1 //===-- tsan_rtl_thread.cc ------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "sanitizer_common/sanitizer_placement_new.h" 15 #include "tsan_rtl.h" 16 #include "tsan_mman.h" 17 #include "tsan_platform.h" 18 #include "tsan_report.h" 19 #include "tsan_sync.h" 20 21 namespace __tsan { 22 23 // ThreadContext implementation. 24 25 ThreadContext::ThreadContext(int tid) 26 : ThreadContextBase(tid) 27 , thr() 28 , sync() 29 , epoch0() 30 , epoch1() { 31 } 32 33 #ifndef TSAN_GO 34 ThreadContext::~ThreadContext() { 35 } 36 #endif 37 38 void ThreadContext::OnDead() { 39 sync.Reset(); 40 } 41 42 void ThreadContext::OnJoined(void *arg) { 43 ThreadState *caller_thr = static_cast<ThreadState *>(arg); 44 caller_thr->clock.acquire(&sync); 45 StatInc(caller_thr, StatSyncAcquire); 46 sync.Reset(); 47 } 48 49 struct OnCreatedArgs { 50 ThreadState *thr; 51 uptr pc; 52 }; 53 54 void ThreadContext::OnCreated(void *arg) { 55 thr = 0; 56 if (tid == 0) 57 return; 58 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg); 59 args->thr->fast_state.IncrementEpoch(); 60 // Can't increment epoch w/o writing to the trace as well. 61 TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0); 62 args->thr->clock.set(args->thr->tid, args->thr->fast_state.epoch()); 63 args->thr->fast_synch_epoch = args->thr->fast_state.epoch(); 64 args->thr->clock.release(&sync); 65 StatInc(args->thr, StatSyncRelease); 66 #ifdef TSAN_GO 67 creation_stack.ObtainCurrent(args->thr, args->pc); 68 #else 69 creation_stack_id = CurrentStackId(args->thr, args->pc); 70 #endif 71 if (reuse_count == 0) 72 StatInc(args->thr, StatThreadMaxTid); 73 } 74 75 void ThreadContext::OnReset() { 76 sync.Reset(); 77 FlushUnneededShadowMemory(GetThreadTrace(tid), TraceSize() * sizeof(Event)); 78 //!!! FlushUnneededShadowMemory(GetThreadTraceHeader(tid), sizeof(Trace)); 79 } 80 81 struct OnStartedArgs { 82 ThreadState *thr; 83 uptr stk_addr; 84 uptr stk_size; 85 uptr tls_addr; 86 uptr tls_size; 87 }; 88 89 void ThreadContext::OnStarted(void *arg) { 90 OnStartedArgs *args = static_cast<OnStartedArgs*>(arg); 91 thr = args->thr; 92 // RoundUp so that one trace part does not contain events 93 // from different threads. 94 epoch0 = RoundUp(epoch1 + 1, kTracePartSize); 95 epoch1 = (u64)-1; 96 new(thr) ThreadState(CTX(), tid, unique_id, 97 epoch0, args->stk_addr, args->stk_size, args->tls_addr, args->tls_size); 98 #ifdef TSAN_GO 99 // Setup dynamic shadow stack. 100 const int kInitStackSize = 8; 101 args->thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack, 102 kInitStackSize * sizeof(uptr)); 103 args->thr->shadow_stack_pos = thr->shadow_stack; 104 args->thr->shadow_stack_end = thr->shadow_stack + kInitStackSize; 105 #endif 106 #ifndef TSAN_GO 107 AllocatorThreadStart(args->thr); 108 #endif 109 thr = args->thr; 110 thr->fast_synch_epoch = epoch0; 111 thr->clock.set(tid, epoch0); 112 thr->clock.acquire(&sync); 113 thr->fast_state.SetHistorySize(flags()->history_size); 114 const uptr trace = (epoch0 / kTracePartSize) % TraceParts(); 115 Trace *thr_trace = ThreadTrace(thr->tid); 116 thr_trace->headers[trace].epoch0 = epoch0; 117 StatInc(thr, StatSyncAcquire); 118 sync.Reset(); 119 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx " 120 "tls_addr=%zx tls_size=%zx\n", 121 tid, (uptr)epoch0, args->stk_addr, args->stk_size, 122 args->tls_addr, args->tls_size); 123 thr->is_alive = true; 124 } 125 126 void ThreadContext::OnFinished() { 127 if (!detached) { 128 thr->fast_state.IncrementEpoch(); 129 // Can't increment epoch w/o writing to the trace as well. 130 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); 131 thr->clock.set(thr->tid, thr->fast_state.epoch()); 132 thr->fast_synch_epoch = thr->fast_state.epoch(); 133 