Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #include "main.h"
     12 #include <Eigen/LU>
     13 
     14 template<typename MatrixType> void inverse(const MatrixType& m)
     15 {
     16   typedef typename MatrixType::Index Index;
     17   /* this test covers the following files:
     18      Inverse.h
     19   */
     20   Index rows = m.rows();
     21   Index cols = m.cols();
     22 
     23   typedef typename MatrixType::Scalar Scalar;
     24   typedef typename NumTraits<Scalar>::Real RealScalar;
     25   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
     26 
     27   MatrixType m1(rows, cols),
     28              m2(rows, cols),
     29              identity = MatrixType::Identity(rows, rows);
     30   createRandomPIMatrixOfRank(rows,rows,rows,m1);
     31   m2 = m1.inverse();
     32   VERIFY_IS_APPROX(m1, m2.inverse() );
     33 
     34   VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
     35 
     36   VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
     37   VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
     38 
     39   VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
     40 
     41   // since for the general case we implement separately row-major and col-major, test that
     42   VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
     43 
     44 #if !defined(EIGEN_TEST_PART_5) && !defined(EIGEN_TEST_PART_6)
     45   //computeInverseAndDetWithCheck tests
     46   //First: an invertible matrix
     47   bool invertible;
     48   RealScalar det;
     49 
     50   m2.setZero();
     51   m1.computeInverseAndDetWithCheck(m2, det, invertible);
     52   VERIFY(invertible);
     53   VERIFY_IS_APPROX(identity, m1*m2);
     54   VERIFY_IS_APPROX(det, m1.determinant());
     55 
     56   m2.setZero();
     57   m1.computeInverseWithCheck(m2, invertible);
     58   VERIFY(invertible);
     59   VERIFY_IS_APPROX(identity, m1*m2);
     60 
     61   //Second: a rank one matrix (not invertible, except for 1x1 matrices)
     62   VectorType v3 = VectorType::Random(rows);
     63   MatrixType m3 = v3*v3.transpose(), m4(rows,cols);
     64   m3.computeInverseAndDetWithCheck(m4, det, invertible);
     65   VERIFY( rows==1 ? invertible : !invertible );
     66   VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(det-m3.determinant()), RealScalar(1));
     67   m3.computeInverseWithCheck(m4, invertible);
     68   VERIFY( rows==1 ? invertible : !invertible );
     69 #endif
     70 
     71   // check in-place inversion
     72   if(MatrixType::RowsAtCompileTime>=2 && MatrixType::RowsAtCompileTime<=4)
     73   {
     74     // in-place is forbidden
     75     VERIFY_RAISES_ASSERT(m1 = m1.inverse());
     76   }
     77   else
     78   {
     79     m2 = m1.inverse();
     80     m1 = m1.inverse();
     81     VERIFY_IS_APPROX(m1,m2);
     82   }
     83 }
     84 
     85 void test_inverse()
     86 {
     87   int s;
     88   for(int i = 0; i < g_repeat; i++) {
     89     CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
     90     CALL_SUBTEST_2( inverse(Matrix2d()) );
     91     CALL_SUBTEST_3( inverse(Matrix3f()) );
     92     CALL_SUBTEST_4( inverse(Matrix4f()) );
     93     CALL_SUBTEST_4( inverse(Matrix<float,4,4,DontAlign>()) );
     94     s = internal::random<int>(50,320);
     95     CALL_SUBTEST_5( inverse(MatrixXf(s,s)) );
     96     s = internal::random<int>(25,100);
     97     CALL_SUBTEST_6( inverse(MatrixXcd(s,s)) );
     98     CALL_SUBTEST_7( inverse(Matrix4d()) );
     99     CALL_SUBTEST_7( inverse(Matrix<double,4,4,DontAlign>()) );
    100   }
    101   EIGEN_UNUSED_VARIABLE(s)
    102 }
    103