Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Kolja Brix <brix (at) igpm.rwth-aachen.de>
      5 // Copyright (C) 2011 Andreas Platen <andiplaten (at) gmx.de>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 
     12 #include "sparse.h"
     13 #include <Eigen/SparseExtra>
     14 #include <Eigen/KroneckerProduct>
     15 
     16 
     17 template<typename MatrixType>
     18 void check_dimension(const MatrixType& ab, const unsigned int rows,  const unsigned int cols)
     19 {
     20   VERIFY_IS_EQUAL(ab.rows(), rows);
     21   VERIFY_IS_EQUAL(ab.cols(), cols);
     22 }
     23 
     24 
     25 template<typename MatrixType>
     26 void check_kronecker_product(const MatrixType& ab)
     27 {
     28   VERIFY_IS_EQUAL(ab.rows(), 6);
     29   VERIFY_IS_EQUAL(ab.cols(), 6);
     30   VERIFY_IS_EQUAL(ab.nonZeros(),  36);
     31   VERIFY_IS_APPROX(ab.coeff(0,0), -0.4017367630386106);
     32   VERIFY_IS_APPROX(ab.coeff(0,1),  0.1056863433932735);
     33   VERIFY_IS_APPROX(ab.coeff(0,2), -0.7255206194554212);
     34   VERIFY_IS_APPROX(ab.coeff(0,3),  0.1908653336744706);
     35   VERIFY_IS_APPROX(ab.coeff(0,4),  0.350864567234111);
     36   VERIFY_IS_APPROX(ab.coeff(0,5), -0.0923032108308013);
     37   VERIFY_IS_APPROX(ab.coeff(1,0),  0.415417514804677);
     38   VERIFY_IS_APPROX(ab.coeff(1,1), -0.2369227701722048);
     39   VERIFY_IS_APPROX(ab.coeff(1,2),  0.7502275131458511);
     40   VERIFY_IS_APPROX(ab.coeff(1,3), -0.4278731019742696);
     41   VERIFY_IS_APPROX(ab.coeff(1,4), -0.3628129162264507);
     42   VERIFY_IS_APPROX(ab.coeff(1,5),  0.2069210808481275);
     43   VERIFY_IS_APPROX(ab.coeff(2,0),  0.05465890160863986);
     44   VERIFY_IS_APPROX(ab.coeff(2,1), -0.2634092511419858);
     45   VERIFY_IS_APPROX(ab.coeff(2,2),  0.09871180285793758);
     46   VERIFY_IS_APPROX(ab.coeff(2,3), -0.4757066334017702);
     47   VERIFY_IS_APPROX(ab.coeff(2,4), -0.04773740823058334);
     48   VERIFY_IS_APPROX(ab.coeff(2,5),  0.2300535609645254);
     49   VERIFY_IS_APPROX(ab.coeff(3,0), -0.8172945853260133);
     50   VERIFY_IS_APPROX(ab.coeff(3,1),  0.2150086428359221);
     51   VERIFY_IS_APPROX(ab.coeff(3,2),  0.5825113847292743);
     52   VERIFY_IS_APPROX(ab.coeff(3,3), -0.1532433770097174);
     53   VERIFY_IS_APPROX(ab.coeff(3,4), -0.329383387282399);
     54   VERIFY_IS_APPROX(ab.coeff(3,5),  0.08665207912033064);
     55   VERIFY_IS_APPROX(ab.coeff(4,0),  0.8451267514863225);
     56   VERIFY_IS_APPROX(ab.coeff(4,1), -0.481996458918977);
     57   VERIFY_IS_APPROX(ab.coeff(4,2), -0.6023482390791535);
     58   VERIFY_IS_APPROX(ab.coeff(4,3),  0.3435339347164565);
     59   VERIFY_IS_APPROX(ab.coeff(4,4),  0.3406002157428891);
     60   VERIFY_IS_APPROX(ab.coeff(4,5), -0.1942526344200915);
     61   VERIFY_IS_APPROX(ab.coeff(5,0),  0.1111982482925399);
     62   VERIFY_IS_APPROX(ab.coeff(5,1), -0.5358806424754169);
     63   VERIFY_IS_APPROX(ab.coeff(5,2), -0.07925446559335647);
     64   VERIFY_IS_APPROX(ab.coeff(5,3),  0.3819388757769038);
     65   VERIFY_IS_APPROX(ab.coeff(5,4),  0.04481475387219876);
     66   VERIFY_IS_APPROX(ab.coeff(5,5), -0.2159688616158057);
     67 }
     68 
     69 
     70 template<typename MatrixType>
     71 void check_sparse_kronecker_product(const MatrixType& ab)
     72 {
     73   VERIFY_IS_EQUAL(ab.rows(), 12);
     74   VERIFY_IS_EQUAL(ab.cols(), 10);
     75   VERIFY_IS_EQUAL(ab.nonZeros(), 3*2);
     76   VERIFY_IS_APPROX(ab.coeff(3,0), -0.04);
     77   VERIFY_IS_APPROX(ab.coeff(5,1),  0.05);
     78   VERIFY_IS_APPROX(ab.coeff(0,6), -0.08);
     79   VERIFY_IS_APPROX(ab.coeff(2,7),  0.10);
     80   VERIFY_IS_APPROX(ab.coeff(6,8),  0.12);
     81   VERIFY_IS_APPROX(ab.coeff(8,9), -0.15);
     82 }
     83 
     84 
     85 void test_kronecker_product()
     86 {
     87   // DM = dense matrix; SM = sparse matrix
     88   Matrix<double, 2, 3> DM_a;
