Home | History | Annotate | Download | only in docs
      1 ==============================
      2 LLVM Language Reference Manual
      3 ==============================
      4 
      5 .. contents::
      6    :local:
      7    :depth: 3
      8 
      9 Abstract
     10 ========
     11 
     12 This document is a reference manual for the LLVM assembly language. LLVM
     13 is a Static Single Assignment (SSA) based representation that provides
     14 type safety, low-level operations, flexibility, and the capability of
     15 representing 'all' high-level languages cleanly. It is the common code
     16 representation used throughout all phases of the LLVM compilation
     17 strategy.
     18 
     19 Introduction
     20 ============
     21 
     22 The LLVM code representation is designed to be used in three different
     23 forms: as an in-memory compiler IR, as an on-disk bitcode representation
     24 (suitable for fast loading by a Just-In-Time compiler), and as a human
     25 readable assembly language representation. This allows LLVM to provide a
     26 powerful intermediate representation for efficient compiler
     27 transformations and analysis, while providing a natural means to debug
     28 and visualize the transformations. The three different forms of LLVM are
     29 all equivalent. This document describes the human readable
     30 representation and notation.
     31 
     32 The LLVM representation aims to be light-weight and low-level while
     33 being expressive, typed, and extensible at the same time. It aims to be
     34 a "universal IR" of sorts, by being at a low enough level that
     35 high-level ideas may be cleanly mapped to it (similar to how
     36 microprocessors are "universal IR's", allowing many source languages to
     37 be mapped to them). By providing type information, LLVM can be used as
     38 the target of optimizations: for example, through pointer analysis, it
     39 can be proven that a C automatic variable is never accessed outside of
     40 the current function, allowing it to be promoted to a simple SSA value
     41 instead of a memory location.
     42 
     43 .. _wellformed:
     44 
     45 Well-Formedness
     46 ---------------
     47 
     48 It is important to note that this document describes 'well formed' LLVM
     49 assembly language. There is a difference between what the parser accepts
     50 and what is considered 'well formed'. For example, the following
     51 instruction is syntactically okay, but not well formed:
     52 
     53 .. code-block:: llvm
     54 
     55     %x = add i32 1, %x
     56 
     57 because the definition of ``%x`` does not dominate all of its uses. The
     58 LLVM infrastructure provides a verification pass that may be used to
     59 verify that an LLVM module is well formed. This pass is automatically
     60 run by the parser after parsing input assembly and by the optimizer
     61 before it outputs bitcode. The violations pointed out by the verifier
     62 pass indicate bugs in transformation passes or input to the parser.
     63 
     64 .. _identifiers:
     65 
     66 Identifiers
     67 ===========
     68 
     69 LLVM identifiers come in two basic types: global and local. Global
     70 identifiers (functions, global variables) begin with the ``'@'``
     71 character. Local identifiers (register names, types) begin with the
     72 ``'%'`` character. Additionally, there are three different formats for
     73 identifiers, for different purposes:
     74 
     75 #. Named values are represented as a string of characters with their
     76    prefix. For example, ``%foo``, ``@DivisionByZero``,
     77    ``%a.really.long.identifier``. The actual regular expression used is
     78    '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
     79    characters in their names can be surrounded with quotes. Special
     80    characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
     81    code for the character in hexadecimal. In this way, any character can
     82    be used in a name value, even quotes themselves.
     83 #. Unnamed values are represented as an unsigned numeric value with
     84    their prefix. For example, ``%12``, ``@2``, ``%44``.
     85 #. Constants, which are described in the section  Constants_ below.
     86 
     87 LLVM requires that values start with a prefix for two reasons: Compilers
     88 don't need to worry about name clashes with reserved words, and the set
     89 of reserved words may be expanded in the future without penalty.
     90 Additionally, unnamed identifiers allow a compiler to quickly come up
     91 with a temporary variable without having to avoid symbol table
     92 conflicts.
