Home | History | Annotate | Download | only in url
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "url/url_canon_ip.h"
      6 
      7 #include <stdlib.h>
      8 
      9 #include "base/basictypes.h"
     10 #include "base/logging.h"
     11 #include "url/url_canon_internal.h"
     12 
     13 namespace url_canon {
     14 
     15 namespace {
     16 
     17 // Converts one of the character types that represent a numerical base to the
     18 // corresponding base.
     19 int BaseForType(SharedCharTypes type) {
     20   switch (type) {
     21     case CHAR_HEX:
     22       return 16;
     23     case CHAR_DEC:
     24       return 10;
     25     case CHAR_OCT:
     26       return 8;
     27     default:
     28       return 0;
     29   }
     30 }
     31 
     32 template<typename CHAR, typename UCHAR>
     33 bool DoFindIPv4Components(const CHAR* spec,
     34                           const url_parse::Component& host,
     35                           url_parse::Component components[4]) {
     36   if (!host.is_nonempty())
     37     return false;
     38 
     39   int cur_component = 0;  // Index of the component we're working on.
     40   int cur_component_begin = host.begin;  // Start of the current component.
     41   int end = host.end();
     42   for (int i = host.begin; /* nothing */; i++) {
     43     if (i >= end || spec[i] == '.') {
     44       // Found the end of the current component.
     45       int component_len = i - cur_component_begin;
     46       components[cur_component] =
     47           url_parse::Component(cur_component_begin, component_len);
     48 
     49       // The next component starts after the dot.
     50       cur_component_begin = i + 1;
     51       cur_component++;
     52 
     53       // Don't allow empty components (two dots in a row), except we may
     54       // allow an empty component at the end (this would indicate that the
     55       // input ends in a dot). We also want to error if the component is
     56       // empty and it's the only component (cur_component == 1).
     57       if (component_len == 0 && (i < end || cur_component == 1))
     58         return false;
     59 
     60       if (i >= end)
     61         break;  // End of the input.
     62 
     63       if (cur_component == 4) {
     64         // Anything else after the 4th component is an error unless it is a
     65         // dot that would otherwise be treated as the end of input.
     66         if (spec[i] == '.' && i + 1 == end)
     67           break;
     68         return false;
     69       }
     70     } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
     71                !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
     72       // Invalid character for an IPv4 address.
     73       return false;
     74     }
     75   }
     76 
     77   // Fill in any unused components.
     78   while (cur_component < 4)
     79     components[cur_component++] = url_parse::Component();
     80   return true;
     81 }
     82 
     83 // Converts an IPv4 component to a 32-bit number, while checking for overflow.
     84 //
     85 // Possible return values:
     86 // - IPV4    - The number was valid, and did not overflow.
     87 // - BROKEN  - The input was numeric, but too large for a 32-bit field.
     88 // - NEUTRAL - Input was not numeric.
     89 //
     90 // The input is assumed to be ASCII. FindIPv4Components should have stripped
     91 // out any input that is greater than 7 bits. The components are assumed
     92 // to be non-empty.
     93 template<typename CHAR>
     94 CanonHostInfo::Family IPv4ComponentToNumber(
     95     const CHAR* spec,
     96     const url_parse::Component& component,
     97     uint32* number) {
     98   // Figure out the base
     99   SharedCharTypes base;
    100   int base_prefix_len = 0;  // Size of the prefix for this base.
    101   if (spec[component.begin] == '0') {
    102     // Either hex or dec, or a standalone zero.
    103     if (component.len == 1) {
    104       base = CHAR_DEC;
    105     } else if (spec[component.begin + 1] == 'X' ||
    106                spec[component.begin + 1] == 'x') {
    107       base = CHAR_HEX;
    108       base_prefix_len = 2;
    109     } else {
    110       base = CHAR_OCT;
    111       base_prefix_len = 1;
    112     }
    113   } else {
    114     base = CHAR_DEC;
    115   }
    116 
    117   // Extend the prefix to consume all leading zeros.
    118   while (base_prefix_len < component.len &&
    119          spec[component.begin + base_prefix_len] == '0')
    120     base_prefix_len++;
    121 
    122   // Put the component, minus any base prefix, into a NULL-terminated buffer so
    123   // we can call the standard library.  Because leading zeros have already been
    124   // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
    125   // overflow check.
    126   const int kMaxComponentLen = 16;
    127   char buf[kMaxComponentLen + 1];  // digits + '\0'
    128   int dest_i = 0;
    129   for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
    130     // We know the input is 7-bit, so convert to narrow (if this is the wide
    131     // version of the template) by casting.
