Home | History | Annotate | Download | only in doc
      1 namespace Eigen {
      2 
      3 /** \page TutorialSparse Tutorial page 9 - Sparse Matrix
      4     \ingroup Tutorial
      5 
      6 \li \b Previous: \ref TutorialGeometry
      7 \li \b Next: \ref TutorialMapClass
      8 
      9 \b Table \b of \b contents \n
     10   - \ref TutorialSparseIntro
     11   - \ref TutorialSparseExample "Example"
     12   - \ref TutorialSparseSparseMatrix
     13   - \ref TutorialSparseFilling
     14   - \ref TutorialSparseDirectSolvers
     15   - \ref TutorialSparseFeatureSet
     16     - \ref TutorialSparse_BasicOps
     17     - \ref TutorialSparse_Products
     18     - \ref TutorialSparse_TriangularSelfadjoint
     19     - \ref TutorialSparse_Submat
     20 
     21 
     22 <hr>
     23 
     24 Manipulating and solving sparse problems involves various modules which are summarized below:
     25 
     26 <table class="manual">
     27 <tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
     28 <tr><td>\link Sparse_Module SparseCore \endlink</td><td>\code#include <Eigen/SparseCore>\endcode</td><td>SparseMatrix and SparseVector classes, matrix assembly, basic sparse linear algebra (including sparse triangular solvers)</td></tr>
     29 <tr><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>\code#include <Eigen/SparseCholesky>\endcode</td><td>Direct sparse LLT and LDLT Cholesky factorization to solve sparse self-adjoint positive definite problems</td></tr>
     30 <tr><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>\code#include <Eigen/IterativeLinearSolvers>\endcode</td><td>Iterative solvers to solve large general linear square problems (including self-adjoint positive definite problems)</td></tr>
     31 <tr><td></td><td>\code#include <Eigen/Sparse>\endcode</td><td>Includes all the above modules</td></tr>
     32 </table>
     33 
     34 \section TutorialSparseIntro Sparse matrix representation
     35 
     36 In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different from zero.  In such cases, memory consumption can be reduced and performance increased by using a specialized representation storing only the nonzero coefficients. Such a matrix is called a sparse matrix.
     37 
     38 \b The \b %SparseMatrix \b class
     39 
     40 The class SparseMatrix is the main sparse matrix representation of Eigen's sparse module; it offers high performance and low memory usage.
     41 It implements a more versatile variant of the widely-used Compressed Column (or Row) Storage scheme.
     42 It consists of four compact arrays:
     43  - \c Values: stores the coefficient values of the non-zeros.
     44  - \c InnerIndices: stores the row (resp. column) indices of the non-zeros.
     45  - \c OuterStarts: stores for each column (resp. row) the index of the first non-zero in the previous two arrays.
     46  - \c InnerNNZs: stores the number of non-zeros of each column (resp. row).
     47 The word \c inner refers to an \em inner \em vector that is a column for a column-major matrix, or a row for a row-major matrix.
     48 The word \c outer refers to the other direction.
     49 
     50 This storage scheme is better explained on an example. The following matrix
     51 <table class="manual">
     52 <tr><td> 0</td><td>3</td><td> 0</td><td>0</td><td> 0</td></tr>
     53 <tr><td>22</td><td>0</td><td> 0</td><td>0</td><td>17</td></tr>
     54 <tr><td> 7</td><td>5</td><td> 0</td><td>1</td><td> 0</td></tr>
     55 <tr><td> 0</td><td>0</td><td> 0</td><td>0</td><td> 0</td></tr>
     56 <tr><td> 0</td><td>0</td><td>14</td><td>0</td><td> 8</td></tr>
     57 </table>
     58 
     59 and one of its possible sparse, \b column \b major representation:
     60 <table class="manual">
     61 <tr><td>Values:</td>        <td>22</td><td>7</td><td>_</td><td>3</td><td>5</td><td>14</td><td>_</td><td>_</td><td>1</td><td>_</td><td>17</td><td>8</td></tr>
     62 <tr><td>InnerIndices:</td>  <td> 1</td><td>2</td><td>_</td><td>0</td><td>2</td><td> 4</td><td>_</td><td>_</td><td>2</td><td>_</td><td> 1</td><td>4</td></tr>
     63 </table>
     64 <table class="manual">
     65 <tr><td>OuterStarts:</td><td>0</td><td>3</td><td>5</td><td>8</td><td>10</td><td>\em 12 </td></tr>
     66 <tr><td>InnerNNZs:</td>    <td>2</td><td>2</td><td>1</td><td>1</td><td> 2</td><td></td></tr>