     93 
     94 Reserved words in LLVM are very similar to reserved words in other
     95 languages. There are keywords for different opcodes ('``add``',
     96 '``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
     97 '``i32``', etc...), and others. These reserved words cannot conflict
     98 with variable names, because none of them start with a prefix character
     99 (``'%'`` or ``'@'``).
    100 
    101 Here is an example of LLVM code to multiply the integer variable
    102 '``%X``' by 8:
    103 
    104 The easy way:
    105 
    106 .. code-block:: llvm
    107 
    108     %result = mul i32 %X, 8
    109 
    110 After strength reduction:
    111 
    112 .. code-block:: llvm
    113 
    114     %result = shl i32 %X, 3
    115 
    116 And the hard way:
    117 
    118 .. code-block:: llvm
    119 
    120     %0 = add i32 %X, %X           ; yields {i32}:%0
    121     %1 = add i32 %0, %0           ; yields {i32}:%1
    122     %result = add i32 %1, %1
    123 
    124 This last way of multiplying ``%X`` by 8 illustrates several important
    125 lexical features of LLVM:
    126 
    127 #. Comments are delimited with a '``;``' and go until the end of line.
    128 #. Unnamed temporaries are created when the result of a computation is
    129    not assigned to a named value.
    130 #. Unnamed temporaries are numbered sequentially (using a per-function
    131    incrementing counter, starting with 0).
    132 
    133 It also shows a convention that we follow in this document. When
    134 demonstrating instructions, we will follow an instruction with a comment
    135 that defines the type and name of value produced.
    136 
    137 High Level Structure
    138 ====================
    139 
    140 Module Structure
    141 ----------------
    142 
    143 LLVM programs are composed of ``Module``'s, each of which is a
    144 translation unit of the input programs. Each module consists of
    145 functions, global variables, and symbol table entries. Modules may be
    146 combined together with the LLVM linker, which merges function (and
    147 global variable) definitions, resolves forward declarations, and merges
    148 symbol table entries. Here is an example of the "hello world" module:
    149 
    150 .. code-block:: llvm
    151 
    152     ; Declare the string constant as a global constant.
    153     @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
    154 
    155     ; External declaration of the puts function
    156     declare i32 @puts(i8* nocapture) nounwind
    157 
    158     ; Definition of main function
    159     define i32 @main() {   ; i32()*
    160       ; Convert [13 x i8]* to i8  *...
    161       %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
    162 
    163       ; Call puts function to write out the string to stdout.
    164       call i32 @puts(i8* %cast210)
    165       ret i32 0
    166     }
    167 
    168     ; Named metadata
    169     !1 = metadata !{i32 42}
    170     !foo = !{!1, null}
    171 
    172 This example is made up of a :ref:`global variable <globalvars>` named
    173 "``.str``", an external declaration of the "``puts``" function, a
    174 :ref:`function definition <functionstructure>` for "``main``" and
    175 :ref:`named metadata <namedmetadatastructure>` "``foo``".
    176 
    177 In general, a module is made up of a list of global values (where both
    178 functions and global variables are global values). Global values are
    179 represented by a pointer to a memory location (in this case, a pointer
    180 to an array of char, and a pointer to a function), and have one of the
    181 following :ref:`linkage types <linkage>`.
    182 
    183 .. _linkage:
    184 
    185 Linkage Types
    186 -------------
    187 
    188 All Global Variables and Functions have one of the following types of
    189 linkage:
    190 
    191 ``private``
    192     Global values with "``private``" linkage are only directly
    193     accessible by objects in the current module. In particular, linking
    194     code into a module with an private global value may cause the
    195     private to be renamed as necessary to avoid collisions. Because the
    196     symbol is private to the module, all references can be updated. This
    197     doesn't show up in any symbol table in the object file.
    198 ``linker_private``
    199     Similar to ``private``, but the symbol is passed through the
    200     assembler and evaluated by the linker. Unlike normal strong symbols,
    201     they are removed by the linker from the final linked image
    202     (executable or dynamic library).
    203 ``linker_private_weak``
    204     Similar to "``linker_private``", but the symbol is weak. Note that
    205     ``linker_private_weak`` symbols are subject to coalescing by the
    206     linker. The symbols are removed by the linker from the final linked
    207     image (executable or dynamic library).
