Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "accessors.h"
     31 #include "api.h"
     32 #include "arguments.h"
     33 #include "bootstrapper.h"
     34 #include "compiler.h"
     35 #include "debug.h"
     36 #include "execution.h"
     37 #include "global-handles.h"
     38 #include "natives.h"
     39 #include "runtime.h"
     40 #include "string-search.h"
     41 #include "stub-cache.h"
     42 #include "vm-state-inl.h"
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 
     48 int HandleScope::NumberOfHandles(Isolate* isolate) {
     49   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     50   int n = impl->blocks()->length();
     51   if (n == 0) return 0;
     52   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
     53       (isolate->handle_scope_data()->next - impl->blocks()->last()));
     54 }
     55 
     56 
     57 Object** HandleScope::Extend(Isolate* isolate) {
     58   v8::ImplementationUtilities::HandleScopeData* current =
     59       isolate->handle_scope_data();
     60 
     61   Object** result = current->next;
     62 
     63   ASSERT(result == current->limit);
     64   // Make sure there's at least one scope on the stack and that the
     65   // top of the scope stack isn't a barrier.
     66   if (current->level == 0) {
     67     Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
     68                             "Cannot create a handle without a HandleScope");
     69     return NULL;
     70   }
     71   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     72   // If there's more room in the last block, we use that. This is used
     73   // for fast creation of scopes after scope barriers.
     74   if (!impl->blocks()->is_empty()) {
     75     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
     76     if (current->limit != limit) {
     77       current->limit = limit;
     78       ASSERT(limit - current->next < kHandleBlockSize);
     79     }
     80   }
     81 
     82   // If we still haven't found a slot for the handle, we extend the
     83   // current handle scope by allocating a new handle block.
     84   if (result == current->limit) {
     85     // If there's a spare block, use it for growing the current scope.
     86     result = impl->GetSpareOrNewBlock();
     87     // Add the extension to the global list of blocks, but count the
     88     // extension as part of the current scope.
     89     impl->blocks()->Add(result);
     90     current->limit = &result[kHandleBlockSize];
     91   }
     92 
     93   return result;
     94 }
     95 
     96 
     97 void HandleScope::DeleteExtensions(Isolate* isolate) {
     98   v8::ImplementationUtilities::HandleScopeData* current =
     99       isolate->handle_scope_data();
    100   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
    101 }
    102 
    103 
    104 #ifdef ENABLE_HANDLE_ZAPPING
    105 void HandleScope::ZapRange(Object** start, Object** end) {
    106   ASSERT(end - start <= kHandleBlockSize);
    107   for (Object** p = start; p != end; p++) {
    108     *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
    109   }
    110 }
    111 #endif
    112 
    113 
    114 Address HandleScope::current_level_address(Isolate* isolate) {
    115   return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
    116 }
    117 
    118 
    119 Address HandleScope::current_next_address(Isolate* isolate) {
    120   return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
    121 }
    122 
    123 
    124 Address HandleScope::current_limit_address(Isolate* isolate) {
    125   return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
    126 }
    127 
    128 
    129 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
    130                                       Handle<JSArray> array) {
    131   CALL_HEAP_FUNCTION(content->GetIsolate(),
    132                      content->AddKeysFromJSArray(*array), FixedArray);
    133 }
    134 
    135 
    136 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
    137                                Handle<FixedArray> second) {
    138   CALL_HEAP_FUNCTION(first->GetIsolate(),
    139                      first->UnionOfKeys(*second), FixedArray);
    140 }
    141 
    142 
    143 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
    144     Handle<JSFunction> constructor,
    145     Handle<JSGlobalProxy> global) {
    146   CALL_HEAP_FUNCTION(
    147       constructor->GetIsolate(),
    148       constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
    149       JSGlobalProxy);
    150 }
    151 
    152 
    153 void FlattenString(Handle<String> string) {
