Home | History | Annotate | Download | only in CodeGen
      1 //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ code generation targeting the Itanium C++ ABI.  The class
     11 // in this file generates structures that follow the Itanium C++ ABI, which is
     12 // documented at:
     13 //  http://www.codesourcery.com/public/cxx-abi/abi.html
     14 //  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
     15 //
     16 // It also supports the closely-related ARM ABI, documented at:
     17 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "CGCXXABI.h"
     22 #include "CGRecordLayout.h"
     23 #include "CGVTables.h"
     24 #include "CodeGenFunction.h"
     25 #include "CodeGenModule.h"
     26 #include "clang/AST/Mangle.h"
     27 #include "clang/AST/Type.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Intrinsics.h"
     30 #include "llvm/IR/Value.h"
     31 
     32 using namespace clang;
     33 using namespace CodeGen;
     34 
     35 namespace {
     36 class ItaniumCXXABI : public CodeGen::CGCXXABI {
     37 protected:
     38   bool UseARMMethodPtrABI;
     39   bool UseARMGuardVarABI;
     40 
     41 public:
     42   ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
     43                 bool UseARMMethodPtrABI = false,
     44                 bool UseARMGuardVarABI = false) :
     45     CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
     46     UseARMGuardVarABI(UseARMGuardVarABI) { }
     47 
     48   bool isReturnTypeIndirect(const CXXRecordDecl *RD) const {
     49     // Structures with either a non-trivial destructor or a non-trivial
     50     // copy constructor are always indirect.
     51     return !RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor();
     52   }
     53 
     54   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const {
     55     // Structures with either a non-trivial destructor or a non-trivial
     56     // copy constructor are always indirect.
     57     if (!RD->hasTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
     58       return RAA_Indirect;
     59     return RAA_Default;
     60   }
     61 
     62   bool isZeroInitializable(const MemberPointerType *MPT);
     63 
     64   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT);
     65 
     66   llvm::Value *EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
     67                                                llvm::Value *&This,
     68                                                llvm::Value *MemFnPtr,
     69                                                const MemberPointerType *MPT);
     70 
     71   llvm::Value *EmitMemberDataPointerAddress(CodeGenFunction &CGF,
     72                                             llvm::Value *Base,
     73                                             llvm::Value *MemPtr,
     74                                             const MemberPointerType *MPT);
     75 
     76   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
     77                                            const CastExpr *E,
     78                                            llvm::Value *Src);
     79   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
     80                                               llvm::Constant *Src);
     81 
     82   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT);
     83 
     84   llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD);
     85   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
     86                                         CharUnits offset);
     87   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT);
     88   llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
     89                                      CharUnits ThisAdjustment);
     90 
     91   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
     92                                            llvm::Value *L,
     93                                            llvm::Value *R,
     94                                            const MemberPointerType *MPT,
     95                                            bool Inequality);
     96 
     97   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
     98                                           llvm::Value *Addr,
     99                                           const MemberPointerType *MPT);
    100 
    101   llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
    102                                       llvm::Value *ptr,
    103                                       QualType type);
    104 
    105   llvm::Value *GetVirtualBaseClassOffset(CodeGenFunction &CGF,
    106                                          llvm::Value *This,
    107                                          const CXXRecordDecl *ClassDecl,
    108                                          const CXXRecordDecl *BaseClassDecl);
    109 
    110   void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    111                                  CXXCtorType T,
    112                                  CanQualType &ResTy,
    113                                  SmallVectorImpl<CanQualType> &ArgTys);
    114 
    115   void EmitCXXConstructors(const CXXConstructorDecl *D);
    116 
    117   void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    118                                 CXXDtorType T,
    119                                 CanQualType &ResTy,
    120                                 SmallVectorImpl<CanQualType> &ArgTys);
    121 
    122   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
    123                               CXXDtorType DT) const {
    124     // Itanium does not emit any destructor variant as an inline thunk.
    125     // Delegating may occur as an optimization, but all variants are either
    126     // emitted with external linkage or as linkonce if they are inline and used.
    127     return false;
    128   }
    129 
    130   void EmitCXXDestructors(const CXXDestructorDecl *D);
    131 
    132   void BuildInstanceFunctionParams(CodeGenFunction &CGF,
    133                                    QualType &ResTy,
    134                                    FunctionArgList &Params);
    135 
    136   void EmitInstanceFunctionProlog(CodeGenFunction &CGF);
    137 
    138   void EmitConstructorCall(CodeGenFunction &CGF,
    139                            const CXXConstructorDecl *D, CXXCtorType Type,
    140                            bool ForVirtualBase, bool Delegating,
    141                            llvm::Value *This,
    142                            CallExpr::const_arg_iterator ArgBeg,
    143                            CallExpr::const_arg_iterator ArgEnd);
    144 
    145   void EmitVirtualDestructorCall(CodeGenFunction &CGF,
    146                                  const CXXDestructorDecl *Dtor,
    147                                  CXXDtorType DtorType, SourceLocation CallLoc,
    148                                  llvm::Value *This);
    149 
    150   void EmitVirtualInheritanceTables(llvm::GlobalVariable::LinkageTypes Linkage,
    151                                     const CXXRecordDecl *RD);
    152 
    153   StringRef GetPureVirtualCallName() { return "__cxa_pure_virtual"; }
    154   StringRef GetDeletedVirtualCallName() { return "__cxa_deleted_virtual"; }
    155 
    156   CharUnits getArrayCookieSizeImpl(QualType elementType);
    157   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    158                                      llvm::Value *NewPtr,
    159                                      llvm::Value *NumElements,
    160                                      const CXXNewExpr *expr,
    161                                      QualType ElementType);
    162   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
    163                                    llvm::Value *allocPtr,
    164                                    CharUnits cookieSize);
    165 
    166   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
    167                        llvm::GlobalVariable *DeclPtr, bool PerformInit);
    168   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
    169                           llvm::Constant *dtor, llvm::Constant *addr);
    170 
    171   llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
    172                                                 llvm::GlobalVariable *Var);
    173   void EmitThreadLocalInitFuncs(
    174       llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
    175       llvm::Function *InitFunc);
    176   LValue EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
    177                                     const DeclRefExpr *DRE);
    178 
    179   bool NeedsVTTParameter(GlobalDecl GD);
    180 };
    181 
    182 class ARMCXXABI : public ItaniumCXXABI {
    183 public:
    184   ARMCXXABI(CodeGen::CodeGenModule &CGM) :
    185     ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
    186                   /* UseARMGuardVarABI = */ true) {}
    187 
    188   bool HasThisReturn(GlobalDecl GD) const {
    189     return (isa<CXXConstructorDecl>(GD.getDecl()) || (
    190               isa<CXXDestructorDecl>(GD.getDecl()) &&
    191               GD.getDtorType() != Dtor_Deleting));
    192   }
    193 
    194   void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy);
    195 
    196   CharUnits getArrayCookieSizeImpl(QualType elementType);
    197   llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
    198                                      llvm::Value *NewPtr,
    199                                      llvm::Value *NumElements,
    200                                      const CXXNewExpr *expr,
    201                                      QualType ElementType);
    202   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
    203                                    CharUnits cookieSize);
    204 };
    205 }
    206 
    207 CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
    208   switch (CGM.getTarget().getCXXABI().getKind()) {
    209   // For IR-generation purposes, there's no significant difference
    210   // between the ARM and iOS ABIs.
