Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if V8_TARGET_ARCH_X64
     31 
     32 #include "codegen.h"
     33 #include "deoptimizer.h"
     34 #include "full-codegen.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 
     40 #define __ ACCESS_MASM(masm)
     41 
     42 
     43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
     44                                 CFunctionId id,
     45                                 BuiltinExtraArguments extra_args) {
     46   // ----------- S t a t e -------------
     47   //  -- rax                 : number of arguments excluding receiver
     48   //  -- rdi                 : called function (only guaranteed when
     49   //                           extra_args requires it)
     50   //  -- rsi                 : context
     51   //  -- rsp[0]              : return address
     52   //  -- rsp[8]              : last argument
     53   //  -- ...
     54   //  -- rsp[8 * argc]       : first argument (argc == rax)
     55   //  -- rsp[8 * (argc + 1)] : receiver
     56   // -----------------------------------
     57 
     58   // Insert extra arguments.
     59   int num_extra_args = 0;
     60   if (extra_args == NEEDS_CALLED_FUNCTION) {
     61     num_extra_args = 1;
     62     __ PopReturnAddressTo(kScratchRegister);
     63     __ push(rdi);
     64     __ PushReturnAddressFrom(kScratchRegister);
     65   } else {
     66     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
     67   }
     68 
     69   // JumpToExternalReference expects rax to contain the number of arguments
     70   // including the receiver and the extra arguments.
     71   __ addq(rax, Immediate(num_extra_args + 1));
     72   __ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
     73 }
     74 
     75 
     76 static void CallRuntimePassFunction(MacroAssembler* masm,
     77                                     Runtime::FunctionId function_id) {
     78   FrameScope scope(masm, StackFrame::INTERNAL);
     79   // Push a copy of the function onto the stack.
     80   __ push(rdi);
     81   // Push call kind information.
     82   __ push(rcx);
     83   // Function is also the parameter to the runtime call.
     84   __ push(rdi);
     85 
     86   __ CallRuntime(function_id, 1);
     87   // Restore call kind information.
     88   __ pop(rcx);
     89   // Restore receiver.
     90   __ pop(rdi);
     91 }
     92 
     93 
     94 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
     95   __ movq(kScratchRegister,
     96           FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
     97   __ movq(kScratchRegister,
     98           FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset));
     99   __ lea(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize));
    100   __ jmp(kScratchRegister);
    101 }
    102 
    103 
    104 void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
    105   // Checking whether the queued function is ready for install is optional,
    106   // since we come across interrupts and stack checks elsewhere.  However,
    107   // not checking may delay installing ready functions, and always checking
    108   // would be quite expensive.  A good compromise is to first check against
    109   // stack limit as a cue for an interrupt signal.
    110   Label ok;
    111   __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
    112   __ j(above_equal, &ok);
    113 
    114   CallRuntimePassFunction(masm, Runtime::kTryInstallRecompiledCode);
    115   // Tail call to returned code.
    116   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
    117   __ jmp(rax);
    118 
    119   __ bind(&ok);
    120   GenerateTailCallToSharedCode(masm);
    121 }
    122 
    123 
    124 void Builtins::Generate_ConcurrentRecompile(MacroAssembler* masm) {
    125   CallRuntimePassFunction(masm, Runtime::kConcurrentRecompile);
    126   GenerateTailCallToSharedCode(masm);
    127 }
    128 
    129 
    130 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
    131                                            bool is_api_function,
    132                                            bool count_constructions) {
    133   // ----------- S t a t e -------------
    134   //  -- rax: number of arguments
    135   //  -- rdi: constructor function
    136   // -----------------------------------
    137 
    138   // Should never count constructions for api objects.
    139   ASSERT(!is_api_function || !count_constructions);
    140 
    141   // Enter a construct frame.
    142   {
    143     FrameScope scope(masm, StackFrame::CONSTRUCT);
    144 
    145     // Store a smi-tagged arguments count on the stack.
    146     __ Integer32ToSmi(rax, rax);
    147     __ push(rax);
    148 
    149     // Push the function to invoke on the stack.
    150     __ push(rdi);
    151 
    152     // Try to allocate the object without transitioning into C code. If any of
    153     // the preconditions is not met, the code bails out to the runtime call.
    154     Label rt_call, allocated;
    155     if (FLAG_inline_new) {
    156       Label undo_allocation;
    157 
    158 #ifdef ENABLE_DEBUGGER_SUPPORT
    159       ExternalReference debug_step_in_fp =
    160           ExternalReference::debug_step_in_fp_address(masm->isolate());
    161       __ Move(kScratchRegister, debug_step_in_fp);
    162       __ cmpq(Operand(kScratchRegister, 0), Immediate(0));
    163       __ j(not_equal, &rt_call);
    164 #endif
    165 
    166       // Verified that the constructor is a JSFunction.
    167       // Load the initial map and verify that it is in fact a map.
    168       // rdi: constructor
    169       __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
    170       // Will both indicate a NULL and a Smi
    171       ASSERT(kSmiTag == 0);
    172       __ JumpIfSmi(rax, &rt_call);
    173       // rdi: constructor
    174       // rax: initial map (if proven valid below)
    175       __ CmpObjectType(rax, MAP_TYPE, rbx);
    176       __ j(not_equal, &rt_call);
    177 
    178       // Check that the constructor is not constructing a JSFunction (see
    179       // comments in Runtime_NewObject in runtime.cc). In which case the
    180       // initial map's instance type would be JS_FUNCTION_TYPE.
    181       // rdi: constructor
    182       // rax: initial map
    183       __ CmpInstanceType(rax, JS_FUNCTION_TYPE);
    184       __ j(equal, &rt_call);
    185 
    186       if (count_constructions) {
    187         Label allocate;
    188         // Decrease generous allocation count.
    189         __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    190         __ decb(FieldOperand(rcx,
    191                              SharedFunctionInfo::kConstructionCountOffset));
    192         __ j(not_zero, &allocate);
    193 
    194         __ push(rax);
    195         __ push(rdi);
    196 
    197         __ push(rdi);  // constructor
    198         // The call will replace the stub, so the countdown is only done once.
    199         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
    200 
    201         __ pop(rdi);
    202         __ pop(rax);
    203 
    204         __ bind(&allocate);
    205       }
    206 
    207       // Now allocate the JSObject on the heap.