     67 </table>
     68 
     69 Currently the elements of a given inner vector are guaranteed to be always sorted by increasing inner indices.
     70 The \c "_" indicates available free space to quickly insert new elements.
     71 Assuming no reallocation is needed, the insertion of a random element is therefore in O(nnz_j) where nnz_j is the number of nonzeros of the respective inner vector.
     72 On the other hand, inserting elements with increasing inner indices in a given inner vector is much more efficient since this only requires to increase the respective \c InnerNNZs entry that is a O(1) operation.
     73 
     74 The case where no empty space is available is a special case, and is refered as the \em compressed mode.
     75 It corresponds to the widely used Compressed Column (or Row) Storage schemes (CCS or CRS).
     76 Any SparseMatrix can be turned to this form by calling the SparseMatrix::makeCompressed() function.
     77 In this case, one can remark that the \c InnerNNZs array is redundant with \c OuterStarts because we the equality: \c InnerNNZs[j] = \c OuterStarts[j+1]-\c OuterStarts[j].
     78 Therefore, in practice a call to SparseMatrix::makeCompressed() frees this buffer.
     79 
     80 It is worth noting that most of our wrappers to external libraries requires compressed matrices as inputs.
     81 
     82 The results of %Eigen's operations always produces \b compressed sparse matrices.
     83 On the other hand, the insertion of a new element into a SparseMatrix converts this later to the \b uncompressed mode.
     84 
     85 Here is the previous matrix represented in compressed mode:
     86 <table class="manual">
     87 <tr><td>Values:</td>        <td>22</td><td>7</td><td>3</td><td>5</td><td>14</td><td>1</td><td>17</td><td>8</td></tr>
     88 <tr><td>InnerIndices:</td>  <td> 1</td><td>2</td><td>0</td><td>2</td><td> 4</td><td>2</td><td> 1</td><td>4</td></tr>
     89 </table>
     90 <table class="manual">
     91 <tr><td>OuterStarts:</td><td>0</td><td>2</td><td>4</td><td>5</td><td>6</td><td>\em 8 </td></tr>
     92 </table>
     93 
     94 A SparseVector is a special case of a SparseMatrix where only the \c Values and \c InnerIndices arrays are stored.
     95 There is no notion of compressed/uncompressed mode for a SparseVector.
     96 
     97 
     98 \section TutorialSparseExample First example
     99 
    100 Before describing each individual class, let's start with the following typical example: solving the Lapace equation \f$ \nabla u = 0 \f$ on a regular 2D grid using a finite difference scheme and Dirichlet boundary conditions.
    101 Such problem can be mathematically expressed as a linear problem of the form \f$ Ax=b \f$ where \f$ x \f$ is the vector of \c m unknowns (in our case, the values of the pixels), \f$ b \f$ is the right hand side vector resulting from the boundary conditions, and \f$ A \f$ is an \f$ m \times m \f$ matrix containing only a few non-zero elements resulting from the discretization of the Laplacian operator.
    102 
    103 <table class="manual">
    104 <tr><td>
    105 \include Tutorial_sparse_example.cpp
    106 </td>
    107 <td>
    108 \image html Tutorial_sparse_example.jpeg
    109 </td></tr></table>
    110 
    111 In this example, we start by defining a column-major sparse matrix type of double \c SparseMatrix<double>, and a triplet list of the same scalar type \c  Triplet<double>. A triplet is a simple object representing a non-zero entry as the triplet: \c row index, \c column index, \c value.
