Home | History | Annotate | Download | only in fdlibm
      1 
      2 /* @(#)e_lgamma_r.c 1.3 95/01/18 */
      3 /*
      4  * ====================================================
      5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
      6  *
      7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
      8  * Permission to use, copy, modify, and distribute this
      9  * software is freely granted, provided that this notice
     10  * is preserved.
     11  * ====================================================
     12  *
     13  */
     14 
     15 /* __ieee754_lgamma_r(x, signgamp)
     16  * Reentrant version of the logarithm of the Gamma function
     17  * with user provide pointer for the sign of Gamma(x).
     18  *
     19  * Method:
     20  *   1. Argument Reduction for 0 < x <= 8
     21  * 	Since ieee_gamma(1+s)=s*ieee_gamma(s), for x in [0,8], we may
     22  * 	reduce x to a number in [1.5,2.5] by
     23  * 		lgamma(1+s) = ieee_log(s) + ieee_lgamma(s)
     24  *	for example,
     25  *		lgamma(7.3) = ieee_log(6.3) + ieee_lgamma(6.3)
     26  *			    = ieee_log(6.3*5.3) + ieee_lgamma(5.3)
     27  *			    = ieee_log(6.3*5.3*4.3*3.3*2.3) + ieee_lgamma(2.3)
     28  *   2. Polynomial approximation of lgamma around its
     29  *	minimun ymin=1.461632144968362245 to maintain monotonicity.
     30  *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
     31  *		Let z = x-ymin;
     32  *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
     33  *	where
     34  *		poly(z) is a 14 degree polynomial.
     35  *   2. Rational approximation in the primary interval [2,3]
     36  *	We use the following approximation:
     37  *		s = x-2.0;
     38  *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
     39  *	with accuracy
     40  *		|P/Q - (ieee_lgamma(x)-0.5s)| < 2**-61.71
     41  *	Our algorithms are based on the following observation
     42  *
     43  *                             zeta(2)-1    2    zeta(3)-1    3
     44  * ieee_lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
     45  *                                 2                 3
     46  *
     47  *	where Euler = 0.5771... is the Euler constant, which is very
     48  *	close to 0.5.
     49  *
     50  *   3. For x>=8, we have
     51  *	lgamma(x)~(x-0.5)log(x)-x+0.5*ieee_log(2pi)+1/(12x)-1/(360x**3)+....
     52  *	(better formula:
     53  *	   ieee_lgamma(x)~(x-0.5)*(ieee_log(x)-1)-.5*(ieee_log(2pi)-1) + ...)
     54  *	Let z = 1/x, then we approximation
     55  *		f(z) = ieee_lgamma(x) - (x-0.5)(ieee_log(x)-1)
     56  *	by
     57  *	  			    3       5             11
     58  *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
     59  *	where
     60  *		|w - f(z)| < 2**-58.74
     61  *
     62  *   4. For negative x, since (G is gamma function)
     63  *		-x*G(-x)*G(x) = pi/ieee_sin(pi*x),
     64  * 	we have
     65  * 		G(x) = pi/(ieee_sin(pi*x)*(-x)*G(-x))
     66  *	since G(-x) is positive, sign(G(x)) = sign(ieee_sin(pi*x)) for x<0
     67  *	Hence, for x<0, signgam = sign(ieee_sin(pi*x)) and
     68  *		lgamma(x) = ieee_log(|Gamma(x)|)
     69  *			  = ieee_log(pi/(|x*ieee_sin(pi*x)|)) - ieee_lgamma(-x);
     70  *	Note: one should avoid compute pi*(-x) directly in the
     71  *	      computation of ieee_sin(pi*(-x)).
     72  *
     73  *   5. Special Cases
     74  *		lgamma(2+s) ~ s*(1-Euler) for tiny s
     75  *		lgamma(1)=ieee_lgamma(2)=0
     76  *		lgamma(x) ~ -ieee_log(x) for tiny x
     77  *		lgamma(0) = ieee_lgamma(inf) = inf
     78  *	 	lgamma(-integer) = +-inf
     79  *
     80  */
     81 
     82 #include "fdlibm.h"
     83 
     84 #ifdef __STDC__
     85 static const double
     86 #else
     87 static double
     88 #endif
     89 two52=  4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
     90 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
     91 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
     92 pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
     93 a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
     94 a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
     95 a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
     96 a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
     97 a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
     98 a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
     99 a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
    100 a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
    101 a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
    102 a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
    103 a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
    104 a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
    105 tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
    106 tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
    107 /* tt = -(tail of tf) */
    108 tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
    109 t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
    110 t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
    111 t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
    112 t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
    113 t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
    114 t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
    115 t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
    116 t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
    117 t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
    118 t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
    119 t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
    120 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
    121 t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
    122 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
    123 t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
    124 u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
    125 u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
    126 u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
    127 u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
    128 u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
    129 u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
    130 v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
    131 v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
    132 v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
    133 v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
    134 v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