    132     char input = static_cast<char>(spec[i]);
    133 
    134     // Validate that this character is OK for the given base.
    135     if (!IsCharOfType(input, base))
    136       return CanonHostInfo::NEUTRAL;
    137 
    138     // Fill the buffer, if there's space remaining.  This check allows us to
    139     // verify that all characters are numeric, even those that don't fit.
    140     if (dest_i < kMaxComponentLen)
    141       buf[dest_i++] = input;
    142   }
    143 
    144   buf[dest_i] = '\0';
    145 
    146   // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
    147   // number can overflow a 64-bit number in <= 16 characters).
    148   uint64 num = _strtoui64(buf, NULL, BaseForType(base));
    149 
    150   // Check for 32-bit overflow.
    151   if (num > kuint32max)
    152     return CanonHostInfo::BROKEN;
    153 
    154   // No overflow.  Success!
    155   *number = static_cast<uint32>(num);
    156   return CanonHostInfo::IPV4;
    157 }
    158 
    159 // See declaration of IPv4AddressToNumber for documentation.
    160 template<typename CHAR>
    161 CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
    162                                             const url_parse::Component& host,
    163                                             unsigned char address[4],
    164                                             int* num_ipv4_components) {
    165   // The identified components. Not all may exist.
    166   url_parse::Component components[4];
    167   if (!FindIPv4Components(spec, host, components))
    168     return CanonHostInfo::NEUTRAL;
    169 
    170   // Convert existing components to digits. Values up to
    171   // |existing_components| will be valid.
    172   uint32 component_values[4];
    173   int existing_components = 0;
    174 
    175   // Set to true if one or more components are BROKEN.  BROKEN is only
    176   // returned if all components are IPV4 or BROKEN, so, for example,
    177   // 12345678912345.de returns NEUTRAL rather than broken.
    178   bool broken = false;
    179   for (int i = 0; i < 4; i++) {
    180     if (components[i].len <= 0)
    181       continue;
    182     CanonHostInfo::Family family = IPv4ComponentToNumber(
    183         spec, components[i], &component_values[existing_components]);
    184 
    185     if (family == CanonHostInfo::BROKEN) {
    186       broken = true;
    187     } else if (family != CanonHostInfo::IPV4) {
    188       // Stop if we hit a non-BROKEN invalid non-empty component.
    189       return family;
    190     }
    191 
    192     existing_components++;
    193   }
    194 
    195   if (broken)
    196     return CanonHostInfo::BROKEN;
    197 
    198   // Use that sequence of numbers to fill out the 4-component IP address.
    199 
    200   // First, process all components but the last, while making sure each fits
    201   // within an 8-bit field.
    202   for (int i = 0; i < existing_components - 1; i++) {
    203     if (component_values[i] > kuint8max)
    204       return CanonHostInfo::BROKEN;
    205     address[i] = static_cast<unsigned char>(component_values[i]);
    206   }
    207 
    208   // Next, consume the last component to fill in the remaining bytes.
    209   uint32 last_value = component_values[existing_components - 1];
    210   for (int i = 3; i >= existing_components - 1; i--) {
    211     address[i] = static_cast<unsigned char>(last_value);
    212     last_value >>= 8;
    213   }
    214 
    215   // If the last component has residual bits, report overflow.
    216   if (last_value != 0)
    217     return CanonHostInfo::BROKEN;
    218 
    219   // Tell the caller how many components we saw.
    220   *num_ipv4_components = existing_components;
    221 
    222   // Success!
    223   return CanonHostInfo::IPV4;
    224 }
    225 
    226 // Return true if we've made a final IPV4/BROKEN decision, false if the result
    227 // is NEUTRAL, and we could use a second opinion.
    228 template<typename CHAR, typename UCHAR>
    229 bool DoCanonicalizeIPv4Address(const CHAR* spec,
    230                                const url_parse::Component& host,
    231                                CanonOutput* output,
    232                                CanonHostInfo* host_info) {
    233   host_info->family = IPv4AddressToNumber(
    234       spec, host, host_info->address, &host_info->num_ipv4_components);
    235 
    236   switch (host_info->family) {
    237     case CanonHostInfo::IPV4:
    238       // Definitely an IPv4 address.
