Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "main.h"
     11 #include <Eigen/QR>
     12 
     13 template<typename MatrixType> void qr(const MatrixType& m)
     14 {
     15   typedef typename MatrixType::Index Index;
     16 
     17   Index rows = m.rows();
     18   Index cols = m.cols();
     19 
     20   typedef typename MatrixType::Scalar Scalar;
     21   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
     22   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
     23 
     24   MatrixType a = MatrixType::Random(rows,cols);
     25   HouseholderQR<MatrixType> qrOfA(a);
     26 
     27   MatrixQType q = qrOfA.householderQ();
     28   VERIFY_IS_UNITARY(q);
     29 
     30   MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
     31   VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
     32 }
     33 
     34 template<typename MatrixType, int Cols2> void qr_fixedsize()
     35 {
     36   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
     37   typedef typename MatrixType::Scalar Scalar;
     38   Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
     39   HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
     40 
     41   Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
     42   // FIXME need better way to construct trapezoid
     43   for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
     44 
     45   VERIFY_IS_APPROX(m1, qr.householderQ() * r);
     46 
     47   Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
     48   Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
     49   m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
     50   m2 = qr.solve(m3);
     51   VERIFY_IS_APPROX(m3, m1*m2);
     52 }
     53 
     54 template<typename MatrixType> void qr_invertible()
     55 {
     56   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
     57   typedef typename MatrixType::Scalar Scalar;
     58 
     59   int size = internal::random<int>(10,50);
     60 
     61   MatrixType m1(size, size), m2(size, size), m3(size, size);
     62   m1 = MatrixType::Random(size,size);
     63 
     64   if (internal::is_same<RealScalar,float>::value)
     65   {
     66     // let's build a matrix more stable to inverse
     67     MatrixType a = MatrixType::Random(size,size*2);
     68     m1 += a * a.adjoint();
     69   }
     70 
     71   HouseholderQR<MatrixType> qr(m1);
     72   m3 = MatrixType::Random(size,size);
     73   m2 = qr.solve(m3);
     74   VERIFY_IS_APPROX(m3, m1*m2);
     75 
     76   // now construct a matrix with prescribed determinant
     77   m1.setZero();
     78   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
     79   RealScalar absdet = internal::abs(m1.diagonal().prod());
     80   m3 = qr.householderQ(); // get a unitary
     81   m1 = m3 * m1 * m3;
     82   qr.compute(m1);
     83   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
     84   VERIFY_IS_APPROX(internal::log(absdet), qr.logAbsDeterminant());
     85 }
     86 
     87 template<typename MatrixType> void qr_verify_assert()
     88 {
     89   MatrixType tmp;
     90 
     91   HouseholderQR<MatrixType> qr;
     92   VERIFY_RAISES_ASSERT(qr.matrixQR())
     93   VERIFY_RAISES_ASSERT(qr.solve(tmp))
     94   VERIFY_RAISES_ASSERT(qr.householderQ())
     95   VERIFY_RAISES_ASSERT(qr.absDeterminant())
     96   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
     97 }
     98 
     99 void test_qr()
    100 {
    101   for(int i = 0; i < g_repeat; i++) {
    102    CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
    103    CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
    104    CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
    105    CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
    106    CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
    107    CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
    108   }
    109 
    110   for(int i = 0; i < g_repeat; i++) {
    111     CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
    112     CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
    113     CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
    114     CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
    115   }
    116 
    117   CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
    118   CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
    119   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
    120   CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
    121   CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
    122   CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
    123 
    124   // Test problem size constructors
    125   CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
    126 }
    127