1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. Eigen itself is part of the KDE project. 3 // 4 // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro (at) gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #include "sparse.h" 11 12 template<typename SetterType,typename DenseType, typename Scalar, int Options> 13 bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) 14 { 15 typedef SparseMatrix<Scalar,Options> SparseType; 16 { 17 sm.setZero(); 18 SetterType w(sm); 19 std::vector<Vector2i> remaining = nonzeroCoords; 20 while(!remaining.empty()) 21 { 22 int i = ei_random<int>(0,remaining.size()-1); 23 w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); 24 remaining[i] = remaining.back(); 25 remaining.pop_back(); 26 } 27 } 28 return sm.isApprox(ref); 29 } 30 31 template<typename SetterType,typename DenseType, typename T> 32 bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) 33 { 34 sm.setZero(); 35 std::vector<Vector2i> remaining = nonzeroCoords; 36 while(!remaining.empty()) 37 { 38 int i = ei_random<int>(0,remaining.size()-1); 39 sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); 40 remaining[i] = remaining.back(); 41 remaining.pop_back(); 42 } 43 return sm.isApprox(ref); 44 } 45 46 template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) 47 { 48 const int rows = ref.rows(); 49 const int cols = ref.cols(); 50 typedef typename SparseMatrixType::Scalar Scalar; 51 enum { Flags = SparseMatrixType::Flags }; 52 53 double density = std::max(8./(rows*cols), 0.01); 54 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 55 typedef Matrix<Scalar,Dynamic,1> DenseVector; 56 Scalar eps = 1e-6; 57 58 SparseMatrixType m(rows, cols); 59 DenseMatrix refMat = DenseMatrix::Zero(rows, cols); 60 DenseVector vec1 = DenseVector::Random(rows); 61 Scalar s1 = ei_random<Scalar>(); 62 63 std::vector<Vector2i> zeroCoords; 64 std::vector<Vector2i> nonzeroCoords; 65 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); 66 67 if (zeroCoords.size()==0 || nonzeroCoords.size()==0) 68 return; 69 70 // test coeff and coeffRef 71 for (int i=0; i<(int)zeroCoords.size(); ++i) 72 { 73 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); 74 if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) 75 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); 76 } 77 VERIFY_IS_APPROX(m, refMat); 78 79 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); 80 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); 81 82 VERIFY_IS_APPROX(m, refMat); 83 /* 84 // test InnerIterators and Block expressions 85 for (int t=0; t<10; ++t) 86 { 87 int j = ei_random<int>(0,cols-1); 88 int i = ei_random<int>(0,rows-1); 89 int w = ei_random<int>(1,cols-j-1); 90 int h = ei_random<int>(1,rows-i-1); 91 92 // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); 93 for(int c=0; c<w; c++) 94 { 95 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); 96 for(int r=0; r<h; r++) 97 { 98 // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); 99 } 100 } 101 // for(int r=0; r<h; r++) 102 // { 103 // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); 104 // for(int c=0; c<w; c++) 105 // { 106 // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); 107 // } 108 // } 109 } 110 111 for(int c=0; c<cols; c++) 112 { 113 VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); 114 VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); 115 } 116 117 for(int r=0; r<rows; r++) 118 { 119 VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); 120 VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); 121 } 122 */ 123 124 // test SparseSetters 125 // coherent setter 126 // TODO extend the MatrixSetter 127 // { 128 // m.setZero(); 129 // VERIFY_IS_NOT_APPROX(m, refMat); 130 // SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m); 131 // for (int i=0; i<nonzeroCoords.size(); ++i) 132 // { 133 // w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); 134 // } 135 // } 136 // VERIFY_IS_APPROX(m, refMat); 137 138 // random setter 139 // { 140 // m.setZero(); 141 // VERIFY_IS_NOT_APPROX(m, refMat); 142 // SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); 143 // std::vector<Vector2i> remaining = nonzeroCoords; 144 // while(!remaining.empty()) 145 // { 146 // int i = ei_random<int>(0,remaining.size()-1); 147 // w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); 148 // remaining[i] = remaining.back(); 149 // remaining.pop_back(); 150 // } 151 // } 152 // VERIFY_IS_APPROX(m, refMat); 153 154 VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); 155 #ifdef EIGEN_UNORDERED_MAP_SUPPORT 156 VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); 157 #endif 158 #ifdef _DENSE_HASH_MAP_H_ 159 VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); 160 #endif 161 #ifdef _SPARSE_HASH_MAP_H_ 162 VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); 