    211   case TargetCXXABI::GenericARM:
    212   case TargetCXXABI::iOS:
    213     return new ARMCXXABI(CGM);
    214 
    215   // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
    216   // include the other 32-bit ARM oddities: constructor/destructor return values
    217   // and array cookies.
    218   case TargetCXXABI::GenericAArch64:
    219     return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
    220                              /* UseARMGuardVarABI = */ true);
    221 
    222   case TargetCXXABI::GenericItanium:
    223     if (CGM.getContext().getTargetInfo().getTriple().getArch()
    224         == llvm::Triple::le32) {
    225       // For PNaCl, use ARM-style method pointers so that PNaCl code
    226       // does not assume anything about the alignment of function
    227       // pointers.
    228       return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
    229                                /* UseARMGuardVarABI = */ false);
    230     }
    231     return new ItaniumCXXABI(CGM);
    232 
    233   case TargetCXXABI::Microsoft:
    234     llvm_unreachable("Microsoft ABI is not Itanium-based");
    235   }
    236   llvm_unreachable("bad ABI kind");
    237 }
    238 
    239 llvm::Type *
    240 ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
    241   if (MPT->isMemberDataPointer())
    242     return CGM.PtrDiffTy;
    243   return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL);
    244 }
    245 
    246 /// In the Itanium and ARM ABIs, method pointers have the form:
    247 ///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
    248 ///
    249 /// In the Itanium ABI:
    250 ///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
    251 ///  - the this-adjustment is (memptr.adj)
    252 ///  - the virtual offset is (memptr.ptr - 1)
    253 ///
    254 /// In the ARM ABI:
    255 ///  - method pointers are virtual if (memptr.adj & 1) is nonzero
    256 ///  - the this-adjustment is (memptr.adj >> 1)
    257 ///  - the virtual offset is (memptr.ptr)
    258 /// ARM uses 'adj' for the virtual flag because Thumb functions
    259 /// may be only single-byte aligned.
    260 ///
    261 /// If the member is virtual, the adjusted 'this' pointer points
    262 /// to a vtable pointer from which the virtual offset is applied.
    263 ///
    264 /// If the member is non-virtual, memptr.ptr is the address of
    265 /// the function to call.
    266 llvm::Value *
    267 ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
    268                                                llvm::Value *&This,
    269                                                llvm::Value *MemFnPtr,
    270                                                const MemberPointerType *MPT) {
    271   CGBuilderTy &Builder = CGF.Builder;
    272 
    273   const FunctionProtoType *FPT =
    274     MPT->getPointeeType()->getAs<FunctionProtoType>();
    275   const CXXRecordDecl *RD =
    276     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    277 
    278   llvm::FunctionType *FTy =
    279     CGM.getTypes().GetFunctionType(
    280       CGM.getTypes().arrangeCXXMethodType(RD, FPT));
    281 
    282   llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
    283 
    284   llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
    285   llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
    286   llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
    287 
    288   // Extract memptr.adj, which is in the second field.
    289   llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
    290 
    291   // Compute the true adjustment.
    292   llvm::Value *Adj = RawAdj;
    293   if (UseARMMethodPtrABI)
    294     Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
    295 
    296   // Apply the adjustment and cast back to the original struct type
    297   // for consistency.
    298   llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
    299   Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
    300   This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
    301 
    302   // Load the function pointer.
    303   llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
    304 
    305   // If the LSB in the function pointer is 1, the function pointer points to
    306   // a virtual function.
    307   llvm::Value *IsVirtual;
    308   if (UseARMMethodPtrABI)
    309     IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
    310   else
    311     IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
    312   IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
    313   Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
    314 
    315   // In the virtual path, the adjustment left 'This' pointing to the
    316   // vtable of the correct base subobject.  The "function pointer" is an
    317   // offset within the vtable (+1 for the virtual flag on non-ARM).
    318   CGF.EmitBlock(FnVirtual);
    319 
    320   // Cast the adjusted this to a pointer to vtable pointer and load.
    321   llvm::Type *VTableTy = Builder.getInt8PtrTy();
    322   llvm::Value *VTable = Builder.CreateBitCast(This, VTableTy->getPointerTo());
    323   VTable = Builder.CreateLoad(VTable, "memptr.vtable");
    324 
    325   // Apply the offset.
    326   llvm::Value *VTableOffset = FnAsInt;
    327   if (!UseARMMethodPtrABI)
    328     VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
    329   VTable = Builder.CreateGEP(VTable, VTableOffset);
    330 
    331   // Load the virtual function to call.
    332   VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
    333   llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
    334   CGF.EmitBranch(FnEnd);
    335 
    336   // In the non-virtual path, the function pointer is actually a
    337   // function pointer.
    338   CGF.EmitBlock(FnNonVirtual);
    339   llvm::Value *NonVirtualFn =
    340     Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
    341 
    342   // We're done.
    343   CGF.EmitBlock(FnEnd);
    344   llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
    345   Callee->addIncoming(VirtualFn, FnVirtual);
    346   Callee->addIncoming(NonVirtualFn, FnNonVirtual);
    347   return Callee;
    348 }
    349 
    350 /// Compute an l-value by applying the given pointer-to-member to a
    351 /// base object.
    352 llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(CodeGenFunction &CGF,
    353                                                          llvm::Value *Base,
    354                                                          llvm::Value *MemPtr,
    355                                            const MemberPointerType *MPT) {
    356   assert(MemPtr->getType() == CGM.PtrDiffTy);
    357 
    358   CGBuilderTy &Builder = CGF.Builder;
    359 
    360   unsigned AS = Base->getType()->getPointerAddressSpace();
    361 
    362   // Cast to char*.
    363   Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
    364 
    365   // Apply the offset, which we assume is non-null.
    366   llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
    367 
    368   // Cast the address to the appropriate pointer type, adopting the
    369   // address space of the base pointer.