    154   CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
    155 }
    156 
    157 
    158 Handle<String> FlattenGetString(Handle<String> string) {
    159   CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
    160 }
    161 
    162 
    163 Handle<Object> ForceSetProperty(Handle<JSObject> object,
    164                                 Handle<Object> key,
    165                                 Handle<Object> value,
    166                                 PropertyAttributes attributes) {
    167   return Runtime::ForceSetObjectProperty(object->GetIsolate(), object, key,
    168                                         value, attributes);
    169 }
    170 
    171 
    172 Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key) {
    173   Isolate* isolate = object->GetIsolate();
    174   CALL_HEAP_FUNCTION(isolate,
    175                      Runtime::DeleteObjectProperty(
    176                          isolate, object, key, JSReceiver::NORMAL_DELETION),
    177                      Object);
    178 }
    179 
    180 
    181 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
    182                                    Handle<Object> key) {
    183   Isolate* isolate = object->GetIsolate();
    184   CALL_HEAP_FUNCTION(isolate,
    185                      Runtime::DeleteObjectProperty(
    186                          isolate, object, key, JSReceiver::FORCE_DELETION),
    187                      Object);
    188 }
    189 
    190 
    191 Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key) {
    192   Isolate* isolate = obj->GetIsolate();
    193   CALL_HEAP_FUNCTION(isolate,
    194                      Runtime::HasObjectProperty(isolate, obj, key), Object);
    195 }
    196 
    197 
    198 Handle<Object> GetProperty(Handle<JSReceiver> obj,
    199                            const char* name) {
    200   Isolate* isolate = obj->GetIsolate();
    201   Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
    202   CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
    203 }
    204 
    205 
    206 Handle<Object> GetProperty(Isolate* isolate,
    207                            Handle<Object> obj,
    208                            Handle<Object> key) {
    209   CALL_HEAP_FUNCTION(isolate,
    210                      Runtime::GetObjectProperty(isolate, obj, key), Object);
    211 }
    212 
    213 
    214 Handle<Object> LookupSingleCharacterStringFromCode(Isolate* isolate,
    215                                                    uint32_t index) {
    216   CALL_HEAP_FUNCTION(
    217       isolate,
    218       isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
    219 }
    220 
    221 
    222 // Wrappers for scripts are kept alive and cached in weak global
    223 // handles referred from foreign objects held by the scripts as long as
    224 // they are used. When they are not used anymore, the garbage
    225 // collector will call the weak callback on the global handle
    226 // associated with the wrapper and get rid of both the wrapper and the
    227 // handle.
    228 static void ClearWrapperCache(v8::Isolate* v8_isolate,
    229                               Persistent<v8::Value>* handle,
    230                               void*) {
    231   Handle<Object> cache = Utils::OpenPersistent(handle);
    232   JSValue* wrapper = JSValue::cast(*cache);
    233   Foreign* foreign = Script::cast(wrapper->value())->wrapper();
    234   ASSERT(foreign->foreign_address() ==
    235          reinterpret_cast<Address>(cache.location()));
    236   foreign->set_foreign_address(0);
    237   Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
    238   isolate->global_handles()->Destroy(cache.location());
    239   isolate->counters()->script_wrappers()->Decrement();
    240 }
    241 
    242 
    243 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
    244   if (script->wrapper()->foreign_address() != NULL) {
    245     // Return a handle for the existing script wrapper from the cache.
    246     return Handle<JSValue>(
    247         *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
    248   }
    249   Isolate* isolate = script->GetIsolate();
    250   // Construct a new script wrapper.
    251   isolate->counters()->script_wrappers()->Increment();
    252   Handle<JSFunction> constructor = isolate->script_function();
    253   Handle<JSValue> result =
    254       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
    255 
    256   // The allocation might have triggered a GC, which could have called this
    257   // function recursively, and a wrapper has already been created and cached.
    258   // In that case, simply return a handle for the cached wrapper.
