1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "common.h" 11 12 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum 13 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n 14 RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx) 15 { 16 // std::cerr << "_asum " << *n << " " << *incx << "\n"; 17 18 Scalar* x = reinterpret_cast<Scalar*>(px); 19 20 if(*n<=0) return 0; 21 22 if(*incx==1) return vector(x,*n).cwiseAbs().sum(); 23 else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum(); 24 } 25 26 // computes a vector-vector dot product. 27 Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) 28 { 29 // std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n"; 30 31 if(*n<=0) return 0; 32 33 Scalar* x = reinterpret_cast<Scalar*>(px); 34 Scalar* y = reinterpret_cast<Scalar*>(py); 35 36 if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum(); 37 else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum(); 38 else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum(); 39 else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); 40 else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum(); 41 else return 0; 42 } 43 44 // computes the Euclidean norm of a vector. 45 // FIXME 46 Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx) 47 { 48 // std::cerr << "_nrm2 " << *n << " " << *incx << "\n"; 49 if(*n<=0) return 0; 50 51 Scalar* x = reinterpret_cast<Scalar*>(px); 52 53 if(*incx==1) return vector(x,*n).stableNorm(); 54 else return vector(x,*n,std::abs(*incx)).stableNorm(); 55 } 56 57 int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps) 58 { 59 // std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n"; 60 if(*n<=0) return 0; 61 62 Scalar* x = reinterpret_cast<Scalar*>(px); 63 Scalar* y = reinterpret_cast<Scalar*>(py); 64 Scalar c = *reinterpret_cast<Scalar*>(pc); 65 Scalar s = *reinterpret_cast<Scalar*>(ps); 66 67 StridedVectorType vx(vector(x,*n,std::abs(*incx))); 68 StridedVectorType vy(vector(y,*n,std::abs(*incy))); 69 70 Reverse<StridedVectorType> rvx(vx); 71 Reverse<StridedVectorType> rvy(vy); 72 73 if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s)); 74 else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s)); 75 else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s)); 76 77 78 return 0; 79 } 80 81 /* 82 // performs rotation of points in the modified plane. 83 int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param) 84 { 85 Scalar* x = reinterpret_cast<Scalar*>(px); 86 Scalar* y = reinterpret_cast<Scalar*>(py); 87 88 // TODO 89 90 return 0; 91 } 92 93 // computes the modified parameters for a Givens rotation. 94 int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param) 95 { 96 // TODO 97 98 return 0; 99 } 100 */ 101