Home | History | Annotate | Download | only in src
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "hydrogen-bce.h"
     29 
     30 namespace v8 {
     31 namespace internal {
     32 
     33 // We try to "factor up" HBoundsCheck instructions towards the root of the
     34 // dominator tree.
     35 // For now we handle checks where the index is like "exp + int32value".
     36 // If in the dominator tree we check "exp + v1" and later (dominated)
     37 // "exp + v2", if v2 <= v1 we can safely remove the second check, and if
     38 // v2 > v1 we can use v2 in the 1st check and again remove the second.
     39 // To do so we keep a dictionary of all checks where the key if the pair
     40 // "exp, length".
     41 // The class BoundsCheckKey represents this key.
     42 class BoundsCheckKey : public ZoneObject {
     43  public:
     44   HValue* IndexBase() const { return index_base_; }
     45   HValue* Length() const { return length_; }
     46 
     47   uint32_t Hash() {
     48     return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
     49   }
     50 
     51   static BoundsCheckKey* Create(Zone* zone,
     52                                 HBoundsCheck* check,
     53                                 int32_t* offset) {
     54     if (!check->index()->representation().IsSmiOrInteger32()) return NULL;
     55 
     56     HValue* index_base = NULL;
     57     HConstant* constant = NULL;
     58     bool is_sub = false;
     59 
     60     if (check->index()->IsAdd()) {
     61       HAdd* index = HAdd::cast(check->index());
     62       if (index->left()->IsConstant()) {
     63         constant = HConstant::cast(index->left());
     64         index_base = index->right();
     65       } else if (index->right()->IsConstant()) {
     66         constant = HConstant::cast(index->right());
     67         index_base = index->left();
     68       }
     69     } else if (check->index()->IsSub()) {
     70       HSub* index = HSub::cast(check->index());
     71       is_sub = true;
     72       if (index->left()->IsConstant()) {
     73         constant = HConstant::cast(index->left());
     74         index_base = index->right();
     75       } else if (index->right()->IsConstant()) {
     76         constant = HConstant::cast(index->right());
     77         index_base = index->left();
     78       }
     79     }
     80 
     81     if (constant != NULL && constant->HasInteger32Value()) {
     82       *offset = is_sub ? - constant->Integer32Value()
     83                        : constant->Integer32Value();
     84     } else {
     85       *offset = 0;
     86       index_base = check->index();
     87     }
     88 
     89     return new(zone) BoundsCheckKey(index_base, check->length());
     90   }
     91 
     92  private:
     93   BoundsCheckKey(HValue* index_base, HValue* length)
     94       : index_base_(index_base),
     95         length_(length) { }
     96 
     97   HValue* index_base_;
     98   HValue* length_;
     99 
    100   DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey);
    101 };
    102 
    103 
    104 // Data about each HBoundsCheck that can be eliminated or moved.
    105 // It is the "value" in the dictionary indexed by "base-index, length"
    106 // (the key is BoundsCheckKey).
    107 // We scan the code with a dominator tree traversal.
    108 // Traversing the dominator tree we keep a stack (implemented as a singly
    109 // linked list) of "data" for each basic block that contains a relevant check
    110 // with the same key (the dictionary holds the head of the list).
    111 // We also keep all the "data" created for a given basic block in a list, and
    112 // use it to "clean up" the dictionary when backtracking in the dominator tree
    113 // traversal.
    114 // Doing this each dictionary entry always directly points to the check that
    115 // is dominating the code being examined now.
    116 // We also track the current "offset" of the index expression and use it to
    117 // decide if any check is already "covered" (so it can be removed) or not.
    118 class BoundsCheckBbData: public ZoneObject {
    119  public:
    120   BoundsCheckKey* Key() const { return key_; }
    121   int32_t LowerOffset() const { return lower_offset_; }
    122   int32_t UpperOffset() const { return upper_offset_; }
    123   HBasicBlock* BasicBlock() const { return basic_block_; }
    124   HBoundsCheck* LowerCheck() const { return lower_check_; }
    125   HBoundsCheck* UpperCheck() const { return upper_check_; }
    126   BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
    127   BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
    128 
    129   bool OffsetIsCovered(int32_t offset) const {
    130     return offset >= LowerOffset() && offset <= UpperOffset();
    131   }
    132 
    133   bool HasSingleCheck() { return lower_check_ == upper_check_; }
    134 
    135   // The goal of this method is to modify either upper_offset_ or
    136   // lower_offset_ so that also new_offset is covered (the covered
    137   // range grows).
    138   //
    139   // The precondition is that new_check follows UpperCheck() and
    140   // LowerCheck() in the same basic block, and that new_offset is not
    141   // covered (otherwise we could simply remove new_check).
    142   //
    143   // If HasSingleCheck() is true then new_check is added as "second check"
    144   // (either upper or lower; note that HasSingleCheck() becomes false).
    145   // Otherwise one of the current checks is modified so that it also covers
    146   // new_offset, and new_check is removed.