    208       __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
    209       __ shl(rdi, Immediate(kPointerSizeLog2));
    210       // rdi: size of new object
    211       __ Allocate(rdi,
    212                   rbx,
    213                   rdi,
    214                   no_reg,
    215                   &rt_call,
    216                   NO_ALLOCATION_FLAGS);
    217       // Allocated the JSObject, now initialize the fields.
    218       // rax: initial map
    219       // rbx: JSObject (not HeapObject tagged - the actual address).
    220       // rdi: start of next object
    221       __ movq(Operand(rbx, JSObject::kMapOffset), rax);
    222       __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
    223       __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
    224       __ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
    225       // Set extra fields in the newly allocated object.
    226       // rax: initial map
    227       // rbx: JSObject
    228       // rdi: start of next object
    229       __ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
    230       __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
    231       if (count_constructions) {
    232         __ movzxbq(rsi,
    233                    FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
    234         __ lea(rsi,
    235                Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize));
    236         // rsi: offset of first field after pre-allocated fields
    237         if (FLAG_debug_code) {
    238           __ cmpq(rsi, rdi);
    239           __ Assert(less_equal,
    240                     kUnexpectedNumberOfPreAllocatedPropertyFields);
    241         }
    242         __ InitializeFieldsWithFiller(rcx, rsi, rdx);
    243         __ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
    244       }
    245       __ InitializeFieldsWithFiller(rcx, rdi, rdx);
    246 
    247       // Add the object tag to make the JSObject real, so that we can continue
    248       // and jump into the continuation code at any time from now on. Any
    249       // failures need to undo the allocation, so that the heap is in a
    250       // consistent state and verifiable.
    251       // rax: initial map
    252       // rbx: JSObject
    253       // rdi: start of next object
    254       __ or_(rbx, Immediate(kHeapObjectTag));
    255 
    256       // Check if a non-empty properties array is needed.
    257       // Allocate and initialize a FixedArray if it is.
    258       // rax: initial map
    259       // rbx: JSObject
    260       // rdi: start of next object
    261       // Calculate total properties described map.
    262       __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
    263       __ movzxbq(rcx,
    264                  FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
    265       __ addq(rdx, rcx);
    266       // Calculate unused properties past the end of the in-object properties.
    267       __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
    268       __ subq(rdx, rcx);
    269       // Done if no extra properties are to be allocated.
    270       __ j(zero, &allocated);
    271       __ Assert(positive, kPropertyAllocationCountFailed);
    272 
    273       // Scale the number of elements by pointer size and add the header for
    274       // FixedArrays to the start of the next object calculation from above.
    275       // rbx: JSObject
    276       // rdi: start of next object (will be start of FixedArray)
    277       // rdx: number of elements in properties array
    278       __ Allocate(FixedArray::kHeaderSize,
    279                   times_pointer_size,
    280                   rdx,
    281                   rdi,
    282                   rax,
    283                   no_reg,
    284                   &undo_allocation,
    285                   RESULT_CONTAINS_TOP);
    286 
    287       // Initialize the FixedArray.
    288       // rbx: JSObject
    289       // rdi: FixedArray
    290       // rdx: number of elements
    291       // rax: start of next object
    292       __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
    293       __ movq(Operand(rdi, HeapObject::kMapOffset), rcx);  // setup the map
    294       __ Integer32ToSmi(rdx, rdx);
    295       __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx);  // and length
    296 
    297       // Initialize the fields to undefined.
    298       // rbx: JSObject
    299       // rdi: FixedArray
    300       // rax: start of next object
    301       // rdx: number of elements
    302       { Label loop, entry;
    303         __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
    304         __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
    305         __ jmp(&entry);
    306         __ bind(&loop);
    307         __ movq(Operand(rcx, 0), rdx);
    308         __ addq(rcx, Immediate(kPointerSize));
    309         __ bind(&entry);
    310         __ cmpq(rcx, rax);
    311         __ j(below, &loop);
    312       }
    313 
    314       // Store the initialized FixedArray into the properties field of
    315       // the JSObject
    316       // rbx: JSObject
    317       // rdi: FixedArray
    318       __ or_(rdi, Immediate(kHeapObjectTag));  // add the heap tag
    319       __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
    320 
    321 
    322       // Continue with JSObject being successfully allocated
    323       // rbx: JSObject
    324       __ jmp(&allocated);
    325 
    326       // Undo the setting of the new top so that the heap is verifiable. For
    327       // example, the map's unused properties potentially do not match the
    328       // allocated objects unused properties.
    329       // rbx: JSObject (previous new top)
    330       __ bind(&undo_allocation);
    331       __ UndoAllocationInNewSpace(rbx);
    332     }
    333 
    334     // Allocate the new receiver object using the runtime call.
    335     // rdi: function (constructor)
    336     __ bind(&rt_call);
    337     // Must restore rdi (constructor) before calling runtime.
    338     __ movq(rdi, Operand(rsp, 0));
    339     __ push(rdi);
    340     __ CallRuntime(Runtime::kNewObject, 1);
    341     __ movq(rbx, rax);  // store result in rbx
    342 
    343     // New object allocated.
    344     // rbx: newly allocated object
    345     __ bind(&allocated);
    346     // Retrieve the function from the stack.
    347     __ pop(rdi);
    348 
    349     // Retrieve smi-tagged arguments count from the stack.
    350     __ movq(rax, Operand(rsp, 0));
    351     __ SmiToInteger32(rax, rax);
    352 
    353     // Push the allocated receiver to the stack. We need two copies
    354     // because we may have to return the original one and the calling
    355     // conventions dictate that the called function pops the receiver.
    356     __ push(rbx);
    357     __ push(rbx);
    358 
    359     // Set up pointer to last argument.
    360     __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
    361 
    362     // Copy arguments and receiver to the expression stack.
    363     Label loop, entry;
    364     __ movq(rcx, rax);
    365     __ jmp(&entry);
    366     __ bind(&loop);
    367     __ push(Operand(rbx, rcx, times_pointer_size, 0));
    368     __ bind(&entry);
    369     __ decq(rcx);
    370     __ j(greater_equal, &loop);
    371 
    372     // Call the function.
    373     if (is_api_function) {
    374       __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
    375       Handle<Code> code =
    376           masm->isolate()->builtins()->HandleApiCallConstruct();
    377       ParameterCount expected(0);
    378       __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
    379                     CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
    380     } else {
    381       ParameterCount actual(rax);
    382       __ InvokeFunction(rdi, actual, CALL_FUNCTION,
    383                         NullCallWrapper(), CALL_AS_METHOD);
    384     }
    385 
    386     // Store offset of return address for deoptimizer.