    112 
    113 In the main function, we declare a list \c coefficients of triplets (as a std vector) and the right hand side vector \f$ b \f$ which are filled by the \a buildProblem function.
    114 The raw and flat list of non-zero entries is then converted to a true SparseMatrix object \c A.
    115 Note that the elements of the list do not have to be sorted, and possible duplicate entries will be summed up.
    116 
    117 The last step consists of effectively solving the assembled problem.
    118 Since the resulting matrix \c A is symmetric by construction, we can perform a direct Cholesky factorization via the SimplicialLDLT class which behaves like its LDLT counterpart for dense objects.
    119 
    120 The resulting vector \c x contains the pixel values as a 1D array which is saved to a jpeg file shown on the right of the code above.
    121 
    122 Describing the \a buildProblem and \a save functions is out of the scope of this tutorial. They are given \ref TutorialSparse_example_details "here" for the curious and reproducibility purpose.
    123 
    124 
    125 
    126 
    127 \section TutorialSparseSparseMatrix The SparseMatrix class
    128 
    129 \b %Matrix \b and \b vector \b properties \n
    130 
    131 The SparseMatrix and SparseVector classes take three template arguments:
    132  * the scalar type (e.g., double)
    133  * the storage order (ColMajor or RowMajor, the default is RowMajor)
    134  * the inner index type (default is \c int).
    135 
    136 As for dense Matrix objects, constructors takes the size of the object.
    137 Here are some examples:
    138 
    139 \code
    140 SparseMatrix<std::complex<float> > mat(1000,2000);         // declares a 1000x2000 column-major compressed sparse matrix of complex<float>
    141 SparseMatrix<double,RowMajor> mat(1000,2000);              // declares a 1000x2000 row-major compressed sparse matrix of double
    142 SparseVector<std::complex<float> > vec(1000);              // declares a column sparse vector of complex<float> of size 1000
    143 SparseVector<double,RowMajor> vec(1000);                   // declares a row sparse vector of double of size 1000
    144 \endcode
    145 
    146 In the rest of the tutorial, \c mat and \c vec represent any sparse-matrix and sparse-vector objects, respectively.
    147 
    148 The dimensions of a matrix can be queried using the following functions:
    149 <table class="manual">
    150 <tr><td>Standard \n dimensions</td><td>\code
    151 mat.rows()
    152 mat.cols()\endcode</td>
    153 <td>\code
    154 vec.size() \endcode</td>
    155 </tr>
    156 <tr><td>Sizes along the \n inner/outer dimensions</td><td>\code
    157 mat.innerSize()
    158 mat.outerSize()\endcode</td>
    159 <td></td>
    160 </tr>
    161 <tr><td>Number of non \n zero coefficients</td><td>\code
    162 mat.nonZeros() \endcode</td>
    163 <td>\code
    164 vec.nonZeros() \endcode</td></tr>
    165 </table>
    166 
    167 
    168 \b Iterating \b over \b the \b nonzero \b coefficients \n
    169 
    170 Random access to the elements of a sparse object can be done through the \c coeffRef(i,j) function.
    171 However, this function involves a quite expensive binary search.
    172 In most cases, one only wants to iterate over the non-zeros elements. This is achieved by a standard loop over the outer dimension, and then by iterating over the non-zeros of the current inner vector via an InnerIterator. Thus, the non-zero entries have to be visited in the same order than the storage order.