    370   llvm::Type *PType
    371     = CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
    372   return Builder.CreateBitCast(Addr, PType);
    373 }
    374 
    375 /// Perform a bitcast, derived-to-base, or base-to-derived member pointer
    376 /// conversion.
    377 ///
    378 /// Bitcast conversions are always a no-op under Itanium.
    379 ///
    380 /// Obligatory offset/adjustment diagram:
    381 ///         <-- offset -->          <-- adjustment -->
    382 ///   |--------------------------|----------------------|--------------------|
    383 ///   ^Derived address point     ^Base address point    ^Member address point
    384 ///
    385 /// So when converting a base member pointer to a derived member pointer,
    386 /// we add the offset to the adjustment because the address point has
    387 /// decreased;  and conversely, when converting a derived MP to a base MP
    388 /// we subtract the offset from the adjustment because the address point
    389 /// has increased.
    390 ///
    391 /// The standard forbids (at compile time) conversion to and from
    392 /// virtual bases, which is why we don't have to consider them here.
    393 ///
    394 /// The standard forbids (at run time) casting a derived MP to a base
    395 /// MP when the derived MP does not point to a member of the base.
    396 /// This is why -1 is a reasonable choice for null data member
    397 /// pointers.
    398 llvm::Value *
    399 ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
    400                                            const CastExpr *E,
    401                                            llvm::Value *src) {
    402   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
    403          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
    404          E->getCastKind() == CK_ReinterpretMemberPointer);
    405 
    406   // Under Itanium, reinterprets don't require any additional processing.
    407   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
    408 
    409   // Use constant emission if we can.
    410   if (isa<llvm::Constant>(src))
    411     return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
    412 
    413   llvm::Constant *adj = getMemberPointerAdjustment(E);
    414   if (!adj) return src;
    415 
    416   CGBuilderTy &Builder = CGF.Builder;
    417   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
    418 
    419   const MemberPointerType *destTy =
    420     E->getType()->castAs<MemberPointerType>();
    421 
    422   // For member data pointers, this is just a matter of adding the
    423   // offset if the source is non-null.
    424   if (destTy->isMemberDataPointer()) {
    425     llvm::Value *dst;
    426     if (isDerivedToBase)
    427       dst = Builder.CreateNSWSub(src, adj, "adj");
    428     else
    429       dst = Builder.CreateNSWAdd(src, adj, "adj");
    430 
    431     // Null check.
    432     llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
    433     llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
    434     return Builder.CreateSelect(isNull, src, dst);
    435   }
    436 
    437   // The this-adjustment is left-shifted by 1 on ARM.
    438   if (UseARMMethodPtrABI) {
    439     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
    440     offset <<= 1;
    441     adj = llvm::ConstantInt::get(adj->getType(), offset);
    442   }
    443 
    444   llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
    445   llvm::Value *dstAdj;
    446   if (isDerivedToBase)
    447     dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
    448   else
    449     dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
    450 
    451   return Builder.CreateInsertValue(src, dstAdj, 1);
    452 }
    453 
    454 llvm::Constant *
    455 ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
    456                                            llvm::Constant *src) {
    457   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
    458          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
    459          E->getCastKind() == CK_ReinterpretMemberPointer);
    460 
    461   // Under Itanium, reinterprets don't require any additional processing.
    462   if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
    463 
    464   // If the adjustment is trivial, we don't need to do anything.
    465   llvm::Constant *adj = getMemberPointerAdjustment(E);
    466   if (!adj) return src;
    467 
    468   bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
    469 
    470   const MemberPointerType *destTy =
    471     E->getType()->castAs<MemberPointerType>();
    472 
    473   // For member data pointers, this is just a matter of adding the
    474   // offset if the source is non-null.
    475   if (destTy->isMemberDataPointer()) {
    476     // null maps to null.
    477     if (src->isAllOnesValue()) return src;
    478 
    479     if (isDerivedToBase)
    480       return llvm::ConstantExpr::getNSWSub(src, adj);
    481     else
    482       return llvm::ConstantExpr::getNSWAdd(src, adj);
    483   }
    484 
    485   // The this-adjustment is left-shifted by 1 on ARM.
    486   if (UseARMMethodPtrABI) {
    487     uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
    488     offset <<= 1;
    489     adj = llvm::ConstantInt::get(adj->getType(), offset);
    490   }
    491 
    492   llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
    493   llvm::Constant *dstAdj;
    494   if (isDerivedToBase)
    495     dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
    496   else
    497     dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
    498 
    499   return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
    500 }
    501 
    502 llvm::Constant *
    503 ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
    504   // Itanium C++ ABI 2.3:
    505   //   A NULL pointer is represented as -1.
    506   if (MPT->isMemberDataPointer())
    507     return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
    508 
    509   llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
    510   llvm::Constant *Values[2] = { Zero, Zero };
    511   return llvm::ConstantStruct::getAnon(Values);
    512 }
    513 
    514 llvm::Constant *
    515 ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
    516                                      CharUnits offset) {
    517   // Itanium C++ ABI 2.3:
    518   //   A pointer to data member is an offset from the base address of
    519   //   the class object containing it, represented as a ptrdiff_t
    520   return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
    521 }
    522 
    523 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
    524   return BuildMemberPointer(MD, CharUnits::Zero());
    525 }
    526 
    527 llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
    528                                                   CharUnits ThisAdjustment) {
    529   assert(MD->isInstance() && "Member function must not be static!");
    530   MD = MD->getCanonicalDecl();
    531 
    532   CodeGenTypes &Types = CGM.getTypes();
    533 
    534   // Get the function pointer (or index if this is a virtual function).
    535   llvm::Constant *MemPtr[2];
    536   if (MD->isVirtual()) {
    537     uint64_t Index = CGM.getVTableContext().getMethodVTableIndex(MD);
    538 
    539     const ASTContext &Context = getContext();
    540     CharUnits PointerWidth =
    541       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
    542     uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
    543 
    544     if (UseARMMethodPtrABI) {
    545       // ARM C++ ABI 3.2.1:
    546       //   This ABI specifies that adj contains twice the this
    547       //   adjustment, plus 1 if the member function is virtual. The
    548       //   least significant bit of adj then makes exactly the same
    549       //   discrimination as the least significant bit of ptr does for
    550       //   Itanium.
    551       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
    552       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
    553                                          2 * ThisAdjustment.getQuantity() + 1);
    554     } else {
    555       // Itanium C++ ABI 2.3:
    556       //   For a virtual function, [the pointer field] is 1 plus the
    557       //   virtual table offset (in bytes) of the function,
    558       //   represented as a ptrdiff_t.