163 #endif 164 165 // test fillrand 166 { 167 DenseMatrix m1(rows,cols); 168 m1.setZero(); 169 SparseMatrixType m2(rows,cols); 170 m2.startFill(); 171 for (int j=0; j<cols; ++j) 172 { 173 for (int k=0; k<rows/2; ++k) 174 { 175 int i = ei_random<int>(0,rows-1); 176 if (m1.coeff(i,j)==Scalar(0)) 177 m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); 178 } 179 } 180 m2.endFill(); 181 VERIFY_IS_APPROX(m2,m1); 182 } 183 184 // test RandomSetter 185 /*{ 186 SparseMatrixType m1(rows,cols), m2(rows,cols); 187 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); 188 initSparse<Scalar>(density, refM1, m1); 189 { 190 Eigen::RandomSetter<SparseMatrixType > setter(m2); 191 for (int j=0; j<m1.outerSize(); ++j) 192 for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) 193 setter(i.index(), j) = i.value(); 194 } 195 VERIFY_IS_APPROX(m1, m2); 196 }*/ 197 // std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n"; 198 // VERIFY_IS_APPROX(m, refMat); 199 200 // test basic computations 201 { 202 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); 203 DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); 204 DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); 205 DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); 206 SparseMatrixType m1(rows, rows); 207 SparseMatrixType m2(rows, rows); 208 SparseMatrixType m3(rows, rows); 209 SparseMatrixType m4(rows, rows); 210 initSparse<Scalar>(density, refM1, m1); 211 initSparse<Scalar>(density, refM2, m2); 212 initSparse<Scalar>(density, refM3, m3); 213 initSparse<Scalar>(density, refM4, m4); 214 215 VERIFY_IS_APPROX(m1+m2, refM1+refM2); 216 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); 217 VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); 218 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); 219 220 VERIFY_IS_APPROX(m1*=s1, refM1*=s1); 221 VERIFY_IS_APPROX(m1/=s1, refM1/=s1); 222 223 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); 224 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); 225 226 VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); 227 228 refM4.setRandom(); 229 // sparse cwise* dense 230 VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); 231 // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); 232 } 233 234 // test innerVector() 235 { 236 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); 237 SparseMatrixType m2(rows, rows); 238 initSparse<Scalar>(density, refMat2, m2); 239 int j0 = ei_random(0,rows-1); 240 int j1 = ei_random(0,rows-1); 241 VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); 242 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); 243 //m2.innerVector(j0) = 2*m2.innerVector(j1); 244 //refMat2.col(j0) = 2*refMat2.col(j1); 245 //VERIFY_IS_APPROX(m2, refMat2); 246 } 247 248 // test innerVectors() 249 { 250 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); 251 SparseMatrixType m2(rows, rows); 252 initSparse<Scalar>(density, refMat2, m2); 253 int j0 = ei_random(0,rows-2); 254 int j1 = ei_random(0,rows-2); 255 int n0 = ei_random<int>(1,rows-std::max(j0,j1)); 256 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); 257 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), 258 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); 259 //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); 260 //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); 261 } 262 263 // test transpose 264 { 265 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); 266 SparseMatrixType m2(rows, rows); 267 initSparse<Scalar>(density, refMat2, m2); 268 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); 269 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); 270 } 271 272 // test prune 273 { 274 SparseMatrixType m2(rows, rows); 275 DenseMatrix refM2(rows, rows); 276 refM2.setZero(); 277 int countFalseNonZero = 0; 278 int countTrueNonZero = 0; 279 m2.startFill(); 280 for (int j=0; j<m2.outerSize(); ++j) 281 for (int i=0; i<m2.innerSize(); ++i) 282 { 283 float x = ei_random<float>(0,1); 284 if (x<0.1) 285 { 286 // do nothing 287 } 288 else if (x<0.5) 289 { 290 countFalseNonZero++; 291 m2.fill(i,j) = Scalar(0); 292 } 293 else 294 { 295 countTrueNonZero++; 296 m2.fill(i,j) = refM2(i,j) = Scalar(1); 297 } 298 } 299 m2.endFill(); 300 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); 301 VERIFY_IS_APPROX(m2, refM2); 302 m2.prune(1); 303 VERIFY(countTrueNonZero==m2.nonZeros()); 304 VERIFY_IS_APPROX(m2, refM2); 305 } 306 } 307 308 void test_eigen2_sparse_basic() 309 { 310 for(int i = 0; i < g_repeat; i++) { 311 CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); 312 CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); 313 CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); 314 315 CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); 316 } 317 } 318