    173 Here is an example:
    174 <table class="manual">
    175 <tr><td>
    176 \code
    177 SparseMatrix<double> mat(rows,cols);
    178 for (int k=0; k<mat.outerSize(); ++k)
    179   for (SparseMatrix<double>::InnerIterator it(mat,k); it; ++it)
    180   {
    181     it.value();
    182     it.row();   // row index
    183     it.col();   // col index (here it is equal to k)
    184     it.index(); // inner index, here it is equal to it.row()
    185   }
    186 \endcode
    187 </td><td>
    188 \code
    189 SparseVector<double> vec(size);
    190 for (SparseVector<double>::InnerIterator it(vec); it; ++it)
    191 {
    192   it.value(); // == vec[ it.index() ]
    193   it.index();
    194 }
    195 \endcode
    196 </td></tr>
    197 </table>
    198 For a writable expression, the referenced value can be modified using the valueRef() function.
    199 If the type of the sparse matrix or vector depends on a template parameter, then the \c typename keyword is
    200 required to indicate that \c InnerIterator denotes a type; see \ref TopicTemplateKeyword for details.
    201 
    202 
    203 \section TutorialSparseFilling Filling a sparse matrix
    204 
    205 Because of the special storage scheme of a SparseMatrix, special care has to be taken when adding new nonzero entries.
    206 For instance, the cost of a single purely random insertion into a SparseMatrix is \c O(nnz), where \c nnz is the current number of non-zero coefficients.
    207 
    208 The simplest way to create a sparse matrix while guaranteeing good performance is thus to first build a list of so-called \em triplets, and then convert it to a SparseMatrix.
    209 
    210 Here is a typical usage example:
    211 \code
    212 typedef Eigen::Triplet<double> T;
    213 std::vector<T> tripletList;
    214 triplets.reserve(estimation_of_entries);
    215 for(...)
    216 {
    217   // ...
    218   tripletList.push_back(T(i,j,v_ij));
    219 }
    220 SparseMatrixType mat(rows,cols);
    221 mat.setFromTriplets(tripletList.begin(), tripletList.end());
    222 // mat is ready to go!
    223 \endcode
    224 The \c std::vector of triplets might contain the elements in arbitrary order, and might even contain duplicated elements that will be summed up by setFromTriplets().
    225 See the SparseMatrix::setFromTriplets() function and class Triplet for more details.
    226 
    227 
    228 In some cases, however, slightly higher performance, and lower memory consumption can be reached by directly inserting the non-zeros into the destination matrix.
    229 A typical scenario of this approach is illustrated bellow:
    230 \code
    231 1: SparseMatrix<double> mat(rows,cols);         // default is column major
    232 2: mat.reserve(VectorXi::Constant(cols,6));
    233 3: for each i,j such that v_ij != 0
    234 4:   mat.insert(i,j) = v_ij;                    // alternative: mat.coeffRef(i,j) += v_ij;
    235 5: mat.makeCompressed();                        // optional
    236 \endcode
    237 
    238 - The key ingredient here is the line 2 where we reserve room for 6 non-zeros per column. In many cases, the number of non-zeros per column or row can easily be known in advance. If it varies significantly for each inner vector, then it is possible to specify a reserve size for each inner vector by providing a vector object with an operator[](int j) returning the reserve size of the \c j-th inner vector (e.g., via a VectorXi or std::vector<int>). If only a rought estimate of the number of nonzeros per inner-vector can be obtained, it is highly recommended to overestimate it rather than the opposite. If this line is omitted, then the first insertion of a new element will reserve room for 2 elements per inner vector.
    239 - The line 4 performs a sorted insertion. In this example, the ideal case is when the \c j-th column is not full and contains non-zeros whose inner-indices are smaller than \c i. In this case, this operation boils down to trivial O(1) operation.
    240 - When calling insert(i,j) the element \c i \c ,j must not already exists, otherwise use the coeffRef(i,j) method that will allow to, e.g., accumulate values. This method first performs a binary search and finally calls insert(i,j) if the element does not already exist. It is more flexible than insert() but also more costly.
    241 - The line 5 suppresses the remaining empty space and transforms the matrix into a compressed column storage.
    242 
    243 
    244 \section TutorialSparseDirectSolvers Solving linear problems
    245 
    246 %Eigen currently provides a limited set of built-in solvers, as well as wrappers to external solver libraries.