thr->clock.release(&sync); 134 StatInc(thr, StatSyncRelease); 135 } 136 epoch1 = thr->fast_state.epoch(); 137 138 #ifndef TSAN_GO 139 AllocatorThreadFinish(thr); 140 #endif 141 thr->~ThreadState(); 142 StatAggregate(CTX()->stat, thr->stat); 143 thr = 0; 144 } 145 146 #ifndef TSAN_GO 147 struct ThreadLeak { 148 ThreadContext *tctx; 149 int count; 150 }; 151 152 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) { 153 Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg; 154 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base); 155 if (tctx->detached || tctx->status != ThreadStatusFinished) 156 return; 157 for (uptr i = 0; i < leaks.Size(); i++) { 158 if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) { 159 leaks[i].count++; 160 return; 161 } 162 } 163 ThreadLeak leak = {tctx, 1}; 164 leaks.PushBack(leak); 165 } 166 #endif 167 168 static void ThreadCheckIgnore(ThreadState *thr) { 169 if (thr->ignore_reads_and_writes) { 170 Printf("ThreadSanitizer: thread T%d finished with ignores enabled.\n", 171 thr->tid); 172 } 173 } 174 175 void ThreadFinalize(ThreadState *thr) { 176 CHECK_GT(thr->in_rtl, 0); 177 ThreadCheckIgnore(thr); 178 #ifndef TSAN_GO 179 if (!flags()->report_thread_leaks) 180 return; 181 ThreadRegistryLock l(CTX()->thread_registry); 182 Vector<ThreadLeak> leaks(MBlockScopedBuf); 183 CTX()->thread_registry->RunCallbackForEachThreadLocked( 184 MaybeReportThreadLeak, &leaks); 185 for (uptr i = 0; i < leaks.Size(); i++) { 186 ScopedReport rep(ReportTypeThreadLeak); 187 rep.AddThread(leaks[i].tctx); 188 rep.SetCount(leaks[i].count); 189 OutputReport(CTX(), rep); 190 } 191 #endif 192 } 193 194 int ThreadCount(ThreadState *thr) { 195 CHECK_GT(thr->in_rtl, 0); 196 Context *ctx = CTX(); 197 uptr result; 198 ctx->thread_registry->GetNumberOfThreads(0, 0, &result); 199 return (int)result; 200 } 201 202 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) { 203 CHECK_GT(thr->in_rtl, 0); 204 StatInc(thr, StatThreadCreate); 205 Context *ctx = CTX(); 206 OnCreatedArgs args = { thr, pc }; 207 int tid = ctx->thread_registry->CreateThread(uid, detached, thr->tid, &args); 208 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid); 209 StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads()); 210 return tid; 211 } 212 213 void ThreadStart(ThreadState *thr, int tid, uptr os_id) { 214 CHECK_GT(thr->in_rtl, 0); 215 uptr stk_addr = 0; 216 uptr stk_size = 0; 217 uptr tls_addr = 0; 218 uptr tls_size = 0; 219 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size); 220 221 if (tid) { 222 if (stk_addr && stk_size) 223 MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size); 224 225 if (tls_addr && tls_size) { 226 // Check that the thr object is in tls; 227 const uptr thr_beg = (uptr)thr; 228 const uptr thr_end = (uptr)thr + sizeof(*thr); 229 CHECK_GE(thr_beg, tls_addr); 230 CHECK_LE(thr_beg, tls_addr + tls_size); 231 CHECK_GE(thr_end, tls_addr); 232 CHECK_LE(thr_end, tls_addr + tls_size); 233 // Since the thr object is huge, skip it. 234 MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr); 235 MemoryRangeImitateWrite(thr, /*pc=*/ 2, 236 thr_end, tls_addr + tls_size - thr_end); 237 } 238 } 239 240 OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size }; 241 CTX()->thread_registry->StartThread(tid, os_id, &args); 242 } 243 244 void ThreadFinish(ThreadState *thr) { 245 CHECK_GT(thr->in_rtl, 0); 246 ThreadCheckIgnore(thr); 247 StatInc(thr, StatThreadFinish); 248 if (thr->stk_addr && thr->stk_size) 249 DontNeedShadowFor(thr->stk_addr, thr->stk_size); 250 if (thr->tls_addr && thr->tls_size) 251 DontNeedShadowFor(thr->tls_addr, thr->tls_size); 252 thr->is_alive = false; 253 Context *ctx = CTX(); 254 ctx->thread_registry->FinishThread(thr->tid); 255 } 256 257 