    135 s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
    136 s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
    137 s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
    138 s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
    139 s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
    140 s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
    141 s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
    142 r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
    143 r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
    144 r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
    145 r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
    146 r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
    147 r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
    148 w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
    149 w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
    150 w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
    151 w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
    152 w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
    153 w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
    154 w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
    155 
    156 static double zero=  0.00000000000000000000e+00;
    157 
    158 #ifdef __STDC__
    159 	static double sin_pi(double x)
    160 #else
    161 	static double sin_pi(x)
    162 	double x;
    163 #endif
    164 {
    165 	double y,z;
    166 	int n,ix;
    167 
    168 	ix = 0x7fffffff&__HI(x);
    169 
    170 	if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
    171 	y = -x;		/* x is assume negative */
    172 
    173     /*
    174      * argument reduction, make sure inexact flag not raised if input
    175      * is an integer
    176      */
    177 	z = ieee_floor(y);
    178 	if(z!=y) {				/* inexact anyway */
    179 	    y  *= 0.5;
    180 	    y   = 2.0*(y - ieee_floor(y));		/* y = |x| mod 2.0 */
    181 	    n   = (int) (y*4.0);
    182 	} else {
    183             if(ix>=0x43400000) {
    184                 y = zero; n = 0;                 /* y must be even */
    185             } else {
    186                 if(ix<0x43300000) z = y+two52;	/* exact */
    187                 n   = __LO(z)&1;        /* lower word of z */
    188                 y  = n;
    189                 n<<= 2;
    190             }
    191         }
    192 	switch (n) {
    193 	    case 0:   y =  __kernel_sin(pi*y,zero,0); break;
    194 	    case 1:
    195 	    case 2:   y =  __kernel_cos(pi*(0.5-y),zero); break;
    196 	    case 3:
    197 	    case 4:   y =  __kernel_sin(pi*(one-y),zero,0); break;
    198 	    case 5:
    199 	    case 6:   y = -__kernel_cos(pi*(y-1.5),zero); break;
    200 	    default:  y =  __kernel_sin(pi*(y-2.0),zero,0); break;
    201 	    }
    202 	return -y;
    203 }
    204 
    205 
    206 #ifdef __STDC__
    207 	double __ieee754_lgamma_r(double x, int *signgamp)
    208 #else
    209 	double __ieee754_lgamma_r(x,signgamp)
    210 	double x; int *signgamp;
    211 #endif
    212 {
    213 	double t,y,z,nadj,p,p1,p2,p3,q,r,w;
    214 	int i,hx,lx,ix;
    215 
    216 	hx = __HI(x);
    217 	lx = __LO(x);
    218 
    219     /* purge off +-inf, NaN, +-0, and negative arguments */
    220 	*signgamp = 1;
    221 	ix = hx&0x7fffffff;
    222 	if(ix>=0x7ff00000) return x*x;
    223 	if((ix|lx)==0) return one/zero;
    224 	if(ix<0x3b900000) {	/* |x|<2**-70, return -ieee_log(|x|) */
    225 	    if(hx<0) {
    226 	        *signgamp = -1;
    227 	        return -__ieee754_log(-x);
    228 	    } else return -__ieee754_log(x);
    229 	}
    230 	if(hx<0) {
    231 	    if(ix>=0x43300000) 	/* |x|>=2**52, must be -integer */
    232 		return one/zero;
    233 	    t = sin_pi(x);
    234 	    if(t==zero) return one/zero; /* -integer */
    235 	    nadj = __ieee754_log(pi/ieee_fabs(t*x));
    236 	    if(t<zero) *signgamp = -1;
    237 	    x = -x;
    238 	}
    239 
    240     /* purge off 1 and 2 */
    241 	if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
    242     /* for x < 2.0 */
    243 	else if(ix<0x40000000) {
    244 	    if(ix<=0x3feccccc) { 	/* ieee_lgamma(x) = ieee_lgamma(x+1)-ieee_log(x) */
    245 		r = -__ieee754_log(x);
    246 		if(ix>=0x3FE76944) {y = one-x; i= 0;}
    247 		else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
    248 	  	else {y = x; i=2;}
    249 	    } else {
    250 	  	r = zero;
    251 	        if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
    252 	        else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
    253 		else {y=x-one;i=2;}
    254 	    }
    255 	    switch(i) {
    256 	      case 0:
    257 		z = y*y;
    258 		p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
    259 		p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
    260 		p  = y*p1+p2;
    261 		r  += (p-0.5*y); break;
    262 	      case 1:
    263 		z = y*y;
    264 		w = z*y;
    265 		p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));	/* parallel comp */
    266 		p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
    267 		p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
    268 		p  = z*p1-(tt-w*(p2+y*p3));
    269 		r += (tf + p); break;
    270 	      case 2:
    271 		p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
    272 		p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
    273 		r += (-0.5*y + p1/p2);
    274 	    }
    275 	}
    276 	else if(ix<0x40200000) { 			/* x < 8.0 */
    277 	    i = (int)x;
    278 	    t = zero;
    279 	    y = x-(double)i;
    280 	    p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
    281 	    q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
    282 	    r = half*y+p/q;
    283 	    z = one;	/* ieee_lgamma(1+s) = ieee_log(s) + ieee_lgamma(s) */
    284 	    switch(i) {
    285 	    case 7: z *= (y+6.0);	/* FALLTHRU */
    286 	    case 6: z *= (y+5.0);	/* FALLTHRU */
    287 	    case 5: z *= (y+4.0);	/* FALLTHRU */
    288 	    case 4: z *= (y+3.0);	/* FALLTHRU */
    289 	    case 3: z *= (y+2.0);	/* FALLTHRU */
    290 		    r += __ieee754_log(z); break;
    291 	    }
    292     /* 8.0 <= x < 2**58 */
    293 	} else if (ix < 0x43900000) {
    294 	    t = __ieee754_log(x);
    295 	    z = one/x;
    296 	    y = z*z;
    297 	    w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
    298 	    r = (x-half)*(t-one)+w;
    299 	} else
    300     /* 2**58 <= x <= inf */
    301 	    r =  x*(__ieee754_log(x)-one);
    302 	if(hx<0) r = nadj - r;
    303 	return r;
    304 }
    305