Home | History | Annotate | Download | only in libtommath
      1 #include <tommath.h>
      2 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
      3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
      4  *
      5  * LibTomMath is a library that provides multiple-precision
      6  * integer arithmetic as well as number theoretic functionality.
      7  *
      8  * The library was designed directly after the MPI library by
      9  * Michael Fromberger but has been written from scratch with
     10  * additional optimizations in place.
     11  *
     12  * The library is free for all purposes without any express
     13  * guarantee it works.
     14  *
     15  * Tom St Denis, tomstdenis (at) gmail.com, http://math.libtomcrypt.com
     16  */
     17 
     18 /* computes xR**-1 == x (mod N) via Montgomery Reduction
     19  *
     20  * This is an optimized implementation of montgomery_reduce
     21  * which uses the comba method to quickly calculate the columns of the
     22  * reduction.
     23  *
     24  * Based on Algorithm 14.32 on pp.601 of HAC.
     25 */
     26 int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
     27 {
     28   int     ix, res, olduse;
     29   mp_word W[MP_WARRAY];
     30 
     31   /* get old used count */
     32   olduse = x->used;
     33 
     34   /* grow a as required */
     35   if (x->alloc < n->used + 1) {
     36     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
     37       return res;
     38     }
     39   }
     40 
     41   /* first we have to get the digits of the input into
     42    * an array of double precision words W[...]
     43    */
     44   {
     45     register mp_word *_W;
     46     register mp_digit *tmpx;
     47 
     48     /* alias for the W[] array */
     49     _W   = W;
     50 
     51     /* alias for the digits of  x*/
     52     tmpx = x->dp;
     53 
     54     /* copy the digits of a into W[0..a->used-1] */
     55     for (ix = 0; ix < x->used; ix++) {
     56       *_W++ = *tmpx++;
     57     }
     58 
     59     /* zero the high words of W[a->used..m->used*2] */
     60     for (; ix < n->used * 2 + 1; ix++) {
     61       *_W++ = 0;
     62     }
     63   }
     64 
     65   /* now we proceed to zero successive digits
     66    * from the least significant upwards
     67    */
     68   for (ix = 0; ix < n->used; ix++) {
     69     /* mu = ai * m' mod b
     70      *
     71      * We avoid a double precision multiplication (which isn't required)
     72      * by casting the value down to a mp_digit.  Note this requires
     73      * that W[ix-1] have  the carry cleared (see after the inner loop)
     74      */
     75     register mp_digit mu;
     76     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
     77 
     78     /* a = a + mu * m * b**i
     79      *
     80      * This is computed in place and on the fly.  The multiplication
     81      * by b**i is handled by offseting which columns the results
     82      * are added to.
     83      *
     84      * Note the comba method normally doesn't handle carries in the
     85      * inner loop In this case we fix the carry from the previous
     86      * column since the Montgomery reduction requires digits of the
     87      * result (so far) [see above] to work.  This is
     88      * handled by fixing up one carry after the inner loop.  The
     89      * carry fixups are done in order so after these loops the
     90      * first m->used words of W[] have the carries fixed
     91      */
     92     {
     93       register int iy;
     94       register mp_digit *tmpn;
     95       register mp_word *_W;
     96 
     97       /* alias for the digits of the modulus */
     98       tmpn = n->dp;
     99 
    100       /* Alias for the columns set by an offset of ix */
    101       _W = W + ix;
    102 
    103       /* inner loop */
    104       for (iy = 0; iy < n->used; iy++) {
    105           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
    106       }
    107     }
    108 
    109     /* now fix carry for next digit, W[ix+1] */
    110     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
    111   }
    112 
    113   /* now we have to propagate the carries and
    114    * shift the words downward [all those least
    115    * significant digits we zeroed].
    116    */
    117   {
    118     register mp_digit *tmpx;
    119     register mp_word *_W, *_W1;
    120 
    121     /* nox fix rest of carries */
    122 
    123     /* alias for current word */
    124     _W1 = W + ix;
    125 
    126     /* alias for next word, where the carry goes */
    127     _W = W + ++ix;
    128 
    129     for (; ix <= n->used * 2 + 1; ix++) {
    130       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
    131     }
    132 
    133     /* copy out, A = A/b**n
    134      *
    135      * The result is A/b**n but instead of converting from an
    136      * array of mp_word to mp_digit than calling mp_rshd
    137      * we just copy them in the right order
    138      */
    139 
    140     /* alias for destination word */
    141     tmpx = x->dp;
    142 
    143     /* alias for shifted double precision result */
    144     _W = W + n->used;
    145 
    146     for (ix = 0; ix < n->used + 1; ix++) {
    147       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
    148     }
    149 
    150     /* zero oldused digits, if the input a was larger than
    151      * m->used+1 we'll have to clear the digits
    152      */
    153     for (; ix < olduse; ix++) {
    154       *tmpx++ = 0;
    155     }
    156   }
    157 
    158   /* set the max used and clamp */
    159   x->used = n->used + 1;
    160   mp_clamp (x);
    161 
    162   /* if A >= m then A = A - m */
    163   if (mp_cmp_mag (x, n) != MP_LT) {
    164     return s_mp_sub (x, n, x);
    165   }
    166   return MP_OKAY;
    167 }
    168 #endif
    169 
    170 /* $Source: /cvs/libtom/libtommath/bn_fast_mp_montgomery_reduce.c,v $ */
    171 /* $Revision: 1.3 $ */
    172 /* $Date: 2006/03/31 14:18:44 $ */
    173