    559       MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
    560       MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
    561                                          ThisAdjustment.getQuantity());
    562     }
    563   } else {
    564     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
    565     llvm::Type *Ty;
    566     // Check whether the function has a computable LLVM signature.
    567     if (Types.isFuncTypeConvertible(FPT)) {
    568       // The function has a computable LLVM signature; use the correct type.
    569       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
    570     } else {
    571       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
    572       // function type is incomplete.
    573       Ty = CGM.PtrDiffTy;
    574     }
    575     llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
    576 
    577     MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
    578     MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
    579                                        (UseARMMethodPtrABI ? 2 : 1) *
    580                                        ThisAdjustment.getQuantity());
    581   }
    582 
    583   return llvm::ConstantStruct::getAnon(MemPtr);
    584 }
    585 
    586 llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
    587                                                  QualType MPType) {
    588   const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
    589   const ValueDecl *MPD = MP.getMemberPointerDecl();
    590   if (!MPD)
    591     return EmitNullMemberPointer(MPT);
    592 
    593   CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
    594 
    595   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
    596     return BuildMemberPointer(MD, ThisAdjustment);
    597 
    598   CharUnits FieldOffset =
    599     getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
    600   return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
    601 }
    602 
    603 /// The comparison algorithm is pretty easy: the member pointers are
    604 /// the same if they're either bitwise identical *or* both null.
    605 ///
    606 /// ARM is different here only because null-ness is more complicated.
    607 llvm::Value *
    608 ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
    609                                            llvm::Value *L,
    610                                            llvm::Value *R,
    611                                            const MemberPointerType *MPT,
    612                                            bool Inequality) {
    613   CGBuilderTy &Builder = CGF.Builder;
    614 
    615   llvm::ICmpInst::Predicate Eq;
    616   llvm::Instruction::BinaryOps And, Or;
    617   if (Inequality) {
    618     Eq = llvm::ICmpInst::ICMP_NE;
    619     And = llvm::Instruction::Or;
    620     Or = llvm::Instruction::And;
    621   } else {
    622     Eq = llvm::ICmpInst::ICMP_EQ;
    623     And = llvm::Instruction::And;
    624     Or = llvm::Instruction::Or;
    625   }
    626 
    627   // Member data pointers are easy because there's a unique null
    628   // value, so it just comes down to bitwise equality.
    629   if (MPT->isMemberDataPointer())
    630     return Builder.CreateICmp(Eq, L, R);
    631 
    632   // For member function pointers, the tautologies are more complex.
    633   // The Itanium tautology is:
    634   //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
    635   // The ARM tautology is:
    636   //   (L == R) <==> (L.ptr == R.ptr &&
    637   //                  (L.adj == R.adj ||
    638   //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
    639   // The inequality tautologies have exactly the same structure, except
    640   // applying De Morgan's laws.
    641 
    642   llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
    643   llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
    644 
    645   // This condition tests whether L.ptr == R.ptr.  This must always be
    646   // true for equality to hold.
    647   llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
    648 
    649   // This condition, together with the assumption that L.ptr == R.ptr,
    650   // tests whether the pointers are both null.  ARM imposes an extra
    651   // condition.
    652   llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
    653   llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
    654 
    655   // This condition tests whether L.adj == R.adj.  If this isn't
    656   // true, the pointers are unequal unless they're both null.
    657   llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
    658   llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
    659   llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
    660 
    661   // Null member function pointers on ARM clear the low bit of Adj,
    662   // so the zero condition has to check that neither low bit is set.
    663   if (UseARMMethodPtrABI) {
    664     llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
    665 
    666     // Compute (l.adj | r.adj) & 1 and test it against zero.
    667     llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
    668     llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
    669     llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
    670                                                       "cmp.or.adj");
    671     EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
    672   }
    673 
    674   // Tie together all our conditions.
    675   llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
    676   Result = Builder.CreateBinOp(And, PtrEq, Result,
    677                                Inequality ? "memptr.ne" : "memptr.eq");
    678   return Result;
    679 }
    680 
    681 llvm::Value *
    682 ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
    683                                           llvm::Value *MemPtr,
    684                                           const MemberPointerType *MPT) {
    685   CGBuilderTy &Builder = CGF.Builder;
    686 
    687   /// For member data pointers, this is just a check against -1.
    688   if (MPT->isMemberDataPointer()) {
    689     assert(MemPtr->getType() == CGM.PtrDiffTy);
    690     llvm::Value *NegativeOne =
    691       llvm::Constant::getAllOnesValue(MemPtr->getType());
    692     return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
    693   }
    694 
    695   // In Itanium, a member function pointer is not null if 'ptr' is not null.
    696   llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
    697 
    698   llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
    699   llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
    700 
    701   // On ARM, a member function pointer is also non-null if the low bit of 'adj'
    702   // (the virtual bit) is set.
    703   if (UseARMMethodPtrABI) {
    704     llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
    705     llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
    706     llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
    707     llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
    708                                                   "memptr.isvirtual");
    709     Result = Builder.CreateOr(Result, IsVirtual);
    710   }
    711 
    712   return Result;
    713 }
    714 
    715 /// The Itanium ABI requires non-zero initialization only for data
    716 /// member pointers, for which '0' is a valid offset.
    717 bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
    718   return MPT->getPointeeType()->isFunctionType();
    719 }
    720 
    721 /// The Itanium ABI always places an offset to the complete object
    722 /// at entry -2 in the vtable.
    723 llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
    724                                                    llvm::Value *ptr,
    725                                                    QualType type) {
    726   // Grab the vtable pointer as an intptr_t*.
    727   llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
    728 
    729   // Track back to entry -2 and pull out the offset there.
    730   llvm::Value *offsetPtr =
    731     CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
    732   llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
    733   offset->setAlignment(CGF.PointerAlignInBytes);
    734 
    735   // Apply the offset.
    736   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
    737   return CGF.Builder.CreateInBoundsGEP(ptr, offset);
    738 }
    739 
    740 llvm::Value *
    741 ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
    742                                          llvm::Value *This,
    743                                          const CXXRecordDecl *ClassDecl,
    744                                          const CXXRecordDecl *BaseClassDecl) {
    745   llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
    746   CharUnits VBaseOffsetOffset =
    747     CGM.getVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl);
    748 
    749   llvm::Value *VBaseOffsetPtr =
    750     CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
    751                                    "vbase.offset.ptr");
    752   VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
    753                                              CGM.PtrDiffTy->getPointerTo());
    754 
    755   llvm::Value *VBaseOffset =
    756     CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
    757 
    758   return VBaseOffset;
    759 }
    760 
    761 /// The generic ABI passes 'this', plus a VTT if it's initializing a
    762 /// base subobject.