    239       host_info->out_host.begin = output->length();
    240       AppendIPv4Address(host_info->address, output);
    241       host_info->out_host.len = output->length() - host_info->out_host.begin;
    242       return true;
    243     case CanonHostInfo::BROKEN:
    244       // Definitely broken.
    245       return true;
    246     default:
    247       // Could be IPv6 or a hostname.
    248       return false;
    249   }
    250 }
    251 
    252 // Helper class that describes the main components of an IPv6 input string.
    253 // See the following examples to understand how it breaks up an input string:
    254 //
    255 // [Example 1]: input = "[::aa:bb]"
    256 //  ==> num_hex_components = 2
    257 //  ==> hex_components[0] = Component(3,2) "aa"
    258 //  ==> hex_components[1] = Component(6,2) "bb"
    259 //  ==> index_of_contraction = 0
    260 //  ==> ipv4_component = Component(0, -1)
    261 //
    262 // [Example 2]: input = "[1:2::3:4:5]"
    263 //  ==> num_hex_components = 5
    264 //  ==> hex_components[0] = Component(1,1) "1"
    265 //  ==> hex_components[1] = Component(3,1) "2"
    266 //  ==> hex_components[2] = Component(6,1) "3"
    267 //  ==> hex_components[3] = Component(8,1) "4"
    268 //  ==> hex_components[4] = Component(10,1) "5"
    269 //  ==> index_of_contraction = 2
    270 //  ==> ipv4_component = Component(0, -1)
    271 //
    272 // [Example 3]: input = "[::ffff:192.168.0.1]"
    273 //  ==> num_hex_components = 1
    274 //  ==> hex_components[0] = Component(3,4) "ffff"
    275 //  ==> index_of_contraction = 0
    276 //  ==> ipv4_component = Component(8, 11) "192.168.0.1"
    277 //
    278 // [Example 4]: input = "[1::]"
    279 //  ==> num_hex_components = 1
    280 //  ==> hex_components[0] = Component(1,1) "1"
    281 //  ==> index_of_contraction = 1
    282 //  ==> ipv4_component = Component(0, -1)
    283 //
    284 // [Example 5]: input = "[::192.168.0.1]"
    285 //  ==> num_hex_components = 0
    286 //  ==> index_of_contraction = 0
    287 //  ==> ipv4_component = Component(8, 11) "192.168.0.1"
    288 //
    289 struct IPv6Parsed {
    290   // Zero-out the parse information.
    291   void reset() {
    292     num_hex_components = 0;
    293     index_of_contraction = -1;
    294     ipv4_component.reset();
    295   }
    296 
    297   // There can be up to 8 hex components (colon separated) in the literal.
    298   url_parse::Component hex_components[8];
    299 
    300   // The count of hex components present. Ranges from [0,8].
    301   int num_hex_components;
    302 
    303   // The index of the hex component that the "::" contraction precedes, or
    304   // -1 if there is no contraction.
    305   int index_of_contraction;
    306 
    307   // The range of characters which are an IPv4 literal.
    308   url_parse::Component ipv4_component;
    309 };
    310 
    311 // Parse the IPv6 input string. If parsing succeeded returns true and fills
    312 // |parsed| with the information. If parsing failed (because the input is
    313 // invalid) returns false.
    314 template<typename CHAR, typename UCHAR>
    315 bool DoParseIPv6(const CHAR* spec,
    316                  const url_parse::Component& host,
    317                  IPv6Parsed* parsed) {
    318   // Zero-out the info.
    319   parsed->reset();
    320 
    321   if (!host.is_nonempty())
    322     return false;
    323 
    324   // The index for start and end of address range (no brackets).
    325   int begin = host.begin;
    326   int end = host.end();
    327 
    328   int cur_component_begin = begin;  // Start of the current component.
    329 
    330   // Scan through the input, searching for hex components, "::" contractions,
    331   // and IPv4 components.
    332   for (int i = begin; /* i <= end */; i++) {
    333     bool is_colon = spec[i] == ':';
    334     bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
    335 
    336     // We reached the end of the current component if we encounter a colon
    337     // (separator between hex components, or start of a contraction), or end of
    338     // input.
    339     if (is_colon || i == end) {
    340       int component_len = i - cur_component_begin;
    341 
    342       // A component should not have more than 4 hex digits.
    343       if (component_len > 4)
    344         return false;
    345 
    346       // Don't allow empty components.
    347       if (component_len == 0) {
    348         // The exception is when contractions appear at beginning of the
    349         // input or at the end of the input.
