 new SkPDFFormXObject(alphaStream.get(), bbox, resources.get())); 768 769 return SkPDFGraphicState::GetSMaskGraphicState( 770 alphaMask.get(), false, 771 SkPDFGraphicState::kLuminosity_SMaskMode); 772 } 773 774 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state) 775 : fState(state) { 776 SkRect bbox; 777 bbox.set(fState.get()->fBBox); 778 779 fColorShader.reset( 780 SkPDFShader::GetPDFShaderByState(state->CreateOpaqueState())); 781 782 // Create resource dict with alpha graphics state as G0 and 783 // pattern shader as P0, then write content stream. 784 SkAutoTUnref<SkPDFGraphicState> alphaGs(CreateSMaskGraphicState()); 785 fResourceDict.reset( 786 get_gradient_resource_dict(fColorShader.get(), alphaGs.get())); 787 788 SkAutoTUnref<SkStream> colorStream( 789 create_pattern_fill_content(0, bbox)); 790 setData(colorStream.get()); 791 792 populate_tiling_pattern_dict(this, bbox, fResourceDict.get(), 793 SkMatrix::I()); 794 } 795 796 // Finds affine and persp such that in = affine * persp. 797 // but it returns the inverse of perspective matrix. 798 static bool split_perspective(const SkMatrix in, SkMatrix* affine, 799 SkMatrix* perspectiveInverse) { 800 const SkScalar p2 = in[SkMatrix::kMPersp2]; 801 802 if (SkScalarNearlyZero(p2)) { 803 return false; 804 } 805 806 const SkScalar zero = SkIntToScalar(0); 807 const SkScalar one = SkIntToScalar(1); 808 809 const SkScalar sx = in[SkMatrix::kMScaleX]; 810 const SkScalar kx = in[SkMatrix::kMSkewX]; 811 const SkScalar tx = in[SkMatrix::kMTransX]; 812 const SkScalar ky = in[SkMatrix::kMSkewY]; 813 const SkScalar sy = in[SkMatrix::kMScaleY]; 814 const SkScalar ty = in[SkMatrix::kMTransY]; 815 const SkScalar p0 = in[SkMatrix::kMPersp0]; 816 const SkScalar p1 = in[SkMatrix::kMPersp1]; 817 818 // Perspective matrix would be: 819 // 1 0 0 820 // 0 1 0 821 // p0 p1 p2 822 // But we need the inverse of persp. 823 perspectiveInverse->setAll(one, zero, zero, 824 zero, one, zero, 825 -p0/p2, -p1/p2, 1/p2); 826 827 affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2, 828 ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2, 829 zero, zero, one); 830 831 return true; 832 } 833 834 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state) 835 : SkPDFDict("Pattern"), 836 fState(state) { 837 SkString (*codeFunction)(const SkShader::GradientInfo& info, 838 const SkMatrix& perspectiveRemover) = NULL; 839 SkPoint transformPoints[2]; 840 841 // Depending on the type of the gradient, we want to transform the 842 // coordinate space in different ways. 843 const SkShader::GradientInfo* info = &fState.get()->fInfo; 844 transformPoints[0] = info->fPoint[0]; 845 transformPoints[1] = info->fPoint[1]; 846 switch (fState.get()->fType) { 847 case SkShader::kLinear_GradientType: 848 codeFunction = &linearCode; 849 break; 850 case SkShader::kRadial_GradientType: 851 transformPoints[1] = transformPoints[0]; 852 transformPoints[1].fX += info->fRadius[0]; 853 codeFunction = &radialCode; 854 break; 855 case SkShader::kRadial2_GradientType: { 856 // Bail out if the radii are the same. Empty fResources signals 857 // an error and isValid will return false. 