    259   if (script->wrapper()->foreign_address() != NULL) {
    260     return Handle<JSValue>(
    261         *reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
    262   }
    263 
    264   result->set_value(*script);
    265 
    266   // Create a new weak global handle and use it to cache the wrapper
    267   // for future use. The cache will automatically be cleared by the
    268   // garbage collector when it is not used anymore.
    269   Handle<Object> handle = isolate->global_handles()->Create(*result);
    270   isolate->global_handles()->MakeWeak(handle.location(),
    271                                       NULL,
    272                                       &ClearWrapperCache);
    273   script->wrapper()->set_foreign_address(
    274       reinterpret_cast<Address>(handle.location()));
    275   return result;
    276 }
    277 
    278 
    279 // Init line_ends array with code positions of line ends inside script
    280 // source.
    281 void InitScriptLineEnds(Handle<Script> script) {
    282   if (!script->line_ends()->IsUndefined()) return;
    283 
    284   Isolate* isolate = script->GetIsolate();
    285 
    286   if (!script->source()->IsString()) {
    287     ASSERT(script->source()->IsUndefined());
    288     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
    289     script->set_line_ends(*empty);
    290     ASSERT(script->line_ends()->IsFixedArray());
    291     return;
    292   }
    293 
    294   Handle<String> src(String::cast(script->source()), isolate);
    295 
    296   Handle<FixedArray> array = CalculateLineEnds(src, true);
    297 
    298   if (*array != isolate->heap()->empty_fixed_array()) {
    299     array->set_map(isolate->heap()->fixed_cow_array_map());
    300   }
    301 
    302   script->set_line_ends(*array);
    303   ASSERT(script->line_ends()->IsFixedArray());
    304 }
    305 
    306 
    307 template <typename SourceChar>
    308 static void CalculateLineEnds(Isolate* isolate,
    309                               List<int>* line_ends,
    310                               Vector<const SourceChar> src,
    311                               bool with_last_line) {
    312   const int src_len = src.length();
    313   StringSearch<uint8_t, SourceChar> search(isolate, STATIC_ASCII_VECTOR("\n"));
    314 
    315   // Find and record line ends.
    316   int position = 0;
    317   while (position != -1 && position < src_len) {
    318     position = search.Search(src, position);
    319     if (position != -1) {
    320       line_ends->Add(position);
    321       position++;
    322     } else if (with_last_line) {
    323       // Even if the last line misses a line end, it is counted.
    324       line_ends->Add(src_len);
    325       return;
    326     }
    327   }
    328 }
    329 
    330 
    331 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
    332                                      bool with_last_line) {
    333   src = FlattenGetString(src);
    334   // Rough estimate of line count based on a roughly estimated average
    335   // length of (unpacked) code.
    336   int line_count_estimate = src->length() >> 4;
    337   List<int> line_ends(line_count_estimate);
    338   Isolate* isolate = src->GetIsolate();
    339   {
    340     DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
    341     // Dispatch on type of strings.
    342     String::FlatContent content = src->GetFlatContent();
    343     ASSERT(content.IsFlat());
    344     if (content.IsAscii()) {
    345       CalculateLineEnds(isolate,
    346                         &line_ends,
    347                         content.ToOneByteVector(),
    348                         with_last_line);
    349     } else {
    350       CalculateLineEnds(isolate,
    351                         &line_ends,
    352                         content.ToUC16Vector(),
    353                         with_last_line);
    354     }
    355   }
    356   int line_count = line_ends.length();
    357   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
    358   for (int i = 0; i < line_count; i++) {
    359     array->set(i, Smi::FromInt(line_ends[i]));
    360   }
    361   return array;
    362 }
    363 
    364 
    365 // Convert code position into line number.