    247 They are summarized in the following table:
    248 
    249 <table class="manual">
    250 <tr><th>Class</th><th>Module</th><th>Solver kind</th><th>Matrix kind</th><th>Features related to performance</th>
    251     <th>Dependencies,License</th><th class="width20em"><p>Notes</p></th></tr>
    252 <tr><td>SimplicialLLT    </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LLt factorization</td><td>SPD</td><td>Fill-in reducing</td>
    253     <td>built-in, LGPL</td>
    254     <td>SimplicialLDLT is often preferable</td></tr>
    255 <tr><td>SimplicialLDLT   </td><td>\link SparseCholesky_Module SparseCholesky \endlink</td><td>Direct LDLt factorization</td><td>SPD</td><td>Fill-in reducing</td>
    256     <td>built-in, LGPL</td>
    257     <td>Recommended for very sparse and not too large problems (e.g., 2D Poisson eq.)</td></tr>
    258 <tr><td>ConjugateGradient</td><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>Classic iterative CG</td><td>SPD</td><td>Preconditionning</td>
    259     <td>built-in, LGPL</td>
    260     <td>Recommended for large symmetric problems (e.g., 3D Poisson eq.)</td></tr>
    261 <tr><td>BiCGSTAB</td><td>\link IterativeLinearSolvers_Module IterativeLinearSolvers \endlink</td><td>Iterative stabilized bi-conjugate gradient</td><td>Square</td><td>Preconditionning</td>
    262     <td>built-in, LGPL</td>
    263     <td>Might not always converge</td></tr>
    264 
    265 
    266 <tr><td>PastixLLT \n PastixLDLT \n PastixLU</td><td>\link PaStiXSupport_Module PaStiXSupport \endlink</td><td>Direct LLt, LDLt, LU factorizations</td><td>SPD \n SPD \n Square</td><td>Fill-in reducing, Leverage fast dense algebra, Multithreading</td>
    267     <td>Requires the <a href="http://pastix.gforge.inria.fr">PaStiX</a> package, \b CeCILL-C </td>
    268     <td>optimized for tough problems and symmetric patterns</td></tr>
    269 <tr><td>CholmodSupernodalLLT</td><td>\link CholmodSupport_Module CholmodSupport \endlink</td><td>Direct LLt factorization</td><td>SPD</td><td>Fill-in reducing, Leverage fast dense algebra</td>
    270     <td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
    271     <td></td></tr>
    272 <tr><td>UmfPackLU</td><td>\link UmfPackSupport_Module UmfPackSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
    273     <td>Requires the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">SuiteSparse</a> package, \b GPL </td>
    274     <td></td></tr>
    275 <tr><td>SuperLU</td><td>\link SuperLUSupport_Module SuperLUSupport \endlink</td><td>Direct LU factorization</td><td>Square</td><td>Fill-in reducing, Leverage fast dense algebra</td>
    276     <td>Requires the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library, (BSD-like)</td>
    277     <td></td></tr>
    278 </table>
    279 
    280 Here \c SPD means symmetric positive definite.
    281 
    282 All these solvers follow the same general concept.
    283 Here is a typical and general example:
    284 \code
    285 #include <Eigen/RequiredModuleName>
    286 // ...
    287 SparseMatrix<double> A;
    288 // fill A
    289 VectorXd b, x;
    290 // fill b
    291 // solve Ax = b
    292 SolverClassName<SparseMatrix<double> > solver;
    293 solver.compute(A);
    294 if(solver.info()!=Succeeded) {
    295   // decomposition failed
    296   return;
    297 }
    298 x = solver.solve(b);
    299 if(solver.info()!=Succeeded) {
    300   // solving failed
    301   return;
    302 }
    303 // solve for another right hand side:
    304 x1 = solver.solve(b1);
    305 \endcode
    306 
    307 For \c SPD solvers, a second optional template argument allows to specify which triangular part have to be used, e.g.:
    308 
    309 \code
    310 #include <Eigen/IterativeLinearSolvers>
    311 
    312 ConjugateGradient<SparseMatrix<double>, Eigen::Upper> solver;
    313 x = solver.compute(A).solve(b);
    314 \endcode
    315 In the above example, only the upper triangular part of the input matrix A is considered for solving. The opposite triangle might either be empty or contain arbitrary values.
