1 //===-- sanitizer_allocator.cc --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is shared between AddressSanitizer and ThreadSanitizer 11 // run-time libraries. 12 // This allocator is used inside run-times. 13 //===----------------------------------------------------------------------===// 14 #include "sanitizer_allocator.h" 15 #include "sanitizer_allocator_internal.h" 16 #include "sanitizer_common.h" 17 18 namespace __sanitizer { 19 20 // ThreadSanitizer for Go uses libc malloc/free. 21 #if defined(SANITIZER_GO) 22 # if SANITIZER_LINUX && !SANITIZER_ANDROID 23 extern "C" void *__libc_malloc(uptr size); 24 extern "C" void __libc_free(void *ptr); 25 # define LIBC_MALLOC __libc_malloc 26 # define LIBC_FREE __libc_free 27 # else 28 # include <stdlib.h> 29 # define LIBC_MALLOC malloc 30 # define LIBC_FREE free 31 # endif 32 33 static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache) { 34 (void)cache; 35 return LIBC_MALLOC(size); 36 } 37 38 static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { 39 (void)cache; 40 LIBC_FREE(ptr); 41 } 42 43 InternalAllocator *internal_allocator() { 44 return 0; 45 } 46 47 #else // SANITIZER_GO 48 49 static ALIGNED(64) char internal_alloc_placeholder[sizeof(InternalAllocator)]; 50 static atomic_uint8_t internal_allocator_initialized; 51 static StaticSpinMutex internal_alloc_init_mu; 52 53 static InternalAllocatorCache internal_allocator_cache; 54 static StaticSpinMutex internal_allocator_cache_mu; 55 56 InternalAllocator *internal_allocator() { 57 InternalAllocator *internal_allocator_instance = 58 reinterpret_cast<InternalAllocator *>(&internal_alloc_placeholder); 59 if (atomic_load(&internal_allocator_initialized, memory_order_acquire) == 0) { 60 SpinMutexLock l(&internal_alloc_init_mu); 61 if (atomic_load(&internal_allocator_initialized, memory_order_relaxed) == 62 0) { 63 internal_allocator_instance->Init(); 64 atomic_store(&internal_allocator_initialized, 1, memory_order_release); 65 } 66 } 67 return internal_allocator_instance; 68 } 69 70 static void *RawInternalAlloc(uptr size, InternalAllocatorCache *cache) { 71 if (cache == 0) { 72 SpinMutexLock l(&internal_allocator_cache_mu); 73 return internal_allocator()->Allocate(&internal_allocator_cache, size, 8, 74 false); 75 } 76 return internal_allocator()->Allocate(cache, size, 8, false); 77 } 78 79 static void RawInternalFree(void *ptr, InternalAllocatorCache *cache) { 80 if (cache == 0) { 81 SpinMutexLock l(&internal_allocator_cache_mu); 82 return internal_allocator()->Deallocate(&internal_allocator_cache, ptr); 83 } 84 internal_allocator()->Deallocate(cache, ptr); 85 } 86 87 #endif // SANITIZER_GO 88 89 const u64 kBlockMagic = 0x6A6CB03ABCEBC041ull; 90 91 void *InternalAlloc(uptr size, InternalAllocatorCache *cache) { 92 if (size + sizeof(u64) < size) 93 return 0; 94 void *p = RawInternalAlloc(size + sizeof(u64), cache); 95 if (p == 0) 96 return 0; 97 ((u64*)p)[0] = kBlockMagic; 98 return (char*)p + sizeof(u64); 99 } 100 101 void InternalFree(void *addr, InternalAllocatorCache *cache) { 102 if (addr == 0) 103 return; 104 addr = (char*)addr - sizeof(u64); 105 CHECK_EQ(kBlockMagic, ((u64*)addr)[0]); 106 ((u64*)addr)[0] = 0; 107 RawInternalFree(addr, cache); 108 } 109 110 // LowLevelAllocator 111 static LowLevelAllocateCallback low_level_alloc_callback; 112 113 void *LowLevelAllocator::Allocate(uptr size) { 114 // Align allocation size. 115 size = RoundUpTo(size, 8); 116 if (allocated_end_ - allocated_current_ < (sptr)size) { 117 uptr size_to_allocate = Max(size, GetPageSizeCached()); 118 allocated_current_ = 119 (char*)MmapOrDie(size_to_allocate, __FUNCTION__); 120 allocated_end_ = allocated_current_ + size_to_allocate; 121 if (low_level_alloc_callback) { 122 low_level_alloc_callback((uptr)allocated_current_, 123 size_to_allocate); 124 } 125 } 126 CHECK(allocated_end_ - allocated_current_ >= (sptr)size); 127 void *res = allocated_current_; 128 allocated_current_ += size; 129 return res; 130 } 131 132 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback) { 133 low_level_alloc_callback = callback; 134 } 135 136 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n) { 137 if (!size) return false; 138 uptr max = (uptr)-1L; 139 return (max / size) < n; 140 } 141 142 } // namespace __sanitizer 143