    350         if (!((is_contraction && i == begin) || (i == end &&
    351             parsed->index_of_contraction == parsed->num_hex_components)))
    352           return false;
    353       }
    354 
    355       // Add the hex component we just found to running list.
    356       if (component_len > 0) {
    357         // Can't have more than 8 components!
    358         if (parsed->num_hex_components >= 8)
    359           return false;
    360 
    361         parsed->hex_components[parsed->num_hex_components++] =
    362             url_parse::Component(cur_component_begin, component_len);
    363       }
    364     }
    365 
    366     if (i == end)
    367       break;  // Reached the end of the input, DONE.
    368 
    369     // We found a "::" contraction.
    370     if (is_contraction) {
    371       // There can be at most one contraction in the literal.
    372       if (parsed->index_of_contraction != -1)
    373         return false;
    374       parsed->index_of_contraction = parsed->num_hex_components;
    375       ++i;  // Consume the colon we peeked.
    376     }
    377 
    378     if (is_colon) {
    379       // Colons are separators between components, keep track of where the
    380       // current component started (after this colon).
    381       cur_component_begin = i + 1;
    382     } else {
    383       if (static_cast<UCHAR>(spec[i]) >= 0x80)
    384         return false;  // Not ASCII.
    385 
    386       if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
    387         // Regular components are hex numbers. It is also possible for
    388         // a component to be an IPv4 address in dotted form.
    389         if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
    390           // Since IPv4 address can only appear at the end, assume the rest
    391           // of the string is an IPv4 address. (We will parse this separately
    392           // later).
    393           parsed->ipv4_component = url_parse::Component(
    394               cur_component_begin, end - cur_component_begin);
    395           break;
    396         } else {
    397           // The character was neither a hex digit, nor an IPv4 character.
    398           return false;
    399         }
    400       }
    401     }
    402   }
    403 
    404   return true;
    405 }
    406 
    407 // Verifies the parsed IPv6 information, checking that the various components
    408 // add up to the right number of bits (hex components are 16 bits, while
    409 // embedded IPv4 formats are 32 bits, and contractions are placeholdes for
    410 // 16 or more bits). Returns true if sizes match up, false otherwise. On
    411 // success writes the length of the contraction (if any) to
    412 // |out_num_bytes_of_contraction|.
    413 bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
    414                              int* out_num_bytes_of_contraction) {
    415   // Each group of four hex digits contributes 16 bits.
    416   int num_bytes_without_contraction = parsed.num_hex_components * 2;
    417 
    418   // If an IPv4 address was embedded at the end, it contributes 32 bits.
    419   if (parsed.ipv4_component.is_valid())
    420     num_bytes_without_contraction += 4;
    421 
    422   // If there was a "::" contraction, its size is going to be:
    423   // MAX([16bits], [128bits] - num_bytes_without_contraction).
    424   int num_bytes_of_contraction = 0;
    425   if (parsed.index_of_contraction != -1) {
    426     num_bytes_of_contraction = 16 - num_bytes_without_contraction;
    427     if (num_bytes_of_contraction < 2)
    428       num_bytes_of_contraction = 2;
    429   }
    430 
    431   // Check that the numbers add up.
    432   if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
    433     return false;
    434 
    435   *out_num_bytes_of_contraction = num_bytes_of_contraction;
    436   return true;
    437 }
    438 
    439 // Converts a hex comonent into a number. This cannot fail since the caller has
    440 // already verified that each character in the string was a hex digit, and
    441 // that there were no more than 4 characters.
    442 template<typename CHAR>
    443 uint16 IPv6HexComponentToNumber(const CHAR* spec,
    444                                 const url_parse::Component& component) {
    445   DCHECK(component.len <= 4);
    446 
    447   // Copy the hex string into a C-string.
    448   char buf[5];
    449   for (int i = 0; i < component.len; ++i)
    450     buf[i] = static_cast<char>(spec[component.begin + i]);
    451   buf[component.len] = '\0';
    452 
    453   // Convert it to a number (overflow is not possible, since with 4 hex
    454   // characters we can at most have a 16 bit number).
    455   return static_cast<uint16>(_strtoui64(buf, NULL, 16));
    456 }
    457 
    458 // Converts an IPv6 address to a 128-bit number (network byte order), returning
    459 // true on success. False means that the input was not a valid IPv6 address.
    460 template<typename CHAR, typename UCHAR>
    461 bool DoIPv6AddressToNumber(const CHAR* spec,
    462                            const url_parse::Component& host,
    463                            unsigned char address[16]) {
    464   // Make sure the component is bounded by '[' and ']'.