    316 
    317 In the case where multiple problems with the same sparcity pattern have to be solved, then the "compute" step can be decomposed as follow:
    318 \code
    319 SolverClassName<SparseMatrix<double> > solver;
    320 solver.analyzePattern(A);   // for this step the numerical values of A are not used
    321 solver.factorize(A);
    322 x1 = solver.solve(b1);
    323 x2 = solver.solve(b2);
    324 ...
    325 A = ...;                    // modify the values of the nonzeros of A, the nonzeros pattern must stay unchanged
    326 solver.factorize(A);
    327 x1 = solver.solve(b1);
    328 x2 = solver.solve(b2);
    329 ...
    330 \endcode
    331 The compute() method is equivalent to calling both analyzePattern() and factorize().
    332 
    333 Finally, each solver provides some specific features, such as determinant, access to the factors, controls of the iterations, and so on.
    334 More details are availble in the documentations of the respective classes.
    335 
    336 
    337 \section TutorialSparseFeatureSet Supported operators and functions
    338 
    339 Because of their special storage format, sparse matrices cannot offer the same level of flexbility than dense matrices.
    340 In Eigen's sparse module we chose to expose only the subset of the dense matrix API which can be efficiently implemented.
    341 In the following \em sm denotes a sparse matrix, \em sv a sparse vector, \em dm a dense matrix, and \em dv a dense vector.
    342 
    343 \subsection TutorialSparse_BasicOps Basic operations
    344 
    345 %Sparse expressions support most of the unary and binary coefficient wise operations:
    346 \code
    347 sm1.real()   sm1.imag()   -sm1                    0.5*sm1
    348 sm1+sm2      sm1-sm2      sm1.cwiseProduct(sm2)
    349 \endcode
    350 However, a strong restriction is that the storage orders must match. For instance, in the following example:
    351 \code
    352 sm4 = sm1 + sm2 + sm3;
    353 \endcode
    354 sm1, sm2, and sm3 must all be row-major or all column major.
    355 On the other hand, there is no restriction on the target matrix sm4.
    356 For instance, this means that for computing \f$ A^T + A \f$, the matrix \f$ A^T \f$ must be evaluated into a temporary matrix of compatible storage order:
    357 \code
    358 SparseMatrix<double> A, B;
    359 B = SparseMatrix<double>(A.transpose()) + A;
    360 \endcode
    361 
    362 Binary coefficient wise operators can also mix sparse and dense expressions:
    363 \code
    364 sm2 = sm1.cwiseProduct(dm1);
    365 dm2 = sm1 + dm1;
    366 \endcode
    367 
    368 
    369 %Sparse expressions also support transposition:
    370 \code
    371 sm1 = sm2.transpose();
    372 sm1 = sm2.adjoint();