    208 ``internal``
    209     Similar to private, but the value shows as a local symbol
    210     (``STB_LOCAL`` in the case of ELF) in the object file. This
    211     corresponds to the notion of the '``static``' keyword in C.
    212 ``available_externally``
    213     Globals with "``available_externally``" linkage are never emitted
    214     into the object file corresponding to the LLVM module. They exist to
    215     allow inlining and other optimizations to take place given knowledge
    216     of the definition of the global, which is known to be somewhere
    217     outside the module. Globals with ``available_externally`` linkage
    218     are allowed to be discarded at will, and are otherwise the same as
    219     ``linkonce_odr``. This linkage type is only allowed on definitions,
    220     not declarations.
    221 ``linkonce``
    222     Globals with "``linkonce``" linkage are merged with other globals of
    223     the same name when linkage occurs. This can be used to implement
    224     some forms of inline functions, templates, or other code which must
    225     be generated in each translation unit that uses it, but where the
    226     body may be overridden with a more definitive definition later.
    227     Unreferenced ``linkonce`` globals are allowed to be discarded. Note
    228     that ``linkonce`` linkage does not actually allow the optimizer to
    229     inline the body of this function into callers because it doesn't
    230     know if this definition of the function is the definitive definition
    231     within the program or whether it will be overridden by a stronger
    232     definition. To enable inlining and other optimizations, use
    233     "``linkonce_odr``" linkage.
    234 ``weak``
    235     "``weak``" linkage has the same merging semantics as ``linkonce``
    236     linkage, except that unreferenced globals with ``weak`` linkage may
    237     not be discarded. This is used for globals that are declared "weak"
    238     in C source code.
    239 ``common``
    240     "``common``" linkage is most similar to "``weak``" linkage, but they
    241     are used for tentative definitions in C, such as "``int X;``" at
    242     global scope. Symbols with "``common``" linkage are merged in the
    243     same way as ``weak symbols``, and they may not be deleted if
    244     unreferenced. ``common`` symbols may not have an explicit section,
    245     must have a zero initializer, and may not be marked
    246     ':ref:`constant <globalvars>`'. Functions and aliases may not have
    247     common linkage.
    248 
    249 .. _linkage_appending:
    250 
    251 ``appending``
    252     "``appending``" linkage may only be applied to global variables of
    253     pointer to array type. When two global variables with appending
    254     linkage are linked together, the two global arrays are appended
    255     together. This is the LLVM, typesafe, equivalent of having the
    256     system linker append together "sections" with identical names when
    257     .o files are linked.
    258 ``extern_weak``
    259     The semantics of this linkage follow the ELF object file model: the
    260     symbol is weak until linked, if not linked, the symbol becomes null
    261     instead of being an undefined reference.
    262 ``linkonce_odr``, ``weak_odr``
    263     Some languages allow differing globals to be merged, such as two
    264     functions with different semantics. Other languages, such as
    265     ``C++``, ensure that only equivalent globals are ever merged (the
    266     "one definition rule" --- "ODR").  Such languages can use the
    267     ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
    268     global will only be merged with equivalent globals. These linkage
    269     types are otherwise the same as their non-``odr`` versions.
    270 ``linkonce_odr_auto_hide``
    271     Similar to "``linkonce_odr``", but nothing in the translation unit
    272     takes the address of this definition. For instance, functions that
    273     had an inline definition, but the compiler decided not to inline it.
    274     ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
    275     symbols are removed by the linker from the final linked image
    276     (executable or dynamic library).
    277 ``external``
    278     If none of the above identifiers are used, the global is externally
    279     visible, meaning that it participates in linkage and can be used to
    280     resolve external symbol references.
    281 
    282 The next two types of linkage are targeted for Microsoft Windows
    283 platform only. They are designed to support importing (exporting)
    284 symbols from (to) DLLs (Dynamic Link Libraries).