858 if (info->fRadius[0] == info->fRadius[1]) { 859 return; 860 } 861 transformPoints[1] = transformPoints[0]; 862 SkScalar dr = info->fRadius[1] - info->fRadius[0]; 863 transformPoints[1].fX += dr; 864 codeFunction = &twoPointRadialCode; 865 break; 866 } 867 case SkShader::kConical_GradientType: { 868 transformPoints[1] = transformPoints[0]; 869 transformPoints[1].fX += SK_Scalar1; 870 codeFunction = &twoPointConicalCode; 871 break; 872 } 873 case SkShader::kSweep_GradientType: 874 transformPoints[1] = transformPoints[0]; 875 transformPoints[1].fX += SK_Scalar1; 876 codeFunction = &sweepCode; 877 break; 878 case SkShader::kColor_GradientType: 879 case SkShader::kNone_GradientType: 880 default: 881 return; 882 } 883 884 // Move any scaling (assuming a unit gradient) or translation 885 // (and rotation for linear gradient), of the final gradient from 886 // info->fPoints to the matrix (updating bbox appropriately). Now 887 // the gradient can be drawn on on the unit segment. 888 SkMatrix mapperMatrix; 889 unitToPointsMatrix(transformPoints, &mapperMatrix); 890 891 SkMatrix finalMatrix = fState.get()->fCanvasTransform; 892 finalMatrix.preConcat(fState.get()->fShaderTransform); 893 finalMatrix.preConcat(mapperMatrix); 894 895 // Preserves as much as posible in the final matrix, and only removes 896 // the perspective. The inverse of the perspective is stored in 897 // perspectiveInverseOnly matrix and has 3 useful numbers 898 // (p0, p1, p2), while everything else is either 0 or 1. 899 // In this way the shader will handle it eficiently, with minimal code. 900 SkMatrix perspectiveInverseOnly = SkMatrix::I(); 901 if (finalMatrix.hasPerspective()) { 902 if (!split_perspective(finalMatrix, 903 &finalMatrix, &perspectiveInverseOnly)) { 904 return; 905 } 906 } 907 908 SkRect bbox; 909 bbox.set(fState.get()->fBBox); 910 if (!inverseTransformBBox(finalMatrix, &bbox)) { 911 return; 912 } 913 914 SkAutoTUnref<SkPDFArray> domain(new SkPDFArray); 915 domain->reserve(4); 916 domain->appendScalar(bbox.fLeft); 917 domain->appendScalar(bbox.fRight); 918 domain->appendScalar(bbox.fTop); 919 domain->appendScalar(bbox.fBottom); 920 921 SkString functionCode; 922 // The two point radial gradient further references fState.get()->fInfo 923 // in translating from x, y coordinates to the t parameter. So, we have 924 // to transform the points and radii according to the calculated matrix. 925 if (fState.get()->fType == SkShader::kRadial2_GradientType) { 926 SkShader::GradientInfo twoPointRadialInfo = *info; 927 SkMatrix inverseMapperMatrix; 928 if (!mapperMatrix.invert(&inverseMapperMatrix)) { 929 return; 930 } 931 inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2); 932 twoPointRadialInfo.fRadius[0] = 933 inverseMapperMatrix.mapRadius(info->fRadius[0]); 934 twoPointRadialInfo.fRadius[1] = 935 inverseMapperMatrix.mapRadius(info->fRadius[1]); 936 functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly); 937 } else { 938 functionCode = codeFunction(*info, perspectiveInverseOnly); 939 } 940 941 SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict); 942 pdfShader->insertInt("ShadingType", 1); 943 pdfShader->insertName("ColorSpace", "DeviceRGB"); 944 pdfShader->insert("Domain", domain.get()); 945 946 SkPDFStream* function = makePSFunction(functionCode, domain.get()); 947 pdfShader->insert("Function", new SkPDFObjRef(function))->unref(); 948 fResources.push(function); // Pass ownership to resource list. 949 950 insertInt("PatternType", 2); 951 insert("Matrix", SkPDFUtils::MatrixToArray(finalMatrix))->unref(); 952 insert("Shading", pdfShader.get()); 953 } 954 955 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state) : fState(state) { 956 fState.get()->fImage.lockPixels(); 957 958 // The image shader pattern cell will be drawn into a separate device 959 // in pattern cell space (no scaling on the bitmap, though there may be 960 // translations so that all content is in the device, coordinates > 0). 