    366 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
    367   InitScriptLineEnds(script);
    368   DisallowHeapAllocation no_allocation;
    369   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    370   const int line_ends_len = line_ends_array->length();
    371 
    372   if (!line_ends_len) return -1;
    373 
    374   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
    375     return script->line_offset()->value();
    376   }
    377 
    378   int left = 0;
    379   int right = line_ends_len;
    380   while (int half = (right - left) / 2) {
    381     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
    382       right -= half;
    383     } else {
    384       left += half;
    385     }
    386   }
    387   return right + script->line_offset()->value();
    388 }
    389 
    390 
    391 // Convert code position into column number.
    392 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
    393   int line_number = GetScriptLineNumber(script, code_pos);
    394   if (line_number == -1) return -1;
    395 
    396   DisallowHeapAllocation no_allocation;
    397   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    398   line_number = line_number - script->line_offset()->value();
    399   if (line_number == 0) return code_pos + script->column_offset()->value();
    400   int prev_line_end_pos =
    401       Smi::cast(line_ends_array->get(line_number - 1))->value();
    402   return code_pos - (prev_line_end_pos + 1);
    403 }
    404 
    405 
    406 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
    407   DisallowHeapAllocation no_allocation;
    408   if (!script->line_ends()->IsUndefined()) {
    409     return GetScriptLineNumber(script, code_pos);
    410   }
    411   // Slow mode: we do not have line_ends. We have to iterate through source.
    412   if (!script->source()->IsString()) {
    413     return -1;
    414   }
    415   String* source = String::cast(script->source());
    416   int line = 0;
    417   int len = source->length();
    418   for (int pos = 0; pos < len; pos++) {
    419     if (pos == code_pos) {
    420       break;
    421     }
    422     if (source->Get(pos) == '\n') {
    423       line++;
    424     }
    425   }
    426   return line;
    427 }
    428 
    429 
    430 // Compute the property keys from the interceptor.
    431 // TODO(rossberg): support symbols in API, and filter here if needed.
    432 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
    433                                                  Handle<JSObject> object) {
    434   Isolate* isolate = receiver->GetIsolate();
    435   Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
    436   PropertyCallbackArguments
    437       args(isolate, interceptor->data(), *receiver, *object);
    438   v8::Handle<v8::Array> result;
    439   if (!interceptor->enumerator()->IsUndefined()) {
    440     v8::NamedPropertyEnumeratorCallback enum_fun =
    441         v8::ToCData<v8::NamedPropertyEnumeratorCallback>(
    442             interceptor->enumerator());
    443     LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
    444     result = args.Call(enum_fun);
    445   }
    446 #if ENABLE_EXTRA_CHECKS
    447   CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
    448 #endif
    449   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
    450                                    result);
    451 }
    452 
    453 
    454 // Compute the element keys from the interceptor.
    455 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
    456                                                    Handle<JSObject> object) {
    457   Isolate* isolate = receiver->GetIsolate();
    458   Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
    459   PropertyCallbackArguments
    460       args(isolate, interceptor->data(), *receiver, *object);
    461   v8::Handle<v8::Array> result;
    462   if (!interceptor->enumerator()->IsUndefined()) {
    463     v8::IndexedPropertyEnumeratorCallback enum_fun =
    464         v8::ToCData<v8::IndexedPropertyEnumeratorCallback>(
    465             interceptor->enumerator());
    466     LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
    467     result = args.Call(enum_fun);
    468 #if ENABLE_EXTRA_CHECKS
    469     CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
    470 #endif
    471   }
    472   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
    473                                    result);
    474 }
    475 
    476 
    477 Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
    478   Isolate* isolate = script->GetIsolate();
    479   Handle<String> name_or_source_url_key =
    480       isolate->factory()->InternalizeOneByteString(
    481           STATIC_ASCII_VECTOR("nameOrSourceURL"));
    482   Handle<JSValue> script_wrapper = GetScriptWrapper(script);
    483   Handle<Object> property = GetProperty(isolate,
    484                                         script_wrapper,
    485                                         name_or_source_url_key);
    486   ASSERT(property->IsJSFunction());
    487   Handle<JSFunction> method = Handle<JSFunction>::cast(property);
    488   bool caught_exception;
    489   Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
    490                                              NULL, &caught_exception);
    491   if (caught_exception) {
    492     result = isolate->factory()->undefined_value();
    493   }
    494   return result;
    495 }
    496 
    497 
    498 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
    499   int len = array->length();
    500   for (int i = 0; i < len; i++) {
    501     Object* e = array->get(i);
    502     if (!(e->IsString() || e->IsNumber())) return false;
    503   }
    504   return true;
    505 }
    506 
    507 
    508 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
    509                                           KeyCollectionType type,
    510                                           bool* threw) {
    511   USE(ContainsOnlyValidKeys);
    512   Isolate* isolate = object->GetIsolate();
    513   Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
    514   Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
    515       isolate->context()->native_context()->arguments_boilerplate(),
    516       isolate);
    517   Handle<JSFunction> arguments_function = Handle<JSFunction>(
    518       JSFunction::cast(arguments_boilerplate->map()->constructor()),
    519       isolate);
    520 
    521   // Only collect keys if access is permitted.