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) { 258 uptr uid = (uptr)arg; 259 if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) { 260 tctx->user_id = 0; 261 return true; 262 } 263 return false; 264 } 265 266 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) { 267 CHECK_GT(thr->in_rtl, 0); 268 Context *ctx = CTX(); 269 int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid); 270 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res); 271 return res; 272 } 273 274 void ThreadJoin(ThreadState *thr, uptr pc, int tid) { 275 CHECK_GT(thr->in_rtl, 0); 276 CHECK_GT(tid, 0); 277 CHECK_LT(tid, kMaxTid); 278 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid); 279 Context *ctx = CTX(); 280 ctx->thread_registry->JoinThread(tid, thr); 281 } 282 283 void ThreadDetach(ThreadState *thr, uptr pc, int tid) { 284 CHECK_GT(thr->in_rtl, 0); 285 CHECK_GT(tid, 0); 286 CHECK_LT(tid, kMaxTid); 287 Context *ctx = CTX(); 288 ctx->thread_registry->DetachThread(tid); 289 } 290 291 void ThreadSetName(ThreadState *thr, const char *name) { 292 CHECK_GT(thr->in_rtl, 0); 293 CTX()->thread_registry->SetThreadName(thr->tid, name); 294 } 295 296 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, 297 uptr size, bool is_write) { 298 if (size == 0) 299 return; 300 301 u64 *shadow_mem = (u64*)MemToShadow(addr); 302 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", 303 thr->tid, (void*)pc, (void*)addr, 304 (int)size, is_write); 305 306 #if TSAN_DEBUG 307 if (!IsAppMem(addr)) { 308 Printf("Access to non app mem %zx\n", addr); 309 DCHECK(IsAppMem(addr)); 310 } 311 if (!IsAppMem(addr + size - 1)) { 312 Printf("Access to non app mem %zx\n", addr + size - 1); 313 DCHECK(IsAppMem(addr + size - 1)); 314 } 315 if (!IsShadowMem((uptr)shadow_mem)) { 316 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); 317 DCHECK(IsShadowMem((uptr)shadow_mem)); 318 } 319 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) { 320 Printf("Bad shadow addr %p (%zx)\n", 321 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1); 322 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))); 323 } 324 #endif 325 326 StatInc(thr, StatMopRange); 327 328 if (*shadow_mem == kShadowRodata) { 329 // Access to .rodata section, no races here. 330 // Measurements show that it can be 10-20% of all memory accesses. 331 StatInc(thr, StatMopRangeRodata); 332 return; 333 } 334 335 FastState fast_state = thr->fast_state; 336 if (fast_state.GetIgnoreBit()) 337 return; 338 339 fast_state.IncrementEpoch(); 340 thr->fast_state = fast_state; 341 TraceAddEvent(thr, fast_state, EventTypeMop, pc); 342 343 bool unaligned = (addr % kShadowCell) != 0; 344 345 // Handle unaligned beginning, if any. 346 for (; addr % kShadowCell && size; addr++, size--) { 347 int const kAccessSizeLog = 0; 348 Shadow cur(fast_state); 349 cur.SetWrite(is_write); 350 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); 351 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, 352 shadow_mem, cur); 353 } 354 if (unaligned) 355 shadow_mem += kShadowCnt; 356 // Handle middle part, if any. 357 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) { 358 int const kAccessSizeLog = 3; 359 Shadow cur(fast_state); 360 cur.SetWrite(is_write); 361 cur.SetAddr0AndSizeLog(0, kAccessSizeLog); 362 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, 363 shadow_mem, cur); 364 shadow_mem += kShadowCnt; 365 } 366 // Handle ending, if any. 367 for (; size; addr++, size--) { 368 int const kAccessSizeLog = 0; 369 Shadow cur(fast_state); 370 cur.SetWrite(is_write); 371 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); 372 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, 373 shadow_mem, cur); 374 } 375 } 376 377 } // namespace __tsan 378