961 962 // Map clip bounds to shader space to ensure the device is large enough 963 // to handle fake clamping. 964 SkMatrix finalMatrix = fState.get()->fCanvasTransform; 965 finalMatrix.preConcat(fState.get()->fShaderTransform); 966 SkRect deviceBounds; 967 deviceBounds.set(fState.get()->fBBox); 968 if (!inverseTransformBBox(finalMatrix, &deviceBounds)) { 969 return; 970 } 971 972 const SkBitmap* image = &fState.get()->fImage; 973 SkRect bitmapBounds; 974 image->getBounds(&bitmapBounds); 975 976 // For tiling modes, the bounds should be extended to include the bitmap, 977 // otherwise the bitmap gets clipped out and the shader is empty and awful. 978 // For clamp modes, we're only interested in the clip region, whether 979 // or not the main bitmap is in it. 980 SkShader::TileMode tileModes[2]; 981 tileModes[0] = fState.get()->fImageTileModes[0]; 982 tileModes[1] = fState.get()->fImageTileModes[1]; 983 if (tileModes[0] != SkShader::kClamp_TileMode || 984 tileModes[1] != SkShader::kClamp_TileMode) { 985 deviceBounds.join(bitmapBounds); 986 } 987 988 SkMatrix unflip; 989 unflip.setTranslate(0, SkScalarRoundToScalar(deviceBounds.height())); 990 unflip.preScale(SK_Scalar1, -SK_Scalar1); 991 SkISize size = SkISize::Make(SkScalarRound(deviceBounds.width()), 992 SkScalarRound(deviceBounds.height())); 993 // TODO(edisonn): should we pass here the DCT encoder of the destination device? 994 // TODO(edisonn): NYI Perspective, use SkPDFDeviceFlattener. 995 SkPDFDevice pattern(size, size, unflip); 996 SkCanvas canvas(&pattern); 997 998 SkRect patternBBox; 999 image->getBounds(&patternBBox); 1000 1001 // Translate the canvas so that the bitmap origin is at (0, 0). 1002 canvas.translate(-deviceBounds.left(), -deviceBounds.top()); 1003 patternBBox.offset(-deviceBounds.left(), -deviceBounds.top()); 1004 // Undo the translation in the final matrix 1005 finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top()); 1006 1007 // If the bitmap is out of bounds (i.e. clamp mode where we only see the 1008 // stretched sides), canvas will clip this out and the extraneous data 1009 // won't be saved to the PDF. 1010 canvas.drawBitmap(*image, 0, 0); 1011 1012 SkScalar width = SkIntToScalar(image->width()); 1013 SkScalar height = SkIntToScalar(image->height()); 1014 1015 // Tiling is implied. First we handle mirroring. 1016 if (tileModes[0] == SkShader::kMirror_TileMode) { 1017 SkMatrix xMirror; 1018 xMirror.setScale(-1, 1); 1019 xMirror.postTranslate(2 * width, 0); 1020 canvas.drawBitmapMatrix(*image, xMirror); 1021 patternBBox.fRight += width; 1022 } 1023 if (tileModes[1] == SkShader::kMirror_TileMode) { 1024 SkMatrix yMirror; 1025 yMirror.setScale(SK_Scalar1, -SK_Scalar1); 1026 yMirror.postTranslate(0, 2 * height); 1027 canvas.drawBitmapMatrix(*image, yMirror); 1028 patternBBox.fBottom += height; 1029 } 1030 if (tileModes[0] == SkShader::kMirror_TileMode && 1031 tileModes[1] == SkShader::kMirror_TileMode) { 1032 SkMatrix mirror; 1033 mirror.setScale(-1, -1); 1034 mirror.postTranslate(2 * width, 2 * height); 1035 canvas.drawBitmapMatrix(*image, mirror); 1036 } 1037 1038 // Then handle Clamping, which requires expanding the pattern canvas to 1039 // cover the entire surfaceBBox. 