    522   for (Handle<Object> p = object;
    523        *p != isolate->heap()->null_value();
    524        p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
    525     if (p->IsJSProxy()) {
    526       Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
    527       Handle<Object> args[] = { proxy };
    528       Handle<Object> names = Execution::Call(isolate,
    529                                              isolate->proxy_enumerate(),
    530                                              object,
    531                                              ARRAY_SIZE(args),
    532                                              args,
    533                                              threw);
    534       if (*threw) return content;
    535       content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
    536       break;
    537     }
    538 
    539     Handle<JSObject> current(JSObject::cast(*p), isolate);
    540 
    541     // Check access rights if required.
    542     if (current->IsAccessCheckNeeded() &&
    543         !isolate->MayNamedAccess(*current,
    544                                  isolate->heap()->undefined_value(),
    545                                  v8::ACCESS_KEYS)) {
    546       isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
    547       if (isolate->has_scheduled_exception()) {
    548         isolate->PromoteScheduledException();
    549         *threw = true;
    550       }
    551       break;
    552     }
    553 
    554     // Compute the element keys.
    555     Handle<FixedArray> element_keys =
    556         isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
    557     current->GetEnumElementKeys(*element_keys);
    558     content = UnionOfKeys(content, element_keys);
    559     ASSERT(ContainsOnlyValidKeys(content));
    560 
    561     // Add the element keys from the interceptor.
    562     if (current->HasIndexedInterceptor()) {
    563       v8::Handle<v8::Array> result =
    564           GetKeysForIndexedInterceptor(object, current);
    565       if (!result.IsEmpty())
    566         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    567       ASSERT(ContainsOnlyValidKeys(content));
    568     }
    569 
    570     // We can cache the computed property keys if access checks are
    571     // not needed and no interceptors are involved.
    572     //
    573     // We do not use the cache if the object has elements and
    574     // therefore it does not make sense to cache the property names
    575     // for arguments objects.  Arguments objects will always have
    576     // elements.
    577     // Wrapped strings have elements, but don't have an elements
    578     // array or dictionary.  So the fast inline test for whether to
    579     // use the cache says yes, so we should not create a cache.
    580     bool cache_enum_keys =
    581         ((current->map()->constructor() != *arguments_function) &&
    582          !current->IsJSValue() &&
    583          !current->IsAccessCheckNeeded() &&
    584          !current->HasNamedInterceptor() &&
    585          !current->HasIndexedInterceptor());
    586     // Compute the property keys and cache them if possible.
    587     content =
    588         UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
    589     ASSERT(ContainsOnlyValidKeys(content));
    590 
    591     // Add the property keys from the interceptor.
    592     if (current->HasNamedInterceptor()) {
    593       v8::Handle<v8::Array> result =
    594           GetKeysForNamedInterceptor(object, current);
    595       if (!result.IsEmpty())
    596         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    597       ASSERT(ContainsOnlyValidKeys(content));
    598     }
    599 
    600     // If we only want local properties we bail out after the first
    601     // iteration.