    147   void CoverCheck(HBoundsCheck* new_check,
    148                   int32_t new_offset) {
    149     ASSERT(new_check->index()->representation().IsSmiOrInteger32());
    150     bool keep_new_check = false;
    151 
    152     if (new_offset > upper_offset_) {
    153       upper_offset_ = new_offset;
    154       if (HasSingleCheck()) {
    155         keep_new_check = true;
    156         upper_check_ = new_check;
    157       } else {
    158         TightenCheck(upper_check_, new_check);
    159       }
    160     } else if (new_offset < lower_offset_) {
    161       lower_offset_ = new_offset;
    162       if (HasSingleCheck()) {
    163         keep_new_check = true;
    164         lower_check_ = new_check;
    165       } else {
    166         TightenCheck(lower_check_, new_check);
    167       }
    168     } else {
    169       // Should never have called CoverCheck() in this case.
    170       UNREACHABLE();
    171     }
    172 
    173     if (!keep_new_check) {
    174       new_check->block()->graph()->isolate()->counters()->
    175           bounds_checks_eliminated()->Increment();
    176       new_check->DeleteAndReplaceWith(new_check->ActualValue());
    177     } else {
    178       HBoundsCheck* first_check = new_check == lower_check_ ? upper_check_
    179                                                             : lower_check_;
    180       // The length is guaranteed to be live at first_check.
    181       ASSERT(new_check->length() == first_check->length());
    182       HInstruction* old_position = new_check->next();
    183       new_check->Unlink();
    184       new_check->InsertAfter(first_check);
    185       MoveIndexIfNecessary(new_check->index(), new_check, old_position);
    186     }
    187   }
    188 
    189   BoundsCheckBbData(BoundsCheckKey* key,
    190                     int32_t lower_offset,
    191                     int32_t upper_offset,
    192                     HBasicBlock* bb,
    193                     HBoundsCheck* lower_check,
    194                     HBoundsCheck* upper_check,
    195                     BoundsCheckBbData* next_in_bb,
    196                     BoundsCheckBbData* father_in_dt)
    197       : key_(key),
    198         lower_offset_(lower_offset),
    199         upper_offset_(upper_offset),
    200         basic_block_(bb),
    201         lower_check_(lower_check),
    202         upper_check_(upper_check),
    203         next_in_bb_(next_in_bb),
    204         father_in_dt_(father_in_dt) { }
    205 
    206  private:
    207   BoundsCheckKey* key_;
    208   int32_t lower_offset_;
    209   int32_t upper_offset_;
    210   HBasicBlock* basic_block_;
    211   HBoundsCheck* lower_check_;
    212   HBoundsCheck* upper_check_;
    213   BoundsCheckBbData* next_in_bb_;
    214   BoundsCheckBbData* father_in_dt_;
    215 
    216   void MoveIndexIfNecessary(HValue* index_raw,
    217                             HBoundsCheck* insert_before,
    218                             HInstruction* end_of_scan_range) {
    219     if (!index_raw->IsAdd() && !index_raw->IsSub()) {
    220       // index_raw can be HAdd(index_base, offset), HSub(index_base, offset),
    221       // or index_base directly. In the latter case, no need to move anything.
    222       return;
    223     }
    224     HArithmeticBinaryOperation* index =
    225         HArithmeticBinaryOperation::cast(index_raw);
    226     HValue* left_input = index->left();
    227     HValue* right_input = index->right();
    228     bool must_move_index = false;
    229     bool must_move_left_input = false;
    230     bool must_move_right_input = false;
    231     for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) {
    232       if (cursor == left_input) must_move_left_input = true;
    233       if (cursor == right_input) must_move_right_input = true;
    234       if (cursor == index) must_move_index = true;
    235       if (cursor->previous() == NULL) {
    236         cursor = cursor->block()->dominator()->end();
    237       } else {
    238         cursor = cursor->previous();
    239       }
    240     }
    241     if (must_move_index) {
    242       index->Unlink();
    243       index->InsertBefore(insert_before);
    244     }
    245     // The BCE algorithm only selects mergeable bounds checks that share
    246     // the same "index_base", so we'll only ever have to move constants.
    247     if (must_move_left_input) {
    248       HConstant::cast(left_input)->Unlink();
    249       HConstant::cast(left_input)->InsertBefore(index);
    250     }
    251     if (must_move_right_input) {
    252       HConstant::cast(right_input)->Unlink();
    253       HConstant::cast(right_input)->InsertBefore(index);
    254     }
    255   }
    256 
    257   void TightenCheck(HBoundsCheck* original_check,
    258                     HBoundsCheck* tighter_check) {
    259     ASSERT(original_check->length() == tighter_check->length());
    260     MoveIndexIfNecessary(tighter_check->index(), original_check, tighter_check);
    261     original_check->ReplaceAllUsesWith(original_check->index());
    262     original_check->SetOperandAt(0, tighter_check->index());
    263   }
    264 
    265   DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData);
    266 };
    267 
    268 
    269 static bool BoundsCheckKeyMatch(void* key1, void* key2) {
    270   BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
    271   BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
    272   return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
    273 }
    274 
    275 
    276 BoundsCheckTable::BoundsCheckTable(Zone* zone)
    277     : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
    278                   ZoneAllocationPolicy(zone)) { }
    279 
    280 
    281 BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key,
    282                                                      Zone* zone) {
    283   return reinterpret_cast<BoundsCheckBbData**>(
    284       &(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
    285 }
    286 
    287 
    288 void BoundsCheckTable::Insert(BoundsCheckKey* key,
    289                               BoundsCheckBbData* data,
    290                               Zone* zone) {
    291   Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
    292 }
    293 
    294 
    295 void BoundsCheckTable::Delete(BoundsCheckKey* key) {
    296   Remove(key, key->Hash());
    297 }
    298 
    299 
    300 class HBoundsCheckEliminationState {
    301  public:
    302   HBasicBlock* block_;
    303   BoundsCheckBbData* bb_data_list_;
    304   int index_;
    305 };
    306 
    307 
    308 // Eliminates checks in bb and recursively in the dominated blocks.