1040 1041 // If both x and y are in clamp mode, we start by filling in the corners. 1042 // (Which are just a rectangles of the corner colors.) 1043 if (tileModes[0] == SkShader::kClamp_TileMode && 1044 tileModes[1] == SkShader::kClamp_TileMode) { 1045 SkPaint paint; 1046 SkRect rect; 1047 rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0); 1048 if (!rect.isEmpty()) { 1049 paint.setColor(image->getColor(0, 0)); 1050 canvas.drawRect(rect, paint); 1051 } 1052 1053 rect = SkRect::MakeLTRB(width, deviceBounds.top(), 1054 deviceBounds.right(), 0); 1055 if (!rect.isEmpty()) { 1056 paint.setColor(image->getColor(image->width() - 1, 0)); 1057 canvas.drawRect(rect, paint); 1058 } 1059 1060 rect = SkRect::MakeLTRB(width, height, 1061 deviceBounds.right(), deviceBounds.bottom()); 1062 if (!rect.isEmpty()) { 1063 paint.setColor(image->getColor(image->width() - 1, 1064 image->height() - 1)); 1065 canvas.drawRect(rect, paint); 1066 } 1067 1068 rect = SkRect::MakeLTRB(deviceBounds.left(), height, 1069 0, deviceBounds.bottom()); 1070 if (!rect.isEmpty()) { 1071 paint.setColor(image->getColor(0, image->height() - 1)); 1072 canvas.drawRect(rect, paint); 1073 } 1074 } 1075 1076 // Then expand the left, right, top, then bottom. 1077 if (tileModes[0] == SkShader::kClamp_TileMode) { 1078 SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height()); 1079 if (deviceBounds.left() < 0) { 1080 SkBitmap left; 1081 SkAssertResult(image->extractSubset(&left, subset)); 1082 1083 SkMatrix leftMatrix; 1084 leftMatrix.setScale(-deviceBounds.left(), 1); 1085 leftMatrix.postTranslate(deviceBounds.left(), 0); 1086 canvas.drawBitmapMatrix(left, leftMatrix); 1087 1088 if (tileModes[1] == SkShader::kMirror_TileMode) { 1089 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1); 1090 leftMatrix.postTranslate(0, 2 * height); 1091 canvas.drawBitmapMatrix(left, leftMatrix); 1092 } 1093 patternBBox.fLeft = 0; 1094 } 1095 1096 if (deviceBounds.right() > width) { 1097 SkBitmap right; 1098 subset.offset(image->width() - 1, 0); 1099 SkAssertResult(image->extractSubset(&right, subset)); 1100 1101 SkMatrix rightMatrix; 1102 rightMatrix.setScale(deviceBounds.right() - width, 1); 1103 rightMatrix.postTranslate(width, 0); 1104 canvas.drawBitmapMatrix(right, rightMatrix); 1105 1106 if (tileModes[1] == SkShader::kMirror_TileMode) { 1107 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1); 1108 rightMatrix.postTranslate(0, 2 * height); 1109 canvas.drawBitmapMatrix(right, rightMatrix); 1110 } 1111 patternBBox.fRight = deviceBounds.width(); 1112 } 1113 } 1114 1115 if (tileModes[1] == SkShader::kClamp_TileMode) { 1116 SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1); 1117 if (deviceBounds.top() < 0) { 1118 SkBitmap top; 1119 SkAssertResult(image->extractSubset(&top, subset)); 1120 1121 SkMatrix topMatrix; 1122 topMatrix.setScale(SK_Scalar1, -deviceBounds.top()); 1123 topMatrix.postTranslate(0, deviceBounds.top()); 1124 canvas.drawBitmapMatrix(top, topMatrix); 1125 1126 if (tileModes[0] == SkShader::kMirror_TileMode) { 1127 topMatrix.postScale(-1, 1); 1128 topMatrix.postTranslate(2 * width, 0); 1129 canvas.drawBitmapMatrix(top, topMatrix); 1130 } 1131 patternBBox.fTop = 0; 1132 } 1133 1134 if (deviceBounds.bottom() > height) { 1135 SkBitmap bottom; 1136 subset.offset(0, image->height() - 1); 1137 SkAssertResult(image->extractSubset(&bottom, subset)); 1138 1139 SkMatrix bottomMatrix; 1140 bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height); 1141 bottomMatrix.postTranslate(0, height); 1142 canvas.drawBitmapMatrix(bottom, bottomMatrix); 1143 1144 if (tileModes[0] == SkShader::kMirror_TileMode) { 1145 bottomMatrix.postScale(-1, 1); 1146 bottomMatrix.postTranslate(2 * width, 0); 1147 canvas.drawBitmapMatrix(bottom, bottomMatrix); 1148 } 1149 patternBBox.fBottom = deviceBounds.height(); 1150 } 1151 } 1152 1153 // Put the canvas into the pattern stream (fContent). 