    387     if (!is_api_function && !count_constructions) {
    388       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
    389     }
    390 
    391     // Restore context from the frame.
    392     __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
    393 
    394     // If the result is an object (in the ECMA sense), we should get rid
    395     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    396     // on page 74.
    397     Label use_receiver, exit;
    398     // If the result is a smi, it is *not* an object in the ECMA sense.
    399     __ JumpIfSmi(rax, &use_receiver);
    400 
    401     // If the type of the result (stored in its map) is less than
    402     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
    403     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    404     __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx);
    405     __ j(above_equal, &exit);
    406 
    407     // Throw away the result of the constructor invocation and use the
    408     // on-stack receiver as the result.
    409     __ bind(&use_receiver);
    410     __ movq(rax, Operand(rsp, 0));
    411 
    412     // Restore the arguments count and leave the construct frame.
    413     __ bind(&exit);
    414     __ movq(rbx, Operand(rsp, kPointerSize));  // Get arguments count.
    415 
    416     // Leave construct frame.
    417   }
    418 
    419   // Remove caller arguments from the stack and return.
    420   __ PopReturnAddressTo(rcx);
    421   SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
    422   __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
    423   __ PushReturnAddressFrom(rcx);
    424   Counters* counters = masm->isolate()->counters();
    425   __ IncrementCounter(counters->constructed_objects(), 1);
    426   __ ret(0);
    427 }
    428 
    429 
    430 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
    431   Generate_JSConstructStubHelper(masm, false, true);
    432 }
    433 
    434 
    435 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
    436   Generate_JSConstructStubHelper(masm, false, false);
    437 }
    438 
    439 
    440 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
    441   Generate_JSConstructStubHelper(masm, true, false);
    442 }
    443 
    444 
    445 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
    446                                              bool is_construct) {
    447   ProfileEntryHookStub::MaybeCallEntryHook(masm);
    448 
    449   // Expects five C++ function parameters.
    450   // - Address entry (ignored)
    451   // - JSFunction* function (
    452   // - Object* receiver
    453   // - int argc
    454   // - Object*** argv
    455   // (see Handle::Invoke in execution.cc).
    456 
    457   // Open a C++ scope for the FrameScope.
    458   {
    459     // Platform specific argument handling. After this, the stack contains
    460     // an internal frame and the pushed function and receiver, and
    461     // register rax and rbx holds the argument count and argument array,
    462     // while rdi holds the function pointer and rsi the context.
    463 
    464 #ifdef _WIN64
    465     // MSVC parameters in:
    466     // rcx        : entry (ignored)
    467     // rdx        : function
    468     // r8         : receiver
    469     // r9         : argc
    470     // [rsp+0x20] : argv
    471 
    472     // Clear the context before we push it when entering the internal frame.
    473     __ Set(rsi, 0);
    474     // Enter an internal frame.
    475     FrameScope scope(masm, StackFrame::INTERNAL);
    476 
    477     // Load the function context into rsi.
    478     __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
    479 
    480     // Push the function and the receiver onto the stack.
    481     __ push(rdx);
    482     __ push(r8);
    483 
    484     // Load the number of arguments and setup pointer to the arguments.
    485     __ movq(rax, r9);
    486     // Load the previous frame pointer to access C argument on stack
    487     __ movq(kScratchRegister, Operand(rbp, 0));
    488     __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
    489     // Load the function pointer into rdi.
    490     __ movq(rdi, rdx);
    491 #else  // _WIN64
    492     // GCC parameters in:
    493     // rdi : entry (ignored)
    494     // rsi : function
    495     // rdx : receiver
    496     // rcx : argc
    497     // r8  : argv
    498 
    499     __ movq(rdi, rsi);
    500     // rdi : function
    501 
    502     // Clear the context before we push it when entering the internal frame.
    503     __ Set(rsi, 0);
    504     // Enter an internal frame.
    505     FrameScope scope(masm, StackFrame::INTERNAL);
    506 
    507     // Push the function and receiver and setup the context.
    508     __ push(rdi);
    509     __ push(rdx);
    510     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
    511 
    512     // Load the number of arguments and setup pointer to the arguments.
    513     __ movq(rax, rcx);
    514     __ movq(rbx, r8);
    515 #endif  // _WIN64
    516 
    517     // Current stack contents:
    518     // [rsp + 2 * kPointerSize ... ] : Internal frame
    519     // [rsp + kPointerSize]          : function
    520     // [rsp]                         : receiver
    521     // Current register contents:
    522     // rax : argc
    523     // rbx : argv
    524     // rsi : context
    525     // rdi : function
    526 
    527     // Copy arguments to the stack in a loop.
    528     // Register rbx points to array of pointers to handle locations.
    529     // Push the values of these handles.
    530     Label loop, entry;
    531     __ Set(rcx, 0);  // Set loop variable to 0.
    532     __ jmp(&entry);
    533     __ bind(&loop);
    534     __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
    535     __ push(Operand(kScratchRegister, 0));  // dereference handle
    536     __ addq(rcx, Immediate(1));
    537     __ bind(&entry);
    538     __ cmpq(rcx, rax);
    539     __ j(not_equal, &loop);
    540 
    541     // Invoke the code.
    542     if (is_construct) {
    543       // No type feedback cell is available
    544       Handle<Object> undefined_sentinel(
    545           masm->isolate()->factory()->undefined_value());
    546       __ Move(rbx, undefined_sentinel);
    547       // Expects rdi to hold function pointer.
    548       CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
    549       __ CallStub(&stub);
    550     } else {
    551       ParameterCount actual(rax);
    552       // Function must be in rdi.
    553       __ InvokeFunction(rdi, actual, CALL_FUNCTION,
    554                         NullCallWrapper(), CALL_AS_METHOD);
    555     }
    556     // Exit the internal frame. Notice that this also removes the empty
    557     // context and the function left on the stack by the code
    558     // invocation.
    559   }
    560 
    561   // TODO(X64): Is argument correct? Is there a receiver to remove?
    562   __ ret(1 * kPointerSize);  // Remove receiver.
