Home | History | Annotate | Download | only in libtommath
      1 #include <tommath.h>
      2 #ifdef BN_FAST_MP_INVMOD_C
      3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
      4  *
      5  * LibTomMath is a library that provides multiple-precision
      6  * integer arithmetic as well as number theoretic functionality.
      7  *
      8  * The library was designed directly after the MPI library by
      9  * Michael Fromberger but has been written from scratch with
     10  * additional optimizations in place.
     11  *
     12  * The library is free for all purposes without any express
     13  * guarantee it works.
     14  *
     15  * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com
     16  */
     17 
     18 /* computes the modular inverse via binary extended euclidean algorithm,
     19  * that is c = 1/a mod b
     20  *
     21  * Based on slow invmod except this is optimized for the case where b is
     22  * odd as per HAC Note 14.64 on pp. 610
     23  */
     24 int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
     25 {
     26   mp_int  x, y, u, v, B, D;
     27   int     res, neg;
     28 
     29   /* 2. [modified] b must be odd   */
     30   if (mp_iseven (b) == 1) {
     31     return MP_VAL;
     32   }
     33 
     34   /* init all our temps */
     35   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
     36      return res;
     37   }
     38 
     39   /* x == modulus, y == value to invert */
     40   if ((res = mp_copy (b, &x)) != MP_OKAY) {
     41     goto LBL_ERR;
     42   }
     43 
     44   /* we need y = |a| */
     45   if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
     46     goto LBL_ERR;
     47   }
     48 
     49   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
     50   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
     51     goto LBL_ERR;
     52   }
     53   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
     54     goto LBL_ERR;
     55   }
     56   mp_set (&D, 1);
     57 
     58 top:
     59   /* 4.  while u is even do */
     60   while (mp_iseven (&u) == 1) {
     61     /* 4.1 u = u/2 */
     62     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
     63       goto LBL_ERR;
     64     }
     65     /* 4.2 if B is odd then */
     66     if (mp_isodd (&B) == 1) {
     67       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
     68         goto LBL_ERR;
     69       }
     70     }
     71     /* B = B/2 */
     72     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
     73       goto LBL_ERR;
     74     }
     75   }
     76 
     77   /* 5.  while v is even do */
     78   while (mp_iseven (&v) == 1) {
     79     /* 5.1 v = v/2 */
     80     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
     81       goto LBL_ERR;
     82     }
     83     /* 5.2 if D is odd then */
     84     if (mp_isodd (&D) == 1) {
     85       /* D = (D-x)/2 */
     86       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
     87         goto LBL_ERR;
     88       }
     89     }
     90     /* D = D/2 */
     91     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
     92       goto LBL_ERR;
     93     }
     94   }
     95 
     96   /* 6.  if u >= v then */
     97   if (mp_cmp (&u, &v) != MP_LT) {
     98     /* u = u - v, B = B - D */
     99     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
    100       goto LBL_ERR;
    101     }
    102 
    103     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
    104       goto LBL_ERR;
    105     }
    106   } else {
    107     /* v - v - u, D = D - B */
    108     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
    109       goto LBL_ERR;
    110     }
    111 
    112     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
    113       goto LBL_ERR;
    114     }
    115   }
    116 
    117   /* if not zero goto step 4 */
    118   if (mp_iszero (&u) == 0) {
    119     goto top;
    120   }
    121 
    122   /* now a = C, b = D, gcd == g*v */
    123 
    124   /* if v != 1 then there is no inverse */
    125   if (mp_cmp_d (&v, 1) != MP_EQ) {
    126     res = MP_VAL;
    127     goto LBL_ERR;
    128   }
    129 
    130   /* b is now the inverse */
    131   neg = a->sign;
    132   while (D.sign == MP_NEG) {
    133     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
    134       goto LBL_ERR;
    135     }
    136   }
    137   mp_exch (&D, c);
    138   c->sign = neg;
    139   res = MP_OKAY;
    140 
    141 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
    142   return res;
    143 }
    144 #endif
    145 
    146 /* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */
    147 /* $Revision: 1.3 $ */
    148 /* $Date: 2006/03/31 14:18:44 $ */
    149