1154 SkAutoTUnref<SkStream> content(pattern.content()); 1155 setData(content.get()); 1156 SkPDFResourceDict* resourceDict = pattern.getResourceDict(); 1157 resourceDict->getReferencedResources(fResources, &fResources, false); 1158 1159 populate_tiling_pattern_dict(this, patternBBox, 1160 pattern.getResourceDict(), finalMatrix); 1161 1162 fState.get()->fImage.unlockPixels(); 1163 } 1164 1165 SkPDFStream* SkPDFFunctionShader::makePSFunction(const SkString& psCode, 1166 SkPDFArray* domain) { 1167 SkAutoDataUnref funcData(SkData::NewWithCopy(psCode.c_str(), 1168 psCode.size())); 1169 SkPDFStream* result = new SkPDFStream(funcData.get()); 1170 result->insertInt("FunctionType", 4); 1171 result->insert("Domain", domain); 1172 result->insert("Range", RangeObject()); 1173 return result; 1174 } 1175 1176 SkPDFShader::ShaderCanonicalEntry::ShaderCanonicalEntry(SkPDFObject* pdfShader, 1177 const State* state) 1178 : fPDFShader(pdfShader), 1179 fState(state) { 1180 } 1181 1182 bool SkPDFShader::ShaderCanonicalEntry::operator==( 1183 const ShaderCanonicalEntry& b) const { 1184 return fPDFShader == b.fPDFShader || 1185 (fState != NULL && b.fState != NULL && *fState == *b.fState); 1186 } 1187 1188 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const { 1189 if (fType != b.fType || 1190 fCanvasTransform != b.fCanvasTransform || 1191 fShaderTransform != b.fShaderTransform || 1192 fBBox != b.fBBox) { 1193 return false; 1194 } 1195 1196 if (fType == SkShader::kNone_GradientType) { 1197 if (fPixelGeneration != b.fPixelGeneration || 1198 fPixelGeneration == 0 || 1199 fImageTileModes[0] != b.fImageTileModes[0] || 1200 fImageTileModes[1] != b.fImageTileModes[1]) { 1201 return false; 1202 } 1203 } else { 1204 if (fInfo.fColorCount != b.fInfo.fColorCount || 1205 memcmp(fInfo.fColors, b.fInfo.fColors, 1206 sizeof(SkColor) * fInfo.fColorCount) != 0 || 1207 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets, 1208 sizeof(SkScalar) * fInfo.fColorCount) != 0 || 1209 fInfo.fPoint[0] != b.fInfo.fPoint[0] || 1210 fInfo.fTileMode != b.fInfo.fTileMode) { 1211 return false; 1212 } 1213 1214 switch (fType) { 1215 case SkShader::kLinear_GradientType: 1216 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) { 1217 return false; 1218 } 1219 break; 1220 case SkShader::kRadial_GradientType: 1221 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) { 1222 return false; 1223 } 1224 break; 1225 case SkShader::kRadial2_GradientType: 1226 case SkShader::kConical_GradientType: 1227 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] || 1228 fInfo.fRadius[0] != b.fInfo.fRadius[0] || 1229 fInfo.fRadius[1] != b.fInfo.fRadius[1]) { 1230 return false; 1231 } 1232 break; 1233 case SkShader::kSweep_GradientType: 1234 case SkShader::kNone_GradientType: 1235 case SkShader::kColor_GradientType: 1236 break; 1237 } 1238 } 1239 return true; 1240 } 1241 1242 SkPDFShader::State::State(const SkShader& shader, 