    602     if (type == LOCAL_ONLY)
    603       break;
    604   }
    605   return content;
    606 }
    607 
    608 
    609 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
    610   Isolate* isolate = object->GetIsolate();
    611   isolate->counters()->for_in()->Increment();
    612   Handle<FixedArray> elements =
    613       GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
    614   return isolate->factory()->NewJSArrayWithElements(elements);
    615 }
    616 
    617 
    618 Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
    619   ASSERT(array->length() >= length);
    620   if (array->length() == length) return array;
    621 
    622   Handle<FixedArray> new_array =
    623       array->GetIsolate()->factory()->NewFixedArray(length);
    624   for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
    625   return new_array;
    626 }
    627 
    628 
    629 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
    630                                        bool cache_result) {
    631   Isolate* isolate = object->GetIsolate();
    632   if (object->HasFastProperties()) {
    633     if (object->map()->instance_descriptors()->HasEnumCache()) {
    634       int own_property_count = object->map()->EnumLength();
    635       // If we have an enum cache, but the enum length of the given map is set
    636       // to kInvalidEnumCache, this means that the map itself has never used the
    637       // present enum cache. The first step to using the cache is to set the
    638       // enum length of the map by counting the number of own descriptors that
    639       // are not DONT_ENUM or SYMBOLIC.
    640       if (own_property_count == kInvalidEnumCacheSentinel) {
    641         own_property_count = object->map()->NumberOfDescribedProperties(
    642             OWN_DESCRIPTORS, DONT_SHOW);
    643 
    644         if (cache_result) object->map()->SetEnumLength(own_property_count);
    645       }
    646 
    647       DescriptorArray* desc = object->map()->instance_descriptors();
    648       Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
    649 
    650       // In case the number of properties required in the enum are actually
    651       // present, we can reuse the enum cache. Otherwise, this means that the
    652       // enum cache was generated for a previous (smaller) version of the
    653       // Descriptor Array. In that case we regenerate the enum cache.
    654       if (own_property_count <= keys->length()) {
    655         isolate->counters()->enum_cache_hits()->Increment();
    656         return ReduceFixedArrayTo(keys, own_property_count);
    657       }
    658     }
    659 
    660     Handle<Map> map(object->map());
    661 
    662     if (map->instance_descriptors()->IsEmpty()) {
    663       isolate->counters()->enum_cache_hits()->Increment();
    664       if (cache_result) map->SetEnumLength(0);
    665       return isolate->factory()->empty_fixed_array();
    666     }
    667 
    668     isolate->counters()->enum_cache_misses()->Increment();
    669     int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_SHOW);
    670 
    671     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
    672     Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
    673 
    674     Handle<DescriptorArray> descs =
    675         Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
    676 
    677     int real_size = map->NumberOfOwnDescriptors();
    678     int enum_size = 0;
    679     int index = 0;
    680 
    681     for (int i = 0; i < descs->number_of_descriptors(); i++) {
    682       PropertyDetails details = descs->GetDetails(i);
    683       Object* key = descs->GetKey(i);
    684       if (!(details.IsDontEnum() || key->IsSymbol())) {
    685         if (i < real_size) ++enum_size;
    686         storage->set(index, key);
    687         if (!indices.is_null()) {
    688           if (details.type() != FIELD) {
    689             indices = Handle<FixedArray>();
    690           } else {
    691             int field_index = descs->GetFieldIndex(i);
    692             if (field_index >= map->inobject_properties()) {
    693               field_index = -(field_index - map->inobject_properties() + 1);
    694             }
    695             indices->set(index, Smi::FromInt(field_index));
    696           }
    697         }
    698         index++;
    699       }
    700     }
    701     ASSERT(index == storage->length());
    702 