    285 
    286 ``dllimport``
    287     "``dllimport``" linkage causes the compiler to reference a function
    288     or variable via a global pointer to a pointer that is set up by the
    289     DLL exporting the symbol. On Microsoft Windows targets, the pointer
    290     name is formed by combining ``__imp_`` and the function or variable
    291     name.
    292 ``dllexport``
    293     "``dllexport``" linkage causes the compiler to provide a global
    294     pointer to a pointer in a DLL, so that it can be referenced with the
    295     ``dllimport`` attribute. On Microsoft Windows targets, the pointer
    296     name is formed by combining ``__imp_`` and the function or variable
    297     name.
    298 
    299 For example, since the "``.LC0``" variable is defined to be internal, if
    300 another module defined a "``.LC0``" variable and was linked with this
    301 one, one of the two would be renamed, preventing a collision. Since
    302 "``main``" and "``puts``" are external (i.e., lacking any linkage
    303 declarations), they are accessible outside of the current module.
    304 
    305 It is illegal for a function *declaration* to have any linkage type
    306 other than ``external``, ``dllimport`` or ``extern_weak``.
    307 
    308 Aliases can have only ``external``, ``internal``, ``weak`` or
    309 ``weak_odr`` linkages.
    310 
    311 .. _callingconv:
    312 
    313 Calling Conventions
    314 -------------------
    315 
    316 LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
    317 :ref:`invokes <i_invoke>` can all have an optional calling convention
    318 specified for the call. The calling convention of any pair of dynamic
    319 caller/callee must match, or the behavior of the program is undefined.
    320 The following calling conventions are supported by LLVM, and more may be
    321 added in the future:
    322 
    323 "``ccc``" - The C calling convention
    324     This calling convention (the default if no other calling convention
    325     is specified) matches the target C calling conventions. This calling
    326     convention supports varargs function calls and tolerates some
    327     mismatch in the declared prototype and implemented declaration of
    328     the function (as does normal C).
    329 "``fastcc``" - The fast calling convention
    330     This calling convention attempts to make calls as fast as possible
    331     (e.g. by passing things in registers). This calling convention
    332     allows the target to use whatever tricks it wants to produce fast
    333     code for the target, without having to conform to an externally
    334     specified ABI (Application Binary Interface). `Tail calls can only
    335     be optimized when this, the GHC or the HiPE convention is
    336     used. <CodeGenerator.html#id80>`_ This calling convention does not
    337     support varargs and requires the prototype of all callees to exactly
    338     match the prototype of the function definition.
    339 "``coldcc``" - The cold calling convention
    340     This calling convention attempts to make code in the caller as
    341     efficient as possible under the assumption that the call is not
    342     commonly executed. As such, these calls often preserve all registers
    343     so that the call does not break any live ranges in the caller side.
    344     This calling convention does not support varargs and requires the
    345     prototype of all callees to exactly match the prototype of the
    346     function definition.
    347 "``cc 10``" - GHC convention
    348     This calling convention has been implemented specifically for use by
    349     the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
    350     It passes everything in registers, going to extremes to achieve this
    351     by disabling callee save registers. This calling convention should
    352     not be used lightly but only for specific situations such as an
    353     alternative to the *register pinning* performance technique often
    354     used when implementing functional programming languages. At the
    355     moment only X86 supports this convention and it has the following
    356     limitations:
    357 
    358     -  On *X86-32* only supports up to 4 bit type parameters. No
    359        floating point types are supported.
    360     -  On *X86-64* only supports up to 10 bit type parameters and 6
    361        floating point parameters.
    362 
    363     This calling convention supports `tail call
    364     optimization <CodeGenerator.html#id80>`_ but requires both the
    365     caller and callee are using it.
    366 "``cc 11``" - The HiPE calling convention
    367     This calling convention has been implemented specifically for use by
    368     the `High-Performance Erlang
    369     (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
    370     native code compiler of the `Ericsson's Open Source Erlang/OTP
    371     system <http://www.erlang.org/download.shtml>`_. It uses more
    372     registers for argument passing than the ordinary C calling
    373     convention and defines no callee-saved registers. The calling
    374     convention properly supports `tail call
    375     optimization <CodeGenerator.html#id80>`_ but requires that both the
    376     caller and the callee use it. It uses a *register pinning*
    377     mechanism, similar to GHC's convention, for keeping frequently
    378     accessed runtime components pinned to specific hardware registers.