    763 void ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
    764                                               CXXCtorType Type,
    765                                               CanQualType &ResTy,
    766                                 SmallVectorImpl<CanQualType> &ArgTys) {
    767   ASTContext &Context = getContext();
    768 
    769   // 'this' parameter is already there, as well as 'this' return if
    770   // HasThisReturn(GlobalDecl(Ctor, Type)) is true
    771 
    772   // Check if we need to add a VTT parameter (which has type void **).
    773   if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
    774     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    775 }
    776 
    777 void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
    778   // Just make sure we're in sync with TargetCXXABI.
    779   assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
    780 
    781   // The constructor used for constructing this as a complete class;
    782   // constucts the virtual bases, then calls the base constructor.
    783   if (!D->getParent()->isAbstract()) {
    784     // We don't need to emit the complete ctor if the class is abstract.
    785     CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
    786   }
    787 
    788   // The constructor used for constructing this as a base class;
    789   // ignores virtual bases.
    790   CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
    791 }
    792 
    793 /// The generic ABI passes 'this', plus a VTT if it's destroying a
    794 /// base subobject.
    795 void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
    796                                              CXXDtorType Type,
    797                                              CanQualType &ResTy,
    798                                 SmallVectorImpl<CanQualType> &ArgTys) {
    799   ASTContext &Context = getContext();
    800 
    801   // 'this' parameter is already there, as well as 'this' return if
    802   // HasThisReturn(GlobalDecl(Dtor, Type)) is true
    803 
    804   // Check if we need to add a VTT parameter (which has type void **).
    805   if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
    806     ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
    807 }
    808 
    809 void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
    810   // The destructor in a virtual table is always a 'deleting'
    811   // destructor, which calls the complete destructor and then uses the
    812   // appropriate operator delete.
    813   if (D->isVirtual())
    814     CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
    815 
    816   // The destructor used for destructing this as a most-derived class;
    817   // call the base destructor and then destructs any virtual bases.
    818   CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
    819 
    820   // The destructor used for destructing this as a base class; ignores
    821   // virtual bases.
    822   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
    823 }
    824 
    825 void ItaniumCXXABI::BuildInstanceFunctionParams(CodeGenFunction &CGF,
    826                                                 QualType &ResTy,
    827                                                 FunctionArgList &Params) {
    828   /// Create the 'this' variable.
    829   BuildThisParam(CGF, Params);
    830 
    831   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
    832   assert(MD->isInstance());
    833 
    834   // Check if we need a VTT parameter as well.
    835   if (NeedsVTTParameter(CGF.CurGD)) {
    836     ASTContext &Context = getContext();
    837 
    838     // FIXME: avoid the fake decl
    839     QualType T = Context.getPointerType(Context.VoidPtrTy);
    840     ImplicitParamDecl *VTTDecl
    841       = ImplicitParamDecl::Create(Context, 0, MD->getLocation(),
    842                                   &Context.Idents.get("vtt"), T);
    843     Params.push_back(VTTDecl);
    844     getVTTDecl(CGF) = VTTDecl;
    845   }
    846 }
    847 
    848 void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
    849   /// Initialize the 'this' slot.
    850   EmitThisParam(CGF);
    851 
    852   /// Initialize the 'vtt' slot if needed.
    853   if (getVTTDecl(CGF)) {
    854     getVTTValue(CGF)
    855       = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(getVTTDecl(CGF)),
    856                                "vtt");
    857   }
    858 
    859   /// If this is a function that the ABI specifies returns 'this', initialize
    860   /// the return slot to 'this' at the start of the function.
    861   ///
    862   /// Unlike the setting of return types, this is done within the ABI
    863   /// implementation instead of by clients of CGCXXABI because:
    864   /// 1) getThisValue is currently protected
    865   /// 2) in theory, an ABI could implement 'this' returns some other way;
    866   ///    HasThisReturn only specifies a contract, not the implementation
    867   if (HasThisReturn(CGF.CurGD))
    868     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
    869 }
    870 
    871 void ItaniumCXXABI::EmitConstructorCall(CodeGenFunction &CGF,
    872                                         const CXXConstructorDecl *D,
    873                                         CXXCtorType Type,
    874                                         bool ForVirtualBase, bool Delegating,
    875                                         llvm::Value *This,
    876                                         CallExpr::const_arg_iterator ArgBeg,
    877                                         CallExpr::const_arg_iterator ArgEnd) {
    878   llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase,
    879                                          Delegating);
    880   QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
    881   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
    882 
    883   // FIXME: Provide a source location here.
    884   CGF.EmitCXXMemberCall(D, SourceLocation(), Callee, ReturnValueSlot(),
    885                         This, VTT, VTTTy, ArgBeg, ArgEnd);
    886 }
    887 
    888 void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
    889                                               const CXXDestructorDecl *Dtor,
    890                                               CXXDtorType DtorType,
    891                                               SourceLocation CallLoc,
    892                                               llvm::Value *This) {
    893   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
    894 
    895   const CGFunctionInfo *FInfo
    896     = &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
    897   llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
    898   llvm::Value *Callee
    899     = CGF.BuildVirtualCall(GlobalDecl(Dtor, DtorType), This, Ty);
    900 
    901   CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
    902                         /*ImplicitParam=*/0, QualType(), 0, 0);
    903 }
    904 
    905 void ItaniumCXXABI::EmitVirtualInheritanceTables(
    906     llvm::GlobalVariable::LinkageTypes Linkage, const CXXRecordDecl *RD) {
    907   CodeGenVTables &VTables = CGM.getVTables();
    908   llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
    909   VTables.EmitVTTDefinition(VTT, Linkage, RD);
    910 }
    911 
    912 void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
    913                                     RValue RV, QualType ResultType) {
    914   if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
    915     return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
    916 
    917   // Destructor thunks in the ARM ABI have indeterminate results.
    918   llvm::Type *T =
    919     cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
    920   RValue Undef = RValue::get(llvm::UndefValue::get(T));
    921   return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
    922 }
    923 
    924 /************************** Array allocation cookies **************************/
    925 
    926 CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
    927   // The array cookie is a size_t; pad that up to the element alignment.
    928   // The cookie is actually right-justified in that space.
    929   return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
    930                   CGM.getContext().getTypeAlignInChars(elementType));
    931 }
    932 
    933 llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
    934                                                   llvm::Value *NewPtr,
    935                                                   llvm::Value *NumElements,
    936                                                   const CXXNewExpr *expr,
    937                                                   QualType ElementType) {
    938   assert(requiresArrayCookie(expr));
    939 
    940   unsigned AS = NewPtr->getType()->getPointerAddressSpace();
    941 
    942   ASTContext &Ctx = getContext();
    943   QualType SizeTy = Ctx.getSizeType();
    944   CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
    945 
    946   // The size of the cookie.