    563 }
    564 
    565 
    566 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
    567   Generate_JSEntryTrampolineHelper(masm, false);
    568 }
    569 
    570 
    571 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
    572   Generate_JSEntryTrampolineHelper(masm, true);
    573 }
    574 
    575 
    576 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
    577   CallRuntimePassFunction(masm, Runtime::kLazyCompile);
    578   // Do a tail-call of the compiled function.
    579   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
    580   __ jmp(rax);
    581 }
    582 
    583 
    584 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
    585   CallRuntimePassFunction(masm, Runtime::kLazyRecompile);
    586   // Do a tail-call of the compiled function.
    587   __ lea(rax, FieldOperand(rax, Code::kHeaderSize));
    588   __ jmp(rax);
    589 }
    590 
    591 
    592 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
    593   // For now, we are relying on the fact that make_code_young doesn't do any
    594   // garbage collection which allows us to save/restore the registers without
    595   // worrying about which of them contain pointers. We also don't build an
    596   // internal frame to make the code faster, since we shouldn't have to do stack
    597   // crawls in MakeCodeYoung. This seems a bit fragile.
    598 
    599   // Re-execute the code that was patched back to the young age when
    600   // the stub returns.
    601   __ subq(Operand(rsp, 0), Immediate(5));
    602   __ Pushad();
    603   __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
    604   __ movq(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
    605   {  // NOLINT
    606     FrameScope scope(masm, StackFrame::MANUAL);
    607     __ PrepareCallCFunction(1);
    608     __ CallCFunction(
    609         ExternalReference::get_make_code_young_function(masm->isolate()), 1);
    610   }
    611   __ Popad();
    612   __ ret(0);
    613 }
    614 
    615 
    616 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
    617 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
    618     MacroAssembler* masm) {                                  \
    619   GenerateMakeCodeYoungAgainCommon(masm);                    \
    620 }                                                            \
    621 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
    622     MacroAssembler* masm) {                                  \
    623   GenerateMakeCodeYoungAgainCommon(masm);                    \
    624 }
    625 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
    626 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
    627 
    628 
    629 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
    630   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
    631   // that make_code_young doesn't do any garbage collection which allows us to
    632   // save/restore the registers without worrying about which of them contain
    633   // pointers.
    634   __ Pushad();
    635   __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate()));
    636   __ movq(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize));
    637   __ subq(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
    638   {  // NOLINT
    639     FrameScope scope(masm, StackFrame::MANUAL);
    640     __ PrepareCallCFunction(1);
    641     __ CallCFunction(
    642         ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
    643         1);
    644   }
    645   __ Popad();
    646 
    647   // Perform prologue operations usually performed by the young code stub.
    648   __ PopReturnAddressTo(kScratchRegister);
    649   __ push(rbp);  // Caller's frame pointer.
    650   __ movq(rbp, rsp);
    651   __ push(rsi);  // Callee's context.
    652   __ push(rdi);  // Callee's JS Function.
    653   __ PushReturnAddressFrom(kScratchRegister);
    654 
    655   // Jump to point after the code-age stub.
    656   __ ret(0);
    657 }
    658 
    659 
    660 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
    661   GenerateMakeCodeYoungAgainCommon(masm);
    662 }
    663 
    664 
    665 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
    666                                              SaveFPRegsMode save_doubles) {
    667   // Enter an internal frame.
    668   {
    669     FrameScope scope(masm, StackFrame::INTERNAL);
    670 
    671     // Preserve registers across notification, this is important for compiled
    672     // stubs that tail call the runtime on deopts passing their parameters in
    673     // registers.
    674     __ Pushad();
    675     __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
    676     __ Popad();
    677     // Tear down internal frame.
    678   }
    679 
    680   __ pop(MemOperand(rsp, 0));  // Ignore state offset
    681   __ ret(0);  // Return to IC Miss stub, continuation still on stack.
    682 }
    683 
    684 
    685 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
    686   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
    687 }
    688 
    689 
    690 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
    691   Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
    692 }
    693 
    694 
    695 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
    696                                              Deoptimizer::BailoutType type) {
    697   // Enter an internal frame.
    698   {
    699     FrameScope scope(masm, StackFrame::INTERNAL);
    700 
    701     // Pass the deoptimization type to the runtime system.
    702     __ Push(Smi::FromInt(static_cast<int>(type)));
    703 
    704     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    705     // Tear down internal frame.
    706   }
    707 
    708   // Get the full codegen state from the stack and untag it.
    709   __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize));
    710 
    711   // Switch on the state.
    712   Label not_no_registers, not_tos_rax;
    713   __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS));
    714   __ j(not_equal, &not_no_registers, Label::kNear);
    715   __ ret(1 * kPointerSize);  // Remove state.
    716 
    717   __ bind(&not_no_registers);
    718   __ movq(rax, Operand(rsp, kPCOnStackSize + kPointerSize));
    719   __ cmpq(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG));
    720   __ j(not_equal, &not_tos_rax, Label::kNear);
    721   __ ret(2 * kPointerSize);  // Remove state, rax.
    722 
    723   __ bind(&not_tos_rax);
    724   __ Abort(kNoCasesLeft);
    725 }
    726 
    727 
    728 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
    729   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
    730 }
    731 
    732 
    733 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
    734   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
    735 }
    736 
    737 
    738 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
    739   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
    740 }
    741 
    742 
    743 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
    744   // Stack Layout:
    745   // rsp[0]           : Return address
    746   // rsp[8]           : Argument n
    747   // rsp[16]          : Argument n-1
    748   //  ...
    749   // rsp[8 * n]       : Argument 1
    750   // rsp[8 * (n + 1)] : Receiver (function to call)
    751   //
    752   // rax contains the number of arguments, n, not counting the receiver.
    753   //
    754   // 1. Make sure we have at least one argument.
    755   { Label done;
    756     __ testq(rax, rax);
    757     __ j(not_zero, &done);
    758     __ PopReturnAddressTo(rbx);
    759     __ Push(masm->isolate()->factory()->undefined_value());
    760     __ PushReturnAddressFrom(rbx);
    761     __ incq(rax);
    762     __ bind(&done);
    763   }
    764 
    765   // 2. Get the function to call (passed as receiver) from the stack, check
    766   //    if it is a function.
    767   Label slow, non_function;
    768   StackArgumentsAccessor args(rsp, rax);
    769   __ movq(rdi, args.GetReceiverOperand());
    770   __ JumpIfSmi(rdi, &non_function);
    771   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    772   __ j(not_equal, &slow);
    773 
    774   // 3a. Patch the first argument if necessary when calling a function.