1243 const SkMatrix& canvasTransform, const SkIRect& bbox) 1244 : fCanvasTransform(canvasTransform), 1245 fBBox(bbox), 1246 fPixelGeneration(0) { 1247 fInfo.fColorCount = 0; 1248 fInfo.fColors = NULL; 1249 fInfo.fColorOffsets = NULL; 1250 fShaderTransform = shader.getLocalMatrix(); 1251 fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode; 1252 1253 fType = shader.asAGradient(&fInfo); 1254 1255 if (fType == SkShader::kNone_GradientType) { 1256 SkShader::BitmapType bitmapType; 1257 SkMatrix matrix; 1258 bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes); 1259 if (bitmapType != SkShader::kDefault_BitmapType) { 1260 fImage.reset(); 1261 return; 1262 } 1263 SkASSERT(matrix.isIdentity()); 1264 fPixelGeneration = fImage.getGenerationID(); 1265 } else { 1266 AllocateGradientInfoStorage(); 1267 shader.asAGradient(&fInfo); 1268 } 1269 } 1270 1271 SkPDFShader::State::State(const SkPDFShader::State& other) 1272 : fType(other.fType), 1273 fCanvasTransform(other.fCanvasTransform), 1274 fShaderTransform(other.fShaderTransform), 1275 fBBox(other.fBBox) 1276 { 1277 // Only gradients supported for now, since that is all that is used. 1278 // If needed, image state copy constructor can be added here later. 1279 SkASSERT(fType != SkShader::kNone_GradientType); 1280 1281 if (fType != SkShader::kNone_GradientType) { 1282 fInfo = other.fInfo; 1283 1284 AllocateGradientInfoStorage(); 1285 for (int i = 0; i < fInfo.fColorCount; i++) { 1286 fInfo.fColors[i] = other.fInfo.fColors[i]; 1287 fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i]; 1288 } 1289 } 1290 } 1291 1292 /** 1293 * Create a copy of this gradient state with alpha assigned to RGB luminousity. 1294 * Only valid for gradient states. 1295 */ 1296 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const { 1297 SkASSERT(fType != SkShader::kNone_GradientType); 1298 1299 SkPDFShader::State* newState = new SkPDFShader::State(*this); 1300 1301 for (int i = 0; i < fInfo.fColorCount; i++) { 1302 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); 1303 newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha); 1304 } 1305 1306 return newState; 1307 } 1308 1309 /** 1310 * Create a copy of this gradient state with alpha set to fully opaque 1311 * Only valid for gradient states. 1312 */ 1313 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const { 1314 SkASSERT(fType != SkShader::kNone_GradientType); 1315 1316 SkPDFShader::State* newState = new SkPDFShader::State(*this); 1317 for (int i = 0; i < fInfo.fColorCount; i++) { 1318 newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i], 1319 SK_AlphaOPAQUE); 1320 } 1321 1322 return newState; 1323 } 1324 1325 /** 1326 * Returns true if state is a gradient and the gradient has alpha. 1327 */ 1328 bool SkPDFShader::State::GradientHasAlpha() const { 1329 if (fType == SkShader::kNone_GradientType) { 1330 return false; 1331 } 1332 1333 for (int i = 0; i < fInfo.fColorCount; i++) { 1334 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]); 1335 if (alpha != SK_AlphaOPAQUE) { 1336 return true; 1337 } 1338 } 1339 return false; 1340 } 1341 1342 void SkPDFShader::State::AllocateGradientInfoStorage() { 1343 fColorData.set(sk_malloc_throw( 1344 fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar)))); 1345 fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get()); 1346 fInfo.fColorOffsets = 1347 reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount); 1348 } 1349