     89   MatrixXd             DM_b(3,2);
     90   SparseMatrix<double> SM_a(2,3);
     91   SparseMatrix<double> SM_b(3,2);
     92   SM_a.insert(0,0) = DM_a(0,0) = -0.4461540300782201;
     93   SM_a.insert(0,1) = DM_a(0,1) = -0.8057364375283049;
     94   SM_a.insert(0,2) = DM_a(0,2) =  0.3896572459516341;
     95   SM_a.insert(1,0) = DM_a(1,0) = -0.9076572187376921;
     96   SM_a.insert(1,1) = DM_a(1,1) =  0.6469156566545853;
     97   SM_a.insert(1,2) = DM_a(1,2) = -0.3658010398782789;
     98   SM_b.insert(0,0) = DM_b(0,0) =  0.9004440976767099;
     99   SM_b.insert(0,1) = DM_b(0,1) = -0.2368830858139832;
    100   SM_b.insert(1,0) = DM_b(1,0) = -0.9311078389941825;
    101   SM_b.insert(1,1) = DM_b(1,1) =  0.5310335762980047;
    102   SM_b.insert(2,0) = DM_b(2,0) = -0.1225112806872035;
    103   SM_b.insert(2,1) = DM_b(2,1) =  0.5903998022741264;
    104   SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b);
    105 
    106   // test kroneckerProduct(DM_block,DM,DM_fixedSize)
    107   Matrix<double, 6, 6> DM_fix_ab;
    108   DM_fix_ab(0,0)=37.0;
    109   kroneckerProduct(DM_a.block(0,0,2,3),DM_b,DM_fix_ab);
    110   CALL_SUBTEST(check_kronecker_product(DM_fix_ab));
    111 
    112   // test kroneckerProduct(DM,DM,DM_block)
    113   MatrixXd DM_block_ab(10,15);
    114   DM_block_ab(0,0)=37.0;
    115   kroneckerProduct(DM_a,DM_b,DM_block_ab.block(2,5,6,6));
    116   CALL_SUBTEST(check_kronecker_product(DM_block_ab.block(2,5,6,6)));
    117 
    118   // test kroneckerProduct(DM,DM,DM)
    119   MatrixXd DM_ab(1,5);
    120   DM_ab(0,0)=37.0;
    121   kroneckerProduct(DM_a,DM_b,DM_ab);
    122   CALL_SUBTEST(check_kronecker_product(DM_ab));
    123 
    124   // test kroneckerProduct(SM,DM,SM)
    125   SparseMatrix<double> SM_ab(1,20);
    126   SM_ab.insert(0,0)=37.0;
    127   kroneckerProduct(SM_a,DM_b,SM_ab);
    128   CALL_SUBTEST(check_kronecker_product(SM_ab));
    129   SparseMatrix<double,RowMajor> SM_ab2(10,3);
    130   SM_ab2.insert(0,0)=37.0;
    131   kroneckerProduct(SM_a,DM_b,SM_ab2);
    132   CALL_SUBTEST(check_kronecker_product(SM_ab2));
    133 
    134   // test kroneckerProduct(DM,SM,SM)
    135   SM_ab.insert(0,0)=37.0;
    136   kroneckerProduct(DM_a,SM_b,SM_ab);
    137   CALL_SUBTEST(check_kronecker_product(SM_ab));
    138   SM_ab2.insert(0,0)=37.0;
    139   kroneckerProduct(DM_a,SM_b,SM_ab2);
    140   CALL_SUBTEST(check_kronecker_product(SM_ab2));
    141 
    142   // test kroneckerProduct(SM,SM,SM)
    143   SM_ab.resize(2,33);
    144   SM_ab.insert(0,0)=37.0;
    145   kroneckerProduct(SM_a,SM_b,SM_ab);
    146   CALL_SUBTEST(check_kronecker_product(SM_ab));
    147   SM_ab2.resize(5,11);
    148   SM_ab2.insert(0,0)=37.0;
    149   kroneckerProduct(SM_a,SM_b,SM_ab2);
    150   CALL_SUBTEST(check_kronecker_product(SM_ab2));
    151 
    152   // test kroneckerProduct(SM,SM,SM) with sparse pattern
    153   SM_a.resize(4,5);
    154   SM_b.resize(3,2);
    155   SM_a.resizeNonZeros(0);
    156   SM_b.resizeNonZeros(0);
    157   SM_a.insert(1,0) = -0.1;
    158   SM_a.insert(0,3) = -0.2;
    159   SM_a.insert(2,4) =  0.3;
    160   SM_a.finalize();
    161   SM_b.insert(0,0) =  0.4;
    162   SM_b.insert(2,1) = -0.5;
    163   SM_b.finalize();
    164   SM_ab.resize(1,1);
    165   SM_ab.insert(0,0)=37.0;
    166   kroneckerProduct(SM_a,SM_b,SM_ab);
    167   CALL_SUBTEST(check_sparse_kronecker_product(SM_ab));
    168 
    169   // test dimension of result of kroneckerProduct(DM,DM,DM)
    170   MatrixXd DM_a2(2,1);
    171   MatrixXd DM_b2(5,4);
    172   MatrixXd DM_ab2;
    173   kroneckerProduct(DM_a2,DM_b2,DM_ab2);
    174   CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4));
    175   DM_a2.resize(10,9);
    176   DM_b2.resize(4,8);
    177   kroneckerProduct(DM_a2,DM_b2,DM_ab2);
    178   CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8));
    179 }
    180