    465   int end = host.end();
    466   if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
    467     return false;
    468 
    469   // Exclude the square brackets.
    470   url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
    471 
    472   // Parse the IPv6 address -- identify where all the colon separated hex
    473   // components are, the "::" contraction, and the embedded IPv4 address.
    474   IPv6Parsed ipv6_parsed;
    475   if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
    476     return false;
    477 
    478   // Do some basic size checks to make sure that the address doesn't
    479   // specify more than 128 bits or fewer than 128 bits. This also resolves
    480   // how may zero bytes the "::" contraction represents.
    481   int num_bytes_of_contraction;
    482   if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
    483     return false;
    484 
    485   int cur_index_in_address = 0;
    486 
    487   // Loop through each hex components, and contraction in order.
    488   for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
    489     // Append the contraction if it appears before this component.
    490     if (i == ipv6_parsed.index_of_contraction) {
    491       for (int j = 0; j < num_bytes_of_contraction; ++j)
    492         address[cur_index_in_address++] = 0;
    493     }
    494     // Append the hex component's value.
    495     if (i != ipv6_parsed.num_hex_components) {
    496       // Get the 16-bit value for this hex component.
    497       uint16 number = IPv6HexComponentToNumber<CHAR>(
    498           spec, ipv6_parsed.hex_components[i]);
    499       // Append to |address|, in network byte order.
    500       address[cur_index_in_address++] = (number & 0xFF00) >> 8;
    501       address[cur_index_in_address++] = (number & 0x00FF);
    502     }
    503   }
    504 
    505   // If there was an IPv4 section, convert it into a 32-bit number and append
    506   // it to |address|.
    507   if (ipv6_parsed.ipv4_component.is_valid()) {
    508     // Append the 32-bit number to |address|.
    509     int ignored_num_ipv4_components;
    510     if (CanonHostInfo::IPV4 !=
    511         IPv4AddressToNumber(spec,
    512                             ipv6_parsed.ipv4_component,
    513                             &address[cur_index_in_address],
    514                             &ignored_num_ipv4_components))
    515       return false;
    516   }
    517 
    518   return true;
    519 }
    520 
    521 // Searches for the longest sequence of zeros in |address|, and writes the
    522 // range into |contraction_range|. The run of zeros must be at least 16 bits,
    523 // and if there is a tie the first is chosen.
    524 void ChooseIPv6ContractionRange(const unsigned char address[16],
    525                                 url_parse::Component* contraction_range) {
    526   // The longest run of zeros in |address| seen so far.
    527   url_parse::Component max_range;
    528 
    529   // The current run of zeros in |address| being iterated over.
    530   url_parse::Component cur_range;
    531 
    532   for (int i = 0; i < 16; i += 2) {
    533     // Test for 16 bits worth of zero.
    534     bool is_zero = (address[i] == 0 && address[i + 1] == 0);
    535 
    536     if (is_zero) {
    537       // Add the zero to the current range (or start a new one).
    538       if (!cur_range.is_valid())
    539         cur_range = url_parse::Component(i, 0);
    540       cur_range.len += 2;
    541     }
    542 
    543     if (!is_zero || i == 14) {
    544       // Just completed a run of zeros. If the run is greater than 16 bits,
    545       // it is a candidate for the contraction.
    546       if (cur_range.len > 2 && cur_range.len > max_range.len) {
    547         max_range = cur_range;
    548       }
    549       cur_range.reset();
    550     }
    551   }
    552   *contraction_range = max_range;
    553 }
    554 
    555 // Return true if we've made a final IPV6/BROKEN decision, false if the result
    556 // is NEUTRAL, and we could use a second opinion.
    557 template<typename CHAR, typename UCHAR>
    558 bool DoCanonicalizeIPv6Address(const CHAR* spec,
    559                                const url_parse::Component& host,
    560                                CanonOutput* output,
    561                                CanonHostInfo* host_info) {
    562   // Turn the IP address into a 128 bit number.
    563   if (!IPv6AddressToNumber(spec, host, host_info->address)) {
    564     // If it's not an IPv6 address, scan for characters that should *only*
    565     // exist in an IPv6 address.
    566     for (int i = host.begin; i < host.end(); i++) {
    567       switch (spec[i]) {
    568         case '[':
    569         case ']':
    570         case ':':
    571           host_info->family = CanonHostInfo::BROKEN;
    572           return true;
    573       }
    574     }
    575 
    576     // No invalid characters.  Could still be IPv4 or a hostname.