    775   Label shift_arguments;
    776   __ Set(rdx, 0);  // indicate regular JS_FUNCTION
    777   { Label convert_to_object, use_global_receiver, patch_receiver;
    778     // Change context eagerly in case we need the global receiver.
    779     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
    780 
    781     // Do not transform the receiver for strict mode functions.
    782     __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    783     __ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
    784              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    785     __ j(not_equal, &shift_arguments);
    786 
    787     // Do not transform the receiver for natives.
    788     // SharedFunctionInfo is already loaded into rbx.
    789     __ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset),
    790              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
    791     __ j(not_zero, &shift_arguments);
    792 
    793     // Compute the receiver in non-strict mode.
    794     __ movq(rbx, args.GetArgumentOperand(1));
    795     __ JumpIfSmi(rbx, &convert_to_object, Label::kNear);
    796 
    797     __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    798     __ j(equal, &use_global_receiver);
    799     __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    800     __ j(equal, &use_global_receiver);
    801 
    802     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
    803     __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
    804     __ j(above_equal, &shift_arguments);
    805 
    806     __ bind(&convert_to_object);
    807     {
    808       // Enter an internal frame in order to preserve argument count.
    809       FrameScope scope(masm, StackFrame::INTERNAL);
    810       __ Integer32ToSmi(rax, rax);
    811       __ push(rax);
    812 
    813       __ push(rbx);
    814       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    815       __ movq(rbx, rax);
    816       __ Set(rdx, 0);  // indicate regular JS_FUNCTION
    817 
    818       __ pop(rax);
    819       __ SmiToInteger32(rax, rax);
    820     }
    821 
    822     // Restore the function to rdi.
    823     __ movq(rdi, args.GetReceiverOperand());
    824     __ jmp(&patch_receiver, Label::kNear);
    825 
    826     // Use the global receiver object from the called function as the
    827     // receiver.
    828     __ bind(&use_global_receiver);
    829     const int kGlobalIndex =
    830         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
    831     __ movq(rbx, FieldOperand(rsi, kGlobalIndex));
    832     __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
    833     __ movq(rbx, FieldOperand(rbx, kGlobalIndex));
    834     __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
    835 
    836     __ bind(&patch_receiver);
    837     __ movq(args.GetArgumentOperand(1), rbx);
    838 
    839     __ jmp(&shift_arguments);
    840   }
    841 
    842   // 3b. Check for function proxy.
    843   __ bind(&slow);
    844   __ Set(rdx, 1);  // indicate function proxy
    845   __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE);
    846   __ j(equal, &shift_arguments);
    847   __ bind(&non_function);
    848   __ Set(rdx, 2);  // indicate non-function
    849 
    850   // 3c. Patch the first argument when calling a non-function.  The
    851   //     CALL_NON_FUNCTION builtin expects the non-function callee as
    852   //     receiver, so overwrite the first argument which will ultimately
    853   //     become the receiver.
    854   __ movq(args.GetArgumentOperand(1), rdi);
    855 
    856   // 4. Shift arguments and return address one slot down on the stack
    857   //    (overwriting the original receiver).  Adjust argument count to make
    858   //    the original first argument the new receiver.
    859   __ bind(&shift_arguments);
    860   { Label loop;
    861     __ movq(rcx, rax);
    862     __ bind(&loop);
    863     __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
    864     __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
    865     __ decq(rcx);
    866     __ j(not_sign, &loop);  // While non-negative (to copy return address).
    867     __ pop(rbx);  // Discard copy of return address.
    868     __ decq(rax);  // One fewer argument (first argument is new receiver).
    869   }
    870 
    871   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
    872   //     or a function proxy via CALL_FUNCTION_PROXY.
    873   { Label function, non_proxy;
    874     __ testq(rdx, rdx);
    875     __ j(zero, &function);
    876     __ Set(rbx, 0);
    877     __ SetCallKind(rcx, CALL_AS_METHOD);
    878     __ cmpq(rdx, Immediate(1));
    879     __ j(not_equal, &non_proxy);
    880 
    881     __ PopReturnAddressTo(rdx);
    882     __ push(rdi);  // re-add proxy object as additional argument
    883     __ PushReturnAddressFrom(rdx);
    884     __ incq(rax);
    885     __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
    886     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    887            RelocInfo::CODE_TARGET);
    888 
    889     __ bind(&non_proxy);
    890     __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
    891     __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    892             RelocInfo::CODE_TARGET);
    893     __ bind(&function);
    894   }
    895 
    896   // 5b. Get the code to call from the function and check that the number of
    897   //     expected arguments matches what we're providing.  If so, jump
    898   //     (tail-call) to the code in register edx without checking arguments.
    899   __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    900   __ movsxlq(rbx,
    901              FieldOperand(rdx,
    902                           SharedFunctionInfo::kFormalParameterCountOffset));
    903   __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
    904   __ SetCallKind(rcx, CALL_AS_METHOD);
    905   __ cmpq(rax, rbx);
    906   __ j(not_equal,
    907        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    908        RelocInfo::CODE_TARGET);
    909 
    910   ParameterCount expected(0);
    911   __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION,
    912                 NullCallWrapper(), CALL_AS_METHOD);
    913 }
    914 
    915 
    916 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
    917   // Stack at entry:
    918   // rsp     : return address
    919   // rsp[8]  : arguments
    920   // rsp[16] : receiver ("this")
    921   // rsp[24] : function
    922   {
    923     FrameScope frame_scope(masm, StackFrame::INTERNAL);
    924     // Stack frame:
    925     // rbp     : Old base pointer
    926     // rbp[8]  : return address
    927     // rbp[16] : function arguments
    928     // rbp[24] : receiver
    929     // rbp[32] : function
    930     static const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
    931     static const int kReceiverOffset = kArgumentsOffset + kPointerSize;
    932     static const int kFunctionOffset = kReceiverOffset + kPointerSize;
    933 
    934     __ push(Operand(rbp, kFunctionOffset));
    935     __ push(Operand(rbp, kArgumentsOffset));
    936     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
    937 
    938     // Check the stack for overflow. We are not trying to catch
    939     // interruptions (e.g. debug break and preemption) here, so the "real stack
    940     // limit" is checked.
    941     Label okay;
    942     __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
    943     __ movq(rcx, rsp);
    944     // Make rcx the space we have left. The stack might already be overflowed
    945     // here which will cause rcx to become negative.