    703     Handle<FixedArray> bridge_storage =
    704         isolate->factory()->NewFixedArray(
    705             DescriptorArray::kEnumCacheBridgeLength);
    706     DescriptorArray* desc = object->map()->instance_descriptors();
    707     desc->SetEnumCache(*bridge_storage,
    708                        *storage,
    709                        indices.is_null() ? Object::cast(Smi::FromInt(0))
    710                                          : Object::cast(*indices));
    711     if (cache_result) {
    712       object->map()->SetEnumLength(enum_size);
    713     }
    714 
    715     return ReduceFixedArrayTo(storage, enum_size);
    716   } else {
    717     Handle<NameDictionary> dictionary(object->property_dictionary());
    718 
    719     int length = dictionary->NumberOfElements();
    720     if (length == 0) {
    721       return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
    722     }
    723 
    724     // The enumeration array is generated by allocating an array big enough to
    725     // hold all properties that have been seen, whether they are are deleted or
    726     // not. Subsequently all visible properties are added to the array. If some
    727     // properties were not visible, the array is trimmed so it only contains
    728     // visible properties. This improves over adding elements and sorting by
    729     // index by having linear complexity rather than n*log(n).
    730 
    731     // By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
    732     // we can predict the number of holes in the final array. If there will be
    733     // more than 50% holes, regenerate the enumeration indices to reduce the
    734     // number of holes to a minimum. This avoids allocating a large array if
    735     // many properties were added but subsequently deleted.
    736     int next_enumeration = dictionary->NextEnumerationIndex();
    737     if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
    738       NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
    739       next_enumeration = dictionary->NextEnumerationIndex();
    740     }
    741 
    742     Handle<FixedArray> storage =
    743         isolate->factory()->NewFixedArray(next_enumeration);
    744 
    745     storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
    746     ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_SHOW));
    747     return storage;
    748   }
    749 }
    750 
    751 
    752 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
    753     : impl_(isolate->handle_scope_implementer()) {
    754   impl_->BeginDeferredScope();
    755   v8::ImplementationUtilities::HandleScopeData* data =
    756       impl_->isolate()->handle_scope_data();
    757   Object** new_next = impl_->GetSpareOrNewBlock();
    758   Object** new_limit = &new_next[kHandleBlockSize];
    759   ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
    760   impl_->blocks()->Add(new_next);
    761 
    762 #ifdef DEBUG
    763   prev_level_ = data->level;
    764 #endif
    765   data->level++;
    766   prev_limit_ = data->limit;
    767   prev_next_ = data->next;
    768   data->next = new_next;
    769   data->limit = new_limit;
    770 }
    771 
    772 
    773 DeferredHandleScope::~DeferredHandleScope() {
    774   impl_->isolate()->handle_scope_data()->level--;
    775   ASSERT(handles_detached_);
    776   ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
    777 }
    778 
    779 
    780 DeferredHandles* DeferredHandleScope::Detach() {
    781   DeferredHandles* deferred = impl_->Detach(prev_limit_);
    782   v8::ImplementationUtilities::HandleScopeData* data =
    783       impl_->isolate()->handle_scope_data();
    784   data->next = prev_next_;
    785   data->limit = prev_limit_;
    786 #ifdef DEBUG
    787   handles_detached_ = true;
    788 #endif
    789   return deferred;
    790 }
    791 
    792 
    793 void AddWeakObjectToCodeDependency(Heap* heap,
    794                                    Handle<Object> object,
    795                                    Handle<Code> code) {
    796   heap->EnsureWeakObjectToCodeTable();
    797   Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(*object));
    798   dep = DependentCode::Insert(dep, DependentCode::kWeaklyEmbeddedGroup, code);
    799   CALL_HEAP_FUNCTION_VOID(heap->isolate(),
    800                           heap->AddWeakObjectToCodeDependency(*object, *dep));
    801 }
    802 
    803 
    804 } }  // namespace v8::internal
    805