    577     host_info->family = CanonHostInfo::NEUTRAL;
    578     return false;
    579   }
    580 
    581   host_info->out_host.begin = output->length();
    582   output->push_back('[');
    583   AppendIPv6Address(host_info->address, output);
    584   output->push_back(']');
    585   host_info->out_host.len = output->length() - host_info->out_host.begin;
    586 
    587   host_info->family = CanonHostInfo::IPV6;
    588   return true;
    589 }
    590 
    591 }  // namespace
    592 
    593 void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
    594   for (int i = 0; i < 4; i++) {
    595     char str[16];
    596     _itoa_s(address[i], str, 10);
    597 
    598     for (int ch = 0; str[ch] != 0; ch++)
    599       output->push_back(str[ch]);
    600 
    601     if (i != 3)
    602       output->push_back('.');
    603   }
    604 }
    605 
    606 void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
    607   // We will output the address according to the rules in:
    608   // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
    609 
    610   // Start by finding where to place the "::" contraction (if any).
    611   url_parse::Component contraction_range;
    612   ChooseIPv6ContractionRange(address, &contraction_range);
    613 
    614   for (int i = 0; i <= 14;) {
    615     // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
    616     DCHECK(i % 2 == 0);
    617     if (i == contraction_range.begin && contraction_range.len > 0) {
    618       // Jump over the contraction.
    619       if (i == 0)
    620         output->push_back(':');
    621       output->push_back(':');
    622       i = contraction_range.end();
    623     } else {
    624       // Consume the next 16 bits from |address|.
    625       int x = address[i] << 8 | address[i + 1];
    626 
    627       i += 2;
    628 
    629       // Stringify the 16 bit number (at most requires 4 hex digits).
    630       char str[5];
    631       _itoa_s(x, str, 16);
    632       for (int ch = 0; str[ch] != 0; ++ch)
    633         output->push_back(str[ch]);
    634 
    635       // Put a colon after each number, except the last.
    636       if (i < 16)
    637         output->push_back(':');
    638     }
    639   }
    640 }
    641 
    642 bool FindIPv4Components(const char* spec,
    643                         const url_parse::Component& host,
    644                         url_parse::Component components[4]) {
    645   return DoFindIPv4Components<char, unsigned char>(spec, host, components);
    646 }
    647 
    648 bool FindIPv4Components(const base::char16* spec,
    649                         const url_parse::Component& host,
    650                         url_parse::Component components[4]) {
    651   return DoFindIPv4Components<base::char16, base::char16>(
    652       spec, host, components);
    653 }
    654 
    655 void CanonicalizeIPAddress(const char* spec,
    656                            const url_parse::Component& host,
    657                            CanonOutput* output,
    658                            CanonHostInfo* host_info) {
    659   if (DoCanonicalizeIPv4Address<char, unsigned char>(
    660           spec, host, output, host_info))
    661     return;
    662   if (DoCanonicalizeIPv6Address<char, unsigned char>(
    663           spec, host, output, host_info))
    664     return;
    665 }
    666 
    667 void CanonicalizeIPAddress(const base::char16* spec,
    668                            const url_parse::Component& host,
    669                            CanonOutput* output,
    670                            CanonHostInfo* host_info) {
    671   if (DoCanonicalizeIPv4Address<base::char16, base::char16>(
    672           spec, host, output, host_info))
    673     return;
    674   if (DoCanonicalizeIPv6Address<base::char16, base::char16>(
    675           spec, host, output, host_info))
    676     return;
    677 }
    678 
    679 CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
    680                                           const url_parse::Component& host,
    681                                           unsigned char address[4],
    682                                           int* num_ipv4_components) {
    683   return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
    684 }
    685 
    686 CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec,
    687                                           const url_parse::Component& host,
    688                                           unsigned char address[4],
    689                                           int* num_ipv4_components) {
    690   return DoIPv4AddressToNumber<base::char16>(
    691       spec, host, address, num_ipv4_components);
    692 }
    693 
    694 bool IPv6AddressToNumber(const char* spec,
    695                          const url_parse::Component& host,
    696                          unsigned char address[16]) {
    697   return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
    698 }
    699 
    700 bool IPv6AddressToNumber(const base::char16* spec,
    701                          const url_parse::Component& host,
    702                          unsigned char address[16]) {
    703   return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address);
    704 }
    705 
    706 }  // namespace url_canon
    707