    946     __ subq(rcx, kScratchRegister);
    947     // Make rdx the space we need for the array when it is unrolled onto the
    948     // stack.
    949     __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
    950     // Check if the arguments will overflow the stack.
    951     __ cmpq(rcx, rdx);
    952     __ j(greater, &okay);  // Signed comparison.
    953 
    954     // Out of stack space.
    955     __ push(Operand(rbp, kFunctionOffset));
    956     __ push(rax);
    957     __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    958     __ bind(&okay);
    959     // End of stack check.
    960 
    961     // Push current index and limit.
    962     const int kLimitOffset =
    963         StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
    964     const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
    965     __ push(rax);  // limit
    966     __ push(Immediate(0));  // index
    967 
    968     // Get the receiver.
    969     __ movq(rbx, Operand(rbp, kReceiverOffset));
    970 
    971     // Check that the function is a JS function (otherwise it must be a proxy).
    972     Label push_receiver;
    973     __ movq(rdi, Operand(rbp, kFunctionOffset));
    974     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
    975     __ j(not_equal, &push_receiver);
    976 
    977     // Change context eagerly to get the right global object if necessary.
    978     __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
    979 
    980     // Do not transform the receiver for strict mode functions.
    981     Label call_to_object, use_global_receiver;
    982     __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
    983     __ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
    984              Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
    985     __ j(not_equal, &push_receiver);
    986 
    987     // Do not transform the receiver for natives.
    988     __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset),
    989              Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
    990     __ j(not_equal, &push_receiver);
    991 
    992     // Compute the receiver in non-strict mode.
    993     __ JumpIfSmi(rbx, &call_to_object, Label::kNear);
    994     __ CompareRoot(rbx, Heap::kNullValueRootIndex);
    995     __ j(equal, &use_global_receiver);
    996     __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
    997     __ j(equal, &use_global_receiver);
    998 
    999     // If given receiver is already a JavaScript object then there's no
   1000     // reason for converting it.
   1001     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
   1002     __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx);
   1003     __ j(above_equal, &push_receiver);
   1004 
   1005     // Convert the receiver to an object.
   1006     __ bind(&call_to_object);
   1007     __ push(rbx);
   1008     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
   1009     __ movq(rbx, rax);
   1010     __ jmp(&push_receiver, Label::kNear);
   1011 
   1012     // Use the current global receiver object as the receiver.
   1013     __ bind(&use_global_receiver);
   1014     const int kGlobalOffset =
   1015         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
   1016     __ movq(rbx, FieldOperand(rsi, kGlobalOffset));
   1017     __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset));
   1018     __ movq(rbx, FieldOperand(rbx, kGlobalOffset));
   1019     __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
   1020 
   1021     // Push the receiver.
   1022     __ bind(&push_receiver);
   1023     __ push(rbx);
   1024 
   1025     // Copy all arguments from the array to the stack.
   1026     Label entry, loop;
   1027     __ movq(rax, Operand(rbp, kIndexOffset));
   1028     __ jmp(&entry);
   1029     __ bind(&loop);
   1030     __ movq(rdx, Operand(rbp, kArgumentsOffset));  // load arguments
   1031 
   1032     // Use inline caching to speed up access to arguments.
   1033     Handle<Code> ic =
   1034         masm->isolate()->builtins()->KeyedLoadIC_Initialize();
   1035     __ Call(ic, RelocInfo::CODE_TARGET);
   1036     // It is important that we do not have a test instruction after the
   1037     // call.  A test instruction after the call is used to indicate that
   1038     // we have generated an inline version of the keyed load.  In this
   1039     // case, we know that we are not generating a test instruction next.
   1040 
   1041     // Push the nth argument.
   1042     __ push(rax);
   1043 
   1044     // Update the index on the stack and in register rax.
   1045     __ movq(rax, Operand(rbp, kIndexOffset));
   1046     __ SmiAddConstant(rax, rax, Smi::FromInt(1));
   1047     __ movq(Operand(rbp, kIndexOffset), rax);
   1048 
   1049     __ bind(&entry);
   1050     __ cmpq(rax, Operand(rbp, kLimitOffset));
   1051     __ j(not_equal, &loop);
   1052 
   1053     // Invoke the function.
   1054     Label call_proxy;
   1055     ParameterCount actual(rax);
   1056     __ SmiToInteger32(rax, rax);
   1057     __ movq(rdi, Operand(rbp, kFunctionOffset));
   1058     __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
   1059     __ j(not_equal, &call_proxy);
   1060     __ InvokeFunction(rdi, actual, CALL_FUNCTION,
   1061                       NullCallWrapper(), CALL_AS_METHOD);
   1062 
   1063     frame_scope.GenerateLeaveFrame();
   1064     __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
   1065 
   1066     // Invoke the function proxy.
   1067     __ bind(&call_proxy);
   1068     __ push(rdi);  // add function proxy as last argument
   1069     __ incq(rax);
   1070     __ Set(rbx, 0);
   1071     __ SetCallKind(rcx, CALL_AS_METHOD);
   1072     __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY);
   1073     __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
   1074             RelocInfo::CODE_TARGET);
   1075 
   1076     // Leave internal frame.
   1077   }
   1078   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
   1079 }
   1080 
   1081 
   1082 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
   1083   // ----------- S t a t e -------------
   1084   //  -- rax    : argc
   1085   //  -- rsp[0] : return address
   1086   //  -- rsp[8] : last argument
   1087   // -----------------------------------
   1088   Label generic_array_code;
   1089 
   1090   // Get the InternalArray function.
   1091   __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi);
   1092 
   1093   if (FLAG_debug_code) {
   1094     // Initial map for the builtin InternalArray functions should be maps.
   1095     __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   1096     // Will both indicate a NULL and a Smi.
   1097     STATIC_ASSERT(kSmiTag == 0);
   1098     Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
   1099     __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction);
   1100     __ CmpObjectType(rbx, MAP_TYPE, rcx);
   1101     __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction);
   1102   }
   1103 
   1104   // Run the native code for the InternalArray function called as a normal
   1105   // function.
   1106   // tail call a stub
   1107   InternalArrayConstructorStub stub(masm->isolate());
   1108   __ TailCallStub(&stub);
   1109 }
   1110 
   1111 
   1112 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
   1113   // ----------- S t a t e -------------
   1114   //  -- rax    : argc
   1115   //  -- rsp[0] : return address
   1116   //  -- rsp[8] : last argument
   1117   // -----------------------------------
   1118   Label generic_array_code;
   1119 
   1120   // Get the Array function.