    373 \endcode
    374 However, there is no transposeInPlace() method.
    375 
    376 
    377 \subsection TutorialSparse_Products Matrix products
    378 
    379 %Eigen supports various kind of sparse matrix products which are summarize below:
    380   - \b sparse-dense:
    381     \code
    382 dv2 = sm1 * dv1;
    383 dm2 = dm1 * sm1.adjoint();
    384 dm2 = 2. * sm1 * dm1;
    385     \endcode
    386   - \b symmetric \b sparse-dense. The product of a sparse symmetric matrix with a dense matrix (or vector) can also be optimized by specifying the symmetry with selfadjointView():
    387     \code
    388 dm2 = sm1.selfadjointView<>() * dm1;        // if all coefficients of A are stored
    389 dm2 = A.selfadjointView<Upper>() * dm1;     // if only the upper part of A is stored
    390 dm2 = A.selfadjointView<Lower>() * dm1;     // if only the lower part of A is stored
    391     \endcode
    392   - \b sparse-sparse. For sparse-sparse products, two different algorithms are available. The default one is conservative and preserve the explicit zeros that might appear:
    393     \code
    394 sm3 = sm1 * sm2;
    395 sm3 = 4 * sm1.adjoint() * sm2;
    396     \endcode
    397     The second algorithm prunes on the fly the explicit zeros, or the values smaller than a given threshold. It is enabled and controlled through the prune() functions:
    398     \code
    399 sm3 = (sm1 * sm2).prune();                  // removes numerical zeros
    400 sm3 = (sm1 * sm2).prune(ref);               // removes elements much smaller than ref
    401 sm3 = (sm1 * sm2).prune(ref,epsilon);       // removes elements smaller than ref*epsilon
    402     \endcode
    403 
    404   - \b permutations. Finally, permutations can be applied to sparse matrices too:
    405     \code
    406 PermutationMatrix<Dynamic,Dynamic> P = ...;
    407 sm2 = P * sm1;
    408 sm2 = sm1 * P.inverse();
    409 sm2 = sm1.transpose() * P;
    410     \endcode
    411 
    412 
    413 \subsection TutorialSparse_TriangularSelfadjoint Triangular and selfadjoint views
    414 
    415 Just as with dense matrices, the triangularView() function can be used to address a triangular part of the matrix, and perform triangular solves with a dense right hand side:
    416 \code
    417 dm2 = sm1.triangularView<Lower>(dm1);
    418 dv2 = sm1.transpose().triangularView<Upper>(dv1);
    419 \endcode
    420 
    421 The selfadjointView() function permits various operations:
    422  - optimized sparse-dense matrix products:
    423     \code
    424 dm2 = sm1.selfadjointView<>() * dm1;        // if all coefficients of A are stored
    425 dm2 = A.selfadjointView<Upper>() * dm1;     // if only the upper part of A is stored
    426 dm2 = A.selfadjointView<Lower>() * dm1;     // if only the lower part of A is stored
    427     \endcode
    428  - copy of triangular parts:
    429     \code
    430 sm2 = sm1.selfadjointView<Upper>();                               // makes a full selfadjoint matrix from the upper triangular part
    431 sm2.selfadjointView<Lower>() = sm1.selfadjointView<Upper>();      // copies the upper triangular part to the lower triangular part
    432     \endcode
    433  - application of symmetric permutations:
    434  \code
    435 PermutationMatrix<Dynamic,Dynamic> P = ...;
    436 sm2 = A.selfadjointView<Upper>().twistedBy(P);                                // compute P S P' from the upper triangular part of A, and make it a full matrix
    437 sm2.selfadjointView<Lower>() = A.selfadjointView<Lower>().twistedBy(P);       // compute P S P' from the lower triangular part of A, and then only compute the lower part
    438  \endcode
    439 
    440 \subsection TutorialSparse_Submat Sub-matrices
    441 
    442 %Sparse matrices does not support yet the addressing of arbitrary sub matrices. Currently, one can only reference a set of contiguous \em inner vectors, i.e., a set of contiguous rows for a row-major matrix, or a set of contiguous columns for a column major matrix:
    443 \code
    444   sm1.innerVector(j);       // returns an expression of the j-th column (resp. row) of the matrix if sm1 is col-major (resp. row-major)
    445   sm1.innerVectors(j, nb);  // returns an expression of the nb columns (resp. row) starting from the j-th column (resp. row)
    446                             // of the matrix if sm1 is col-major (resp. row-major)
    447   sm1.middleRows(j, nb);    // for row major matrices only, get a range of nb rows
    448   sm1.middleCols(j, nb);    // for column major matrices only, get a range of nb columns
    449 \endcode
    450 
    451 \li \b Next: \ref TutorialMapClass
    452 
    453 */
    454 
    455 }
    456