    947   CharUnits CookieSize =
    948     std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
    949   assert(CookieSize == getArrayCookieSizeImpl(ElementType));
    950 
    951   // Compute an offset to the cookie.
    952   llvm::Value *CookiePtr = NewPtr;
    953   CharUnits CookieOffset = CookieSize - SizeSize;
    954   if (!CookieOffset.isZero())
    955     CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
    956                                                  CookieOffset.getQuantity());
    957 
    958   // Write the number of elements into the appropriate slot.
    959   llvm::Value *NumElementsPtr
    960     = CGF.Builder.CreateBitCast(CookiePtr,
    961                                 CGF.ConvertType(SizeTy)->getPointerTo(AS));
    962   CGF.Builder.CreateStore(NumElements, NumElementsPtr);
    963 
    964   // Finally, compute a pointer to the actual data buffer by skipping
    965   // over the cookie completely.
    966   return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
    967                                                 CookieSize.getQuantity());
    968 }
    969 
    970 llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
    971                                                 llvm::Value *allocPtr,
    972                                                 CharUnits cookieSize) {
    973   // The element size is right-justified in the cookie.
    974   llvm::Value *numElementsPtr = allocPtr;
    975   CharUnits numElementsOffset =
    976     cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
    977   if (!numElementsOffset.isZero())
    978     numElementsPtr =
    979       CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
    980                                              numElementsOffset.getQuantity());
    981 
    982   unsigned AS = allocPtr->getType()->getPointerAddressSpace();
    983   numElementsPtr =
    984     CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
    985   return CGF.Builder.CreateLoad(numElementsPtr);
    986 }
    987 
    988 CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
    989   // ARM says that the cookie is always:
    990   //   struct array_cookie {
    991   //     std::size_t element_size; // element_size != 0
    992   //     std::size_t element_count;
    993   //   };
    994   // But the base ABI doesn't give anything an alignment greater than
    995   // 8, so we can dismiss this as typical ABI-author blindness to
    996   // actual language complexity and round up to the element alignment.
    997   return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
    998                   CGM.getContext().getTypeAlignInChars(elementType));
    999 }
   1000 
   1001 llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
   1002                                               llvm::Value *newPtr,
   1003                                               llvm::Value *numElements,
   1004                                               const CXXNewExpr *expr,
   1005                                               QualType elementType) {
   1006   assert(requiresArrayCookie(expr));
   1007 
   1008   // NewPtr is a char*, but we generalize to arbitrary addrspaces.
   1009   unsigned AS = newPtr->getType()->getPointerAddressSpace();
   1010 
   1011   // The cookie is always at the start of the buffer.
   1012   llvm::Value *cookie = newPtr;
   1013 
   1014   // The first element is the element size.
   1015   cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
   1016   llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
   1017                  getContext().getTypeSizeInChars(elementType).getQuantity());
   1018   CGF.Builder.CreateStore(elementSize, cookie);
   1019 
   1020   // The second element is the element count.
   1021   cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
   1022   CGF.Builder.CreateStore(numElements, cookie);
   1023 
   1024   // Finally, compute a pointer to the actual data buffer by skipping
   1025   // over the cookie completely.
   1026   CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
   1027   return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
   1028                                                 cookieSize.getQuantity());
   1029 }
   1030 
   1031 llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
   1032                                             llvm::Value *allocPtr,
   1033                                             CharUnits cookieSize) {
   1034   // The number of elements is at offset sizeof(size_t) relative to
   1035   // the allocated pointer.
   1036   llvm::Value *numElementsPtr
   1037     = CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
   1038 
   1039   unsigned AS = allocPtr->getType()->getPointerAddressSpace();
   1040   numElementsPtr =
   1041     CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
   1042   return CGF.Builder.CreateLoad(numElementsPtr);
   1043 }
   1044 
   1045 /*********************** Static local initialization **************************/
   1046 
   1047 static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
   1048                                          llvm::PointerType *GuardPtrTy) {
   1049   // int __cxa_guard_acquire(__guard *guard_object);
   1050   llvm::FunctionType *FTy =
   1051     llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
   1052                             GuardPtrTy, /*isVarArg=*/false);
   1053   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
   1054                                    llvm::AttributeSet::get(CGM.getLLVMContext(),
   1055                                               llvm::AttributeSet::FunctionIndex,
   1056                                                  llvm::Attribute::NoUnwind));
   1057 }
   1058 
   1059 static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
   1060                                          llvm::PointerType *GuardPtrTy) {
   1061   // void __cxa_guard_release(__guard *guard_object);
   1062   llvm::FunctionType *FTy =
   1063     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
   1064   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
   1065                                    llvm::AttributeSet::get(CGM.getLLVMContext(),
   1066                                               llvm::AttributeSet::FunctionIndex,
   1067                                                  llvm::Attribute::NoUnwind));
   1068 }
   1069 
   1070 static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
   1071                                        llvm::PointerType *GuardPtrTy) {
   1072   // void __cxa_guard_abort(__guard *guard_object);
   1073   llvm::FunctionType *FTy =
   1074     llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
   1075   return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
   1076                                    llvm::AttributeSet::get(CGM.getLLVMContext(),
   1077                                               llvm::AttributeSet::FunctionIndex,
   1078                                                  llvm::Attribute::NoUnwind));
   1079 }
   1080 
   1081 namespace {
   1082   struct CallGuardAbort : EHScopeStack::Cleanup {
   1083     llvm::GlobalVariable *Guard;
   1084     CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
   1085 
   1086     void Emit(CodeGenFunction &CGF, Flags flags) {
   1087       CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
   1088                                   Guard);
   1089     }
   1090   };
   1091 }
   1092 
   1093 /// The ARM code here follows the Itanium code closely enough that we
   1094 /// just special-case it at particular places.
   1095 void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
   1096                                     const VarDecl &D,
   1097                                     llvm::GlobalVariable *var,
   1098                                     bool shouldPerformInit) {
   1099   CGBuilderTy &Builder = CGF.Builder;
   1100 
   1101   // We only need to use thread-safe statics for local non-TLS variables;
   1102   // global initialization is always single-threaded.
   1103   bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
   1104                     D.isLocalVarDecl() && !D.getTLSKind();
   1105 
   1106   // If we have a global variable with internal linkage and thread-safe statics
   1107   // are disabled, we can just let the guard variable be of type i8.