    309 // Also replace the results of check instructions with the original value, if
    310 // the result is used. This is safe now, since we don't do code motion after
    311 // this point. It enables better register allocation since the value produced
    312 // by check instructions is really a copy of the original value.
    313 void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks(
    314     HBasicBlock* entry) {
    315   // Allocate the stack.
    316   HBoundsCheckEliminationState* stack =
    317     zone()->NewArray<HBoundsCheckEliminationState>(graph()->blocks()->length());
    318 
    319   // Explicitly push the entry block.
    320   stack[0].block_ = entry;
    321   stack[0].bb_data_list_ = PreProcessBlock(entry);
    322   stack[0].index_ = 0;
    323   int stack_depth = 1;
    324 
    325   // Implement depth-first traversal with a stack.
    326   while (stack_depth > 0) {
    327     int current = stack_depth - 1;
    328     HBoundsCheckEliminationState* state = &stack[current];
    329     const ZoneList<HBasicBlock*>* children = state->block_->dominated_blocks();
    330 
    331     if (state->index_ < children->length()) {
    332       // Recursively visit children blocks.
    333       HBasicBlock* child = children->at(state->index_++);
    334       int next = stack_depth++;
    335       stack[next].block_ = child;
    336       stack[next].bb_data_list_ = PreProcessBlock(child);
    337       stack[next].index_ = 0;
    338     } else {
    339       // Finished with all children; post process the block.
    340       PostProcessBlock(state->block_, state->bb_data_list_);
    341       stack_depth--;
    342     }
    343   }
    344 }
    345 
    346 
    347 BoundsCheckBbData* HBoundsCheckEliminationPhase::PreProcessBlock(
    348     HBasicBlock* bb) {
    349   BoundsCheckBbData* bb_data_list = NULL;
    350 
    351   for (HInstructionIterator it(bb); !it.Done(); it.Advance()) {
    352     HInstruction* i = it.Current();
    353     if (!i->IsBoundsCheck()) continue;
    354 
    355     HBoundsCheck* check = HBoundsCheck::cast(i);
    356     int32_t offset;
    357     BoundsCheckKey* key =
    358         BoundsCheckKey::Create(zone(), check, &offset);
    359     if (key == NULL) continue;
    360     BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone());
    361     BoundsCheckBbData* data = *data_p;
    362     if (data == NULL) {
    363       bb_data_list = new(zone()) BoundsCheckBbData(key,
    364                                                    offset,
    365                                                    offset,
    366                                                    bb,
    367                                                    check,
    368                                                    check,
    369                                                    bb_data_list,
    370                                                    NULL);
    371       *data_p = bb_data_list;
    372     } else if (data->OffsetIsCovered(offset)) {
    373       bb->graph()->isolate()->counters()->
    374           bounds_checks_eliminated()->Increment();
    375       check->DeleteAndReplaceWith(check->ActualValue());
    376     } else if (data->BasicBlock() == bb) {
    377       data->CoverCheck(check, offset);
    378     } else if (graph()->use_optimistic_licm() ||
    379                bb->IsLoopSuccessorDominator()) {
    380       int32_t new_lower_offset = offset < data->LowerOffset()
    381           ? offset
    382           : data->LowerOffset();
    383       int32_t new_upper_offset = offset > data->UpperOffset()
    384           ? offset
    385           : data->UpperOffset();
    386       bb_data_list = new(zone()) BoundsCheckBbData(key,
    387                                                    new_lower_offset,
    388                                                    new_upper_offset,
    389                                                    bb,
    390                                                    data->LowerCheck(),
    391                                                    data->UpperCheck(),
    392                                                    bb_data_list,
    393                                                    data);
    394       table_.Insert(key, bb_data_list, zone());
    395     }
    396   }
    397 
    398   return bb_data_list;
    399 }
    400 
    401 
    402 void HBoundsCheckEliminationPhase::PostProcessBlock(
    403     HBasicBlock* block, BoundsCheckBbData* data) {
    404   while (data != NULL) {
    405     if (data->FatherInDominatorTree()) {
    406       table_.Insert(data->Key(), data->FatherInDominatorTree(), zone());
    407     } else {
    408       table_.Delete(data->Key());
    409     }
    410     data = data->NextInBasicBlock();
    411   }
    412 }
    413 
    414 } }  // namespace v8::internal
    415