Home | History | Annotate | Download | only in src
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "hydrogen-bch.h"
     29 
     30 namespace v8 {
     31 namespace internal {
     32 
     33 /*
     34  * This class is a table with one element for eack basic block.
     35  *
     36  * It is used to check if, inside one loop, all execution paths contain
     37  * a bounds check for a particular [index, length] combination.
     38  * The reason is that if there is a path that stays in the loop without
     39  * executing a check then the check cannot be hoisted out of the loop (it
     40  * would likely fail and cause a deopt for no good reason).
     41  * We also check is there are paths that exit the loop early, and if yes we
     42  * perform the hoisting only if graph()->use_optimistic_licm() is true.
     43  * The reason is that such paths are realtively common and harmless (like in
     44  * a "search" method that scans an array until an element is found), but in
     45  * some cases they could cause a deopt if we hoist the check so this is a
     46  * situation we need to detect.
     47  */
     48 class InductionVariableBlocksTable BASE_EMBEDDED {
     49  public:
     50   class Element {
     51    public:
     52     static const int kNoBlock = -1;
     53 
     54     HBasicBlock* block() { return block_; }
     55     void set_block(HBasicBlock* block) { block_ = block; }
     56     bool is_start() { return is_start_; }
     57     bool is_proper_exit() { return is_proper_exit_; }
     58     bool is_in_loop() { return is_in_loop_; }
     59     bool has_check() { return has_check_; }
     60     void set_has_check() { has_check_ = true; }
     61     InductionVariableLimitUpdate* additional_limit() {
     62       return &additional_limit_;
     63     }
     64 
     65     /*
     66      * Initializes the table element for a given loop (identified by its
     67      * induction variable).
     68      */
     69     void InitializeLoop(InductionVariableData* data) {
     70       ASSERT(data->limit() != NULL);
     71       HLoopInformation* loop = data->phi()->block()->current_loop();
     72       is_start_ = (block() == loop->loop_header());
     73       is_proper_exit_ = (block() == data->induction_exit_target());
     74       is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
     75       has_check_ = false;
     76     }
     77 
     78     // Utility methods to iterate over dominated blocks.
     79     void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
     80     HBasicBlock* CurrentDominatedBlock() {
     81       ASSERT(current_dominated_block_ != kNoBlock);
     82       return current_dominated_block_ < block()->dominated_blocks()->length() ?
     83           block()->dominated_blocks()->at(current_dominated_block_) : NULL;
     84     }
     85     HBasicBlock* NextDominatedBlock() {
     86       current_dominated_block_++;
     87       return CurrentDominatedBlock();
     88     }
     89 
     90     Element()
     91         : block_(NULL), is_start_(false), is_proper_exit_(false),
     92           has_check_(false), additional_limit_(),
     93           current_dominated_block_(kNoBlock) {}
     94 
     95    private:
     96     HBasicBlock* block_;
     97     bool is_start_;
     98     bool is_proper_exit_;
     99     bool is_in_loop_;
    100     bool has_check_;
    101     InductionVariableLimitUpdate additional_limit_;
    102     int current_dominated_block_;
    103   };
    104 
    105   HGraph* graph() const { return graph_; }
    106   Counters* counters() const { return graph()->isolate()->counters(); }
    107   HBasicBlock* loop_header() const { return loop_header_; }
    108   Element* at(int index) const { return &(elements_.at(index)); }
    109   Element* at(HBasicBlock* block) const { return at(block->block_id()); }
    110 
    111   void AddCheckAt(HBasicBlock* block) {
    112     at(block->block_id())->set_has_check();
    113   }
    114 
    115   /*
    116    * Initializes the table for a given loop (identified by its induction
    117    * variable).
    118    */
    119   void InitializeLoop(InductionVariableData* data) {
    120     for (int i = 0; i < graph()->blocks()->length(); i++) {
    121       at(i)->InitializeLoop(data);
    122     }
    123     loop_header_ = data->phi()->block()->current_loop()->loop_header();
    124   }
    125 
    126 
    127   enum Hoistability {
    128     HOISTABLE,
    129     OPTIMISTICALLY_HOISTABLE,
    130     NOT_HOISTABLE
    131   };
    132 
    133   /*
    134    * This method checks if it is appropriate to hoist the bounds checks on an
    135    * induction variable out of the loop.
    136    * The problem is that in the loop code graph there could be execution paths
    137    * where the check is not performed, but hoisting the check has the same
    138    * semantics as performing it at every loop iteration, which could cause
    139    * unnecessary check failures (which would mean unnecessary deoptimizations).
    140    * The method returns OK if there are no paths that perform an iteration
    141    * (loop back to the header) without meeting a check, or UNSAFE is set if
    142    * early exit paths are found.