   1121   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
   1122 
   1123   if (FLAG_debug_code) {
   1124     // Initial map for the builtin Array functions should be maps.
   1125     __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
   1126     // Will both indicate a NULL and a Smi.
   1127     STATIC_ASSERT(kSmiTag == 0);
   1128     Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
   1129     __ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
   1130     __ CmpObjectType(rbx, MAP_TYPE, rcx);
   1131     __ Check(equal, kUnexpectedInitialMapForArrayFunction);
   1132   }
   1133 
   1134   // Run the native code for the Array function called as a normal function.
   1135   // tail call a stub
   1136   Handle<Object> undefined_sentinel(
   1137       masm->isolate()->heap()->undefined_value(),
   1138       masm->isolate());
   1139   __ Move(rbx, undefined_sentinel);
   1140   ArrayConstructorStub stub(masm->isolate());
   1141   __ TailCallStub(&stub);
   1142 }
   1143 
   1144 
   1145 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
   1146   // ----------- S t a t e -------------
   1147   //  -- rax                 : number of arguments
   1148   //  -- rdi                 : constructor function
   1149   //  -- rsp[0]              : return address
   1150   //  -- rsp[(argc - n) * 8] : arg[n] (zero-based)
   1151   //  -- rsp[(argc + 1) * 8] : receiver
   1152   // -----------------------------------
   1153   Counters* counters = masm->isolate()->counters();
   1154   __ IncrementCounter(counters->string_ctor_calls(), 1);
   1155 
   1156   if (FLAG_debug_code) {
   1157     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx);
   1158     __ cmpq(rdi, rcx);
   1159     __ Assert(equal, kUnexpectedStringFunction);
   1160   }
   1161 
   1162   // Load the first argument into rax and get rid of the rest
   1163   // (including the receiver).
   1164   StackArgumentsAccessor args(rsp, rax);
   1165   Label no_arguments;
   1166   __ testq(rax, rax);
   1167   __ j(zero, &no_arguments);
   1168   __ movq(rbx, args.GetArgumentOperand(1));
   1169   __ PopReturnAddressTo(rcx);
   1170   __ lea(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize));
   1171   __ PushReturnAddressFrom(rcx);
   1172   __ movq(rax, rbx);
   1173 
   1174   // Lookup the argument in the number to string cache.
   1175   Label not_cached, argument_is_string;
   1176   __ LookupNumberStringCache(rax,  // Input.
   1177                              rbx,  // Result.
   1178                              rcx,  // Scratch 1.
   1179                              rdx,  // Scratch 2.
   1180                              &not_cached);
   1181   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
   1182   __ bind(&argument_is_string);
   1183 
   1184   // ----------- S t a t e -------------
   1185   //  -- rbx    : argument converted to string
   1186   //  -- rdi    : constructor function
   1187   //  -- rsp[0] : return address
   1188   // -----------------------------------
   1189 
   1190   // Allocate a JSValue and put the tagged pointer into rax.
   1191   Label gc_required;
   1192   __ Allocate(JSValue::kSize,
   1193               rax,  // Result.
   1194               rcx,  // New allocation top (we ignore it).
   1195               no_reg,
   1196               &gc_required,
   1197               TAG_OBJECT);
   1198 
   1199   // Set the map.
   1200   __ LoadGlobalFunctionInitialMap(rdi, rcx);
   1201   if (FLAG_debug_code) {
   1202     __ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset),
   1203             Immediate(JSValue::kSize >> kPointerSizeLog2));
   1204     __ Assert(equal, kUnexpectedStringWrapperInstanceSize);
   1205     __ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0));
   1206     __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
   1207   }
   1208   __ movq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
   1209 
   1210   // Set properties and elements.
   1211   __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
   1212   __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rcx);
   1213   __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
   1214 
   1215   // Set the value.
   1216   __ movq(FieldOperand(rax, JSValue::kValueOffset), rbx);
   1217 
   1218   // Ensure the object is fully initialized.
   1219   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
   1220 
   1221   // We're done. Return.
   1222   __ ret(0);
   1223 
   1224   // The argument was not found in the number to string cache. Check
   1225   // if it's a string already before calling the conversion builtin.
   1226   Label convert_argument;
   1227   __ bind(&not_cached);
   1228   STATIC_ASSERT(kSmiTag == 0);
   1229   __ JumpIfSmi(rax, &convert_argument);
   1230   Condition is_string = masm->IsObjectStringType(rax, rbx, rcx);
   1231   __ j(NegateCondition(is_string), &convert_argument);
   1232   __ movq(rbx, rax);
   1233   __ IncrementCounter(counters->string_ctor_string_value(), 1);
   1234   __ jmp(&argument_is_string);
   1235 
   1236   // Invoke the conversion builtin and put the result into rbx.
   1237   __ bind(&convert_argument);
   1238   __ IncrementCounter(counters->string_ctor_conversions(), 1);
   1239   {
   1240     FrameScope scope(masm, StackFrame::INTERNAL);
   1241     __ push(rdi);  // Preserve the function.
   1242     __ push(rax);
   1243     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
   1244     __ pop(rdi);
   1245   }
   1246   __ movq(rbx, rax);
   1247   __ jmp(&argument_is_string);
   1248 
   1249   // Load the empty string into rbx, remove the receiver from the
   1250   // stack, and jump back to the case where the argument is a string.
   1251   __ bind(&no_arguments);
   1252   __ LoadRoot(rbx, Heap::kempty_stringRootIndex);
   1253   __ PopReturnAddressTo(rcx);
   1254   __ lea(rsp, Operand(rsp, kPointerSize));
   1255   __ PushReturnAddressFrom(rcx);
   1256   __ jmp(&argument_is_string);
   1257 
   1258   // At this point the argument is already a string. Call runtime to
   1259   // create a string wrapper.
   1260   __ bind(&gc_required);
   1261   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
   1262   {
   1263     FrameScope scope(masm, StackFrame::INTERNAL);
   1264     __ push(rbx);
   1265     __ CallRuntime(Runtime::kNewStringWrapper, 1);
   1266   }
   1267   __ ret(0);
   1268 }
   1269 
   1270 
   1271 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
   1272   __ push(rbp);
   1273   __ movq(rbp, rsp);
   1274 
   1275   // Store the arguments adaptor context sentinel.