   1108   bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
   1109 
   1110   llvm::IntegerType *guardTy;
   1111   if (useInt8GuardVariable) {
   1112     guardTy = CGF.Int8Ty;
   1113   } else {
   1114     // Guard variables are 64 bits in the generic ABI and size width on ARM
   1115     // (i.e. 32-bit on AArch32, 64-bit on AArch64).
   1116     guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty);
   1117   }
   1118   llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
   1119 
   1120   // Create the guard variable if we don't already have it (as we
   1121   // might if we're double-emitting this function body).
   1122   llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
   1123   if (!guard) {
   1124     // Mangle the name for the guard.
   1125     SmallString<256> guardName;
   1126     {
   1127       llvm::raw_svector_ostream out(guardName);
   1128       getMangleContext().mangleItaniumGuardVariable(&D, out);
   1129       out.flush();
   1130     }
   1131 
   1132     // Create the guard variable with a zero-initializer.
   1133     // Just absorb linkage and visibility from the guarded variable.
   1134     guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
   1135                                      false, var->getLinkage(),
   1136                                      llvm::ConstantInt::get(guardTy, 0),
   1137                                      guardName.str());
   1138     guard->setVisibility(var->getVisibility());
   1139     // If the variable is thread-local, so is its guard variable.
   1140     guard->setThreadLocalMode(var->getThreadLocalMode());
   1141 
   1142     CGM.setStaticLocalDeclGuardAddress(&D, guard);
   1143   }
   1144 
   1145   // Test whether the variable has completed initialization.
   1146   llvm::Value *isInitialized;
   1147 
   1148   // ARM C++ ABI 3.2.3.1:
   1149   //   To support the potential use of initialization guard variables
   1150   //   as semaphores that are the target of ARM SWP and LDREX/STREX
   1151   //   synchronizing instructions we define a static initialization
   1152   //   guard variable to be a 4-byte aligned, 4- byte word with the
   1153   //   following inline access protocol.
   1154   //     #define INITIALIZED 1
   1155   //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
   1156   //       if (__cxa_guard_acquire(&obj_guard))
   1157   //         ...
   1158   //     }
   1159   if (UseARMGuardVarABI && !useInt8GuardVariable) {
   1160     llvm::Value *V = Builder.CreateLoad(guard);
   1161     llvm::Value *Test1 = llvm::ConstantInt::get(guardTy, 1);
   1162     V = Builder.CreateAnd(V, Test1);
   1163     isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
   1164 
   1165   // Itanium C++ ABI 3.3.2:
   1166   //   The following is pseudo-code showing how these functions can be used:
   1167   //     if (obj_guard.first_byte == 0) {
   1168   //       if ( __cxa_guard_acquire (&obj_guard) ) {
   1169   //         try {
   1170   //           ... initialize the object ...;
   1171   //         } catch (...) {
   1172   //            __cxa_guard_abort (&obj_guard);
   1173   //            throw;
   1174   //         }
   1175   //         ... queue object destructor with __cxa_atexit() ...;
   1176   //         __cxa_guard_release (&obj_guard);
   1177   //       }
   1178   //     }
   1179   } else {
   1180     // Load the first byte of the guard variable.
   1181     llvm::LoadInst *LI =
   1182       Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
   1183     LI->setAlignment(1);
   1184 
   1185     // Itanium ABI:
   1186     //   An implementation supporting thread-safety on multiprocessor
   1187     //   systems must also guarantee that references to the initialized
   1188     //   object do not occur before the load of the initialization flag.
   1189     //
   1190     // In LLVM, we do this by marking the load Acquire.
   1191     if (threadsafe)
   1192       LI->setAtomic(llvm::Acquire);
   1193 
   1194     isInitialized = Builder.CreateIsNull(LI, "guard.uninitialized");
   1195   }
   1196 
   1197   llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
   1198   llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   1199 
   1200   // Check if the first byte of the guard variable is zero.
   1201   Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
   1202 
   1203   CGF.EmitBlock(InitCheckBlock);
   1204 
   1205   // Variables used when coping with thread-safe statics and exceptions.
   1206   if (threadsafe) {
   1207     // Call __cxa_guard_acquire.
   1208     llvm::Value *V
   1209       = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
   1210 
   1211     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   1212 
   1213     Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
   1214                          InitBlock, EndBlock);
   1215 
   1216     // Call __cxa_guard_abort along the exceptional edge.
   1217     CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
   1218 
   1219     CGF.EmitBlock(InitBlock);
   1220   }
   1221 
   1222   // Emit the initializer and add a global destructor if appropriate.
   1223   CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
   1224 
   1225   if (threadsafe) {
   1226     // Pop the guard-abort cleanup if we pushed one.
   1227     CGF.PopCleanupBlock();
   1228 
   1229     // Call __cxa_guard_release.  This cannot throw.
   1230     CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
   1231   } else {
   1232     Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
   1233   }
   1234 
   1235   CGF.EmitBlock(EndBlock);
   1236 }
   1237 
   1238 /// Register a global destructor using __cxa_atexit.
   1239 static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
   1240                                         llvm::Constant *dtor,
   1241                                         llvm::Constant *addr,
   1242                                         bool TLS) {
   1243   const char *Name = "__cxa_atexit";
   1244   if (TLS) {
   1245     const llvm::Triple &T = CGF.getTarget().getTriple();
   1246     Name = T.isMacOSX() ?  "_tlv_atexit" : "__cxa_thread_atexit";
   1247   }
   1248 
   1249   // We're assuming that the destructor function is something we can
   1250   // reasonably call with the default CC.  Go ahead and cast it to the
   1251   // right prototype.
   1252   llvm::Type *dtorTy =
   1253     llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
   1254 
   1255   // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
   1256   llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
   1257   llvm::FunctionType *atexitTy =
   1258     llvm::FunctionType::get(CGF.IntTy, paramTys, false);
   1259 
   1260   // Fetch the actual function.
   1261   llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
   1262   if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
   1263     fn->setDoesNotThrow();
   1264 
   1265   // Create a variable that binds the atexit to this shared object.
   1266   llvm::Constant *handle =
   1267     CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
   1268 
   1269   llvm::Value *args[] = {
   1270     llvm::ConstantExpr::getBitCast(dtor, dtorTy),
   1271     llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
   1272     handle
   1273   };
   1274   CGF.EmitNounwindRuntimeCall(atexit, args);
   1275 }
   1276 
   1277 /// Register a global destructor as best as we know how.
   1278 void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
   1279                                        const VarDecl &D,
   1280                                        llvm::Constant *dtor,
   1281                                        llvm::Constant *addr) {
   1282   // Use __cxa_atexit if available.