    143    */
    144   Hoistability CheckHoistability() {
    145     for (int i = 0; i < elements_.length(); i++) {
    146       at(i)->ResetCurrentDominatedBlock();
    147     }
    148     bool unsafe = false;
    149 
    150     HBasicBlock* current = loop_header();
    151     while (current != NULL) {
    152       HBasicBlock* next;
    153 
    154       if (at(current)->has_check() || !at(current)->is_in_loop()) {
    155         // We found a check or we reached a dominated block out of the loop,
    156         // therefore this block is safe and we can backtrack.
    157         next = NULL;
    158       } else {
    159         for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
    160           Element* successor = at(current->end()->SuccessorAt(i));
    161 
    162           if (!successor->is_in_loop()) {
    163             if (!successor->is_proper_exit()) {
    164               // We found a path that exits the loop early, and is not the exit
    165               // related to the induction limit, therefore hoisting checks is
    166               // an optimistic assumption.
    167               unsafe = true;
    168             }
    169           }
    170 
    171           if (successor->is_start()) {
    172             // We found a path that does one loop iteration without meeting any
    173             // check, therefore hoisting checks would be likely to cause
    174             // unnecessary deopts.
    175             return NOT_HOISTABLE;
    176           }
    177         }
    178 
    179         next = at(current)->NextDominatedBlock();
    180       }
    181 
    182       // If we have no next block we need to backtrack the tree traversal.
    183       while (next == NULL) {
    184         current = current->dominator();
    185         if (current != NULL) {
    186           next = at(current)->NextDominatedBlock();
    187         } else {
    188           // We reached the root: next stays NULL.
    189           next = NULL;
    190           break;
    191         }
    192       }
    193 
    194       current = next;
    195     }
    196 
    197     return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
    198   }
    199 
    200   explicit InductionVariableBlocksTable(HGraph* graph)
    201     : graph_(graph), loop_header_(NULL),
    202       elements_(graph->blocks()->length(), graph->zone()) {
    203     for (int i = 0; i < graph->blocks()->length(); i++) {
    204       Element element;
    205       element.set_block(graph->blocks()->at(i));
    206       elements_.Add(element, graph->zone());
    207       ASSERT(at(i)->block()->block_id() == i);
    208     }
    209   }
    210 
    211   // Tries to hoist a check out of its induction loop.
    212   void ProcessRelatedChecks(
    213       InductionVariableData::InductionVariableCheck* check,
    214       InductionVariableData* data) {
    215     HValue* length = check->check()->length();
    216     check->set_processed();
    217     HBasicBlock* header =
    218         data->phi()->block()->current_loop()->loop_header();
    219     HBasicBlock* pre_header = header->predecessors()->at(0);
    220     // Check that the limit is defined in the loop preheader.
    221     if (!data->limit()->IsInteger32Constant()) {
    222       HBasicBlock* limit_block = data->limit()->block();
    223       if (limit_block != pre_header &&
    224           !limit_block->Dominates(pre_header)) {
    225         return;
    226       }
    227     }
    228     // Check that the length and limit have compatible representations.
    229     if (!(data->limit()->representation().Equals(
    230             length->representation()) ||
    231         data->limit()->IsInteger32Constant())) {
    232       return;
    233     }
    234     // Check that the length is defined in the loop preheader.
    235     if (check->check()->length()->block() != pre_header &&
    236         !check->check()->length()->block()->Dominates(pre_header)) {
    237       return;
    238     }
    239 
    240     // Add checks to the table.
    241     for (InductionVariableData::InductionVariableCheck* current_check = check;
    242          current_check != NULL;
    243          current_check = current_check->next()) {
    244       if (current_check->check()->length() != length) continue;
    245 
    246       AddCheckAt(current_check->check()->block());
    247       current_check->set_processed();
    248     }
    249 
    250     // Check that we will not cause unwanted deoptimizations.
    251     Hoistability hoistability = CheckHoistability();
    252     if (hoistability == NOT_HOISTABLE ||
    253         (hoistability == OPTIMISTICALLY_HOISTABLE &&
    254          !graph()->use_optimistic_licm())) {
    255       return;
    256     }
    257 
    258     // We will do the hoisting, but we must see if the limit is "limit" or if
    259     // all checks are done on constants: if all check are done against the same
    260     // constant limit we will use that instead of the induction limit.
    261     bool has_upper_constant_limit = true;
    262     int32_t upper_constant_limit =
    263         check != NULL && check->HasUpperLimit() ? check->upper_limit() : 0;
    264     for (InductionVariableData::InductionVariableCheck* current_check = check;
    265          current_check != NULL;
    266          current_check = current_check->next()) {
    267       has_upper_constant_limit =
    268           has_upper_constant_limit &&
    269           check->HasUpperLimit() &&
    270           check->upper_limit() == upper_constant_limit;
    271       counters()->bounds_checks_eliminated()->Increment();
    272       current_check->check()->set_skip_check();
    273     }
    274 
    275     // Choose the appropriate limit.