   1276   __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
   1277 
   1278   // Push the function on the stack.
   1279   __ push(rdi);
   1280 
   1281   // Preserve the number of arguments on the stack. Must preserve rax,
   1282   // rbx and rcx because these registers are used when copying the
   1283   // arguments and the receiver.
   1284   __ Integer32ToSmi(r8, rax);
   1285   __ push(r8);
   1286 }
   1287 
   1288 
   1289 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
   1290   // Retrieve the number of arguments from the stack. Number is a Smi.
   1291   __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1292 
   1293   // Leave the frame.
   1294   __ movq(rsp, rbp);
   1295   __ pop(rbp);
   1296 
   1297   // Remove caller arguments from the stack.
   1298   __ PopReturnAddressTo(rcx);
   1299   SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
   1300   __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
   1301   __ PushReturnAddressFrom(rcx);
   1302 }
   1303 
   1304 
   1305 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
   1306   // ----------- S t a t e -------------
   1307   //  -- rax : actual number of arguments
   1308   //  -- rbx : expected number of arguments
   1309   //  -- rcx : call kind information
   1310   //  -- rdx : code entry to call
   1311   // -----------------------------------
   1312 
   1313   Label invoke, dont_adapt_arguments;
   1314   Counters* counters = masm->isolate()->counters();
   1315   __ IncrementCounter(counters->arguments_adaptors(), 1);
   1316 
   1317   Label enough, too_few;
   1318   __ cmpq(rax, rbx);
   1319   __ j(less, &too_few);
   1320   __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
   1321   __ j(equal, &dont_adapt_arguments);
   1322 
   1323   {  // Enough parameters: Actual >= expected.
   1324     __ bind(&enough);
   1325     EnterArgumentsAdaptorFrame(masm);
   1326 
   1327     // Copy receiver and all expected arguments.
   1328     const int offset = StandardFrameConstants::kCallerSPOffset;
   1329     __ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
   1330     __ Set(r8, -1);  // account for receiver
   1331 
   1332     Label copy;
   1333     __ bind(&copy);
   1334     __ incq(r8);
   1335     __ push(Operand(rax, 0));
   1336     __ subq(rax, Immediate(kPointerSize));
   1337     __ cmpq(r8, rbx);
   1338     __ j(less, &copy);
   1339     __ jmp(&invoke);
   1340   }
   1341 
   1342   {  // Too few parameters: Actual < expected.
   1343     __ bind(&too_few);
   1344     EnterArgumentsAdaptorFrame(masm);
   1345 
   1346     // Copy receiver and all actual arguments.
   1347     const int offset = StandardFrameConstants::kCallerSPOffset;
   1348     __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
   1349     __ Set(r8, -1);  // account for receiver
   1350 
   1351     Label copy;
   1352     __ bind(&copy);
   1353     __ incq(r8);
   1354     __ push(Operand(rdi, 0));
   1355     __ subq(rdi, Immediate(kPointerSize));
   1356     __ cmpq(r8, rax);
   1357     __ j(less, &copy);
   1358 
   1359     // Fill remaining expected arguments with undefined values.
   1360     Label fill;
   1361     __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
   1362     __ bind(&fill);
   1363     __ incq(r8);
   1364     __ push(kScratchRegister);
   1365     __ cmpq(r8, rbx);
   1366     __ j(less, &fill);
   1367 
   1368     // Restore function pointer.
   1369     __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1370   }
   1371 
   1372   // Call the entry point.
   1373   __ bind(&invoke);
   1374   __ call(rdx);
   1375 
   1376   // Store offset of return address for deoptimizer.
   1377   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
   1378 
   1379   // Leave frame and return.
   1380   LeaveArgumentsAdaptorFrame(masm);
   1381   __ ret(0);
   1382 
   1383   // -------------------------------------------
   1384   // Dont adapt arguments.
   1385   // -------------------------------------------
   1386   __ bind(&dont_adapt_arguments);
   1387   __ jmp(rdx);
   1388 }
   1389 
   1390 
   1391 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
   1392   // Lookup the function in the JavaScript frame.
   1393   __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
   1394   {
   1395     FrameScope scope(masm, StackFrame::INTERNAL);
   1396     // Lookup and calculate pc offset.
   1397     __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerPCOffset));
   1398     __ movq(rbx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
   1399     __ subq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
   1400     __ subq(rdx, FieldOperand(rbx, SharedFunctionInfo::kCodeOffset));
   1401     __ Integer32ToSmi(rdx, rdx);
   1402 
   1403     // Pass both function and pc offset as arguments.
   1404     __ push(rax);
   1405     __ push(rdx);
   1406     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 2);
   1407   }
   1408 
   1409   Label skip;
   1410   // If the code object is null, just return to the unoptimized code.
   1411   __ cmpq(rax, Immediate(0));
   1412   __ j(not_equal, &skip, Label::kNear);
   1413   __ ret(0);
   1414 
   1415   __ bind(&skip);
   1416 
   1417   // Load deoptimization data from the code object.
   1418   __ movq(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
   1419 
   1420   // Load the OSR entrypoint offset from the deoptimization data.
   1421   __ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt(
   1422       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
   1423 
   1424   // Compute the target address = code_obj + header_size + osr_offset
   1425   __ lea(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag));
   1426 
   1427   // Overwrite the return address on the stack.
   1428   __ movq(Operand(rsp, 0), rax);
   1429 
   1430   // And "return" to the OSR entry point of the function.
   1431   __ ret(0);
   1432 }
   1433 
   1434 
   1435 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
   1436   // We check the stack limit as indicator that recompilation might be done.
   1437   Label ok;
   1438   __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
   1439   __ j(above_equal, &ok);
   1440   {
   1441     FrameScope scope(masm, StackFrame::INTERNAL);
   1442     __ CallRuntime(Runtime::kStackGuard, 0);
   1443   }
   1444   __ jmp(masm->isolate()->builtins()->OnStackReplacement(),
   1445          RelocInfo::CODE_TARGET);
   1446 
   1447   __ bind(&ok);
   1448   __ ret(0);
   1449 }
   1450 
   1451 
   1452 #undef __
   1453 
   1454 } }  // namespace v8::internal
   1455 
   1456 #endif  // V8_TARGET_ARCH_X64
   1457