   1283   if (CGM.getCodeGenOpts().CXAAtExit)
   1284     return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
   1285 
   1286   if (D.getTLSKind())
   1287     CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
   1288 
   1289   // In Apple kexts, we want to add a global destructor entry.
   1290   // FIXME: shouldn't this be guarded by some variable?
   1291   if (CGM.getLangOpts().AppleKext) {
   1292     // Generate a global destructor entry.
   1293     return CGM.AddCXXDtorEntry(dtor, addr);
   1294   }
   1295 
   1296   CGF.registerGlobalDtorWithAtExit(dtor, addr);
   1297 }
   1298 
   1299 /// Get the appropriate linkage for the wrapper function. This is essentially
   1300 /// the weak form of the variable's linkage; every translation unit which wneeds
   1301 /// the wrapper emits a copy, and we want the linker to merge them.
   1302 static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage(
   1303     llvm::GlobalValue::LinkageTypes VarLinkage) {
   1304   if (llvm::GlobalValue::isLinkerPrivateLinkage(VarLinkage))
   1305     return llvm::GlobalValue::LinkerPrivateWeakLinkage;
   1306   // For internal linkage variables, we don't need an external or weak wrapper.
   1307   if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
   1308     return VarLinkage;
   1309   return llvm::GlobalValue::WeakODRLinkage;
   1310 }
   1311 
   1312 llvm::Function *
   1313 ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
   1314                                              llvm::GlobalVariable *Var) {
   1315   // Mangle the name for the thread_local wrapper function.
   1316   SmallString<256> WrapperName;
   1317   {
   1318     llvm::raw_svector_ostream Out(WrapperName);
   1319     getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
   1320     Out.flush();
   1321   }
   1322 
   1323   if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName))
   1324     return cast<llvm::Function>(V);
   1325 
   1326   llvm::Type *RetTy = Var->getType();
   1327   if (VD->getType()->isReferenceType())
   1328     RetTy = RetTy->getPointerElementType();
   1329 
   1330   llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
   1331   llvm::Function *Wrapper = llvm::Function::Create(
   1332       FnTy, getThreadLocalWrapperLinkage(Var->getLinkage()), WrapperName.str(),
   1333       &CGM.getModule());
   1334   // Always resolve references to the wrapper at link time.
   1335   Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
   1336   return Wrapper;
   1337 }
   1338 
   1339 void ItaniumCXXABI::EmitThreadLocalInitFuncs(
   1340     llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
   1341     llvm::Function *InitFunc) {
   1342   for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
   1343     const VarDecl *VD = Decls[I].first;
   1344     llvm::GlobalVariable *Var = Decls[I].second;
   1345 
   1346     // Mangle the name for the thread_local initialization function.
   1347     SmallString<256> InitFnName;
   1348     {
   1349       llvm::raw_svector_ostream Out(InitFnName);
   1350       getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
   1351       Out.flush();
   1352     }
   1353 
   1354     // If we have a definition for the variable, emit the initialization
   1355     // function as an alias to the global Init function (if any). Otherwise,
   1356     // produce a declaration of the initialization function.
   1357     llvm::GlobalValue *Init = 0;
   1358     bool InitIsInitFunc = false;
   1359     if (VD->hasDefinition()) {
   1360       InitIsInitFunc = true;
   1361       if (InitFunc)
   1362         Init =
   1363             new llvm::GlobalAlias(InitFunc->getType(), Var->getLinkage(),
   1364                                   InitFnName.str(), InitFunc, &CGM.getModule());
   1365     } else {
   1366       // Emit a weak global function referring to the initialization function.
   1367       // This function will not exist if the TU defining the thread_local
   1368       // variable in question does not need any dynamic initialization for
   1369       // its thread_local variables.
   1370       llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
   1371       Init = llvm::Function::Create(
   1372           FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
   1373           &CGM.getModule());
   1374     }
   1375 
   1376     if (Init)
   1377       Init->setVisibility(Var->getVisibility());
   1378 
   1379     llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
   1380     llvm::LLVMContext &Context = CGM.getModule().getContext();
   1381     llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
   1382     CGBuilderTy Builder(Entry);
   1383     if (InitIsInitFunc) {
   1384       if (Init)
   1385         Builder.CreateCall(Init);
   1386     } else {
   1387       // Don't know whether we have an init function. Call it if it exists.
   1388       llvm::Value *Have = Builder.CreateIsNotNull(Init);
   1389       llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
   1390       llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
   1391       Builder.CreateCondBr(Have, InitBB, ExitBB);
   1392 
   1393       Builder.SetInsertPoint(InitBB);
   1394       Builder.CreateCall(Init);
   1395       Builder.CreateBr(ExitBB);
   1396 
   1397       Builder.SetInsertPoint(ExitBB);
   1398     }
   1399 
   1400     // For a reference, the result of the wrapper function is a pointer to
   1401     // the referenced object.
   1402     llvm::Value *Val = Var;
   1403     if (VD->getType()->isReferenceType()) {
   1404       llvm::LoadInst *LI = Builder.CreateLoad(Val);
   1405       LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
   1406       Val = LI;
   1407     }
   1408 
   1409     Builder.CreateRet(Val);
   1410   }
   1411 }
   1412 
   1413 LValue ItaniumCXXABI::EmitThreadLocalDeclRefExpr(CodeGenFunction &CGF,
   1414                                                  const DeclRefExpr *DRE) {
   1415   const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
   1416   QualType T = VD->getType();
   1417   llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
   1418   llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
   1419   llvm::Function *Wrapper =
   1420       getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val));
   1421 
   1422   Val = CGF.Builder.CreateCall(Wrapper);
   1423 
   1424   LValue LV;
   1425   if (VD->getType()->isReferenceType())
   1426     LV = CGF.MakeNaturalAlignAddrLValue(Val, T);
   1427   else
   1428     LV = CGF.MakeAddrLValue(Val, DRE->getType(),
   1429                             CGF.getContext().getDeclAlign(VD));
   1430   // FIXME: need setObjCGCLValueClass?
   1431   return LV;
   1432 }
   1433 
   1434 /// Return whether the given global decl needs a VTT parameter, which it does
   1435 /// if it's a base constructor or destructor with virtual bases.
   1436 bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
   1437   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
   1438 
   1439   // We don't have any virtual bases, just return early.
   1440   if (!MD->getParent()->getNumVBases())
   1441     return false;
   1442 
   1443   // Check if we have a base constructor.
   1444   if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
   1445     return true;
   1446 
   1447   // Check if we have a base destructor.
   1448   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
   1449     return true;
   1450 
   1451   return false;
   1452 }
   1453