    276     Zone* zone = graph()->zone();
    277     HValue* context = graph()->GetInvalidContext();
    278     HValue* limit = data->limit();
    279     if (has_upper_constant_limit) {
    280       HConstant* new_limit = HConstant::New(zone, context,
    281                                             upper_constant_limit);
    282       new_limit->InsertBefore(pre_header->end());
    283       limit = new_limit;
    284     }
    285 
    286     // If necessary, redefine the limit in the preheader.
    287     if (limit->IsInteger32Constant() &&
    288         limit->block() != pre_header &&
    289         !limit->block()->Dominates(pre_header)) {
    290       HConstant* new_limit = HConstant::New(zone, context,
    291                                             limit->GetInteger32Constant());
    292       new_limit->InsertBefore(pre_header->end());
    293       limit = new_limit;
    294     }
    295 
    296     // Do the hoisting.
    297     HBoundsCheck* hoisted_check = HBoundsCheck::New(
    298         zone, context, limit, check->check()->length());
    299     hoisted_check->InsertBefore(pre_header->end());
    300     hoisted_check->set_allow_equality(true);
    301     counters()->bounds_checks_hoisted()->Increment();
    302   }
    303 
    304   void CollectInductionVariableData(HBasicBlock* bb) {
    305     bool additional_limit = false;
    306 
    307     for (int i = 0; i < bb->phis()->length(); i++) {
    308       HPhi* phi = bb->phis()->at(i);
    309       phi->DetectInductionVariable();
    310     }
    311 
    312     additional_limit = InductionVariableData::ComputeInductionVariableLimit(
    313         bb, at(bb)->additional_limit());
    314 
    315     if (additional_limit) {
    316       at(bb)->additional_limit()->updated_variable->
    317           UpdateAdditionalLimit(at(bb)->additional_limit());
    318     }
    319 
    320     for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
    321       if (!i->IsBoundsCheck()) continue;
    322       HBoundsCheck* check = HBoundsCheck::cast(i);
    323       InductionVariableData::BitwiseDecompositionResult decomposition;
    324       InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
    325       if (!decomposition.base->IsPhi()) continue;
    326       HPhi* phi = HPhi::cast(decomposition.base);
    327 
    328       if (!phi->IsInductionVariable()) continue;
    329       InductionVariableData* data = phi->induction_variable_data();
    330 
    331       // For now ignore loops decrementing the index.
    332       if (data->increment() <= 0) continue;
    333       if (!data->LowerLimitIsNonNegativeConstant()) continue;
    334 
    335       // TODO(mmassi): skip OSR values for check->length().
    336       if (check->length() == data->limit() ||
    337           check->length() == data->additional_upper_limit()) {
    338         counters()->bounds_checks_eliminated()->Increment();
    339         check->set_skip_check();
    340         continue;
    341       }
    342 
    343       if (!phi->IsLimitedInductionVariable()) continue;
    344 
    345       int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
    346                                               decomposition.or_mask);
    347       phi->induction_variable_data()->AddCheck(check, limit);
    348     }
    349 
    350     for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
    351       CollectInductionVariableData(bb->dominated_blocks()->at(i));
    352     }
    353 
    354     if (additional_limit) {
    355       at(bb->block_id())->additional_limit()->updated_variable->
    356           UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
    357     }
    358   }
    359 
    360   void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
    361     for (int i = 0; i < bb->phis()->length(); i++) {
    362       HPhi* phi = bb->phis()->at(i);
    363       if (!phi->IsLimitedInductionVariable()) continue;
    364 
    365       InductionVariableData* induction_data = phi->induction_variable_data();
    366       InductionVariableData::ChecksRelatedToLength* current_length_group =
    367           induction_data->checks();
    368       while (current_length_group != NULL) {
    369         current_length_group->CloseCurrentBlock();
    370         InductionVariableData::InductionVariableCheck* current_base_check =
    371             current_length_group->checks();
    372         InitializeLoop(induction_data);
    373 
    374         while (current_base_check != NULL) {
    375           ProcessRelatedChecks(current_base_check, induction_data);
    376           while (current_base_check != NULL &&
    377                  current_base_check->processed()) {
    378             current_base_check = current_base_check->next();
    379           }
    380         }
    381 
    382         current_length_group = current_length_group->next();
    383       }
    384     }
    385   }
    386 
    387  private:
    388   HGraph* graph_;
    389   HBasicBlock* loop_header_;
    390   ZoneList<Element> elements_;
    391 };
    392 
    393 
    394 void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
    395   InductionVariableBlocksTable table(graph());
    396   table.CollectInductionVariableData(graph()->entry_block());
    397   for (int i = 0; i < graph()->blocks()->length(); i++) {
    398     table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
    399   }
    400 }
    401 
    402 } }  // namespace v8::internal
    403