    379     At the moment only X86 supports this convention (both 32 and 64
    380     bit).
    381 "``cc <n>``" - Numbered convention
    382     Any calling convention may be specified by number, allowing
    383     target-specific calling conventions to be used. Target specific
    384     calling conventions start at 64.
    385 
    386 More calling conventions can be added/defined on an as-needed basis, to
    387 support Pascal conventions or any other well-known target-independent
    388 convention.
    389 
    390 .. _visibilitystyles:
    391 
    392 Visibility Styles
    393 -----------------
    394 
    395 All Global Variables and Functions have one of the following visibility
    396 styles:
    397 
    398 "``default``" - Default style
    399     On targets that use the ELF object file format, default visibility
    400     means that the declaration is visible to other modules and, in
    401     shared libraries, means that the declared entity may be overridden.
    402     On Darwin, default visibility means that the declaration is visible
    403     to other modules. Default visibility corresponds to "external
    404     linkage" in the language.
    405 "``hidden``" - Hidden style
    406     Two declarations of an object with hidden visibility refer to the
    407     same object if they are in the same shared object. Usually, hidden
    408     visibility indicates that the symbol will not be placed into the
    409     dynamic symbol table, so no other module (executable or shared
    410     library) can reference it directly.
    411 "``protected``" - Protected style
    412     On ELF, protected visibility indicates that the symbol will be
    413     placed in the dynamic symbol table, but that references within the
    414     defining module will bind to the local symbol. That is, the symbol
    415     cannot be overridden by another module.
    416 
    417 .. _namedtypes:
    418 
    419 Named Types
    420 -----------
    421 
    422 LLVM IR allows you to specify name aliases for certain types. This can
    423 make it easier to read the IR and make the IR more condensed
    424 (particularly when recursive types are involved). An example of a name
    425 specification is:
    426 
    427 .. code-block:: llvm
    428 
    429     %mytype = type { %mytype*, i32 }
    430 
    431 You may give a name to any :ref:`type <typesystem>` except
    432 ":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
    433 expected with the syntax "%mytype".
    434 
    435 Note that type names are aliases for the structural type that they
    436 indicate, and that you can therefore specify multiple names for the same
    437 type. This often leads to confusing behavior when dumping out a .ll
    438 file. Since LLVM IR uses structural typing, the name is not part of the
    439 type. When printing out LLVM IR, the printer will pick *one name* to
    440 render all types of a particular shape. This means that if you have code
    441 where two different source types end up having the same LLVM type, that
    442 the dumper will sometimes print the "wrong" or unexpected type. This is
    443 an important design point and isn't going to change.
    444 
    445 .. _globalvars:
    446 
    447 Global Variables
    448 ----------------
    449 
    450 Global variables define regions of memory allocated at compilation time
    451 instead of run-time. Global variables may optionally be initialized, may
    452 have an explicit section to be placed in, and may have an optional
    453 explicit alignment specified.
    454 
    455 A variable may be defined as ``thread_local``, which means that it will
    456 not be shared by threads (each thread will have a separated copy of the
    457 variable). Not all targets support thread-local variables. Optionally, a
    458 TLS model may be specified:
    459 
    460 ``localdynamic``
    461     For variables that are only used within the current shared library.
    462 ``initialexec``
    463     For variables in modules that will not be loaded dynamically.
    464 ``localexec``
    465     For variables defined in the executable and only used within it.
    466 
    467 The models correspond to the ELF TLS models; see `ELF Handling For
    468 Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
    469 more information on under which circumstances the different models may
    470 be used. The target may choose a different TLS model if the specified
    471 model is not supported, or if a better choice of model can be made.
    472 
    473 A variable may be defined as a global ``constant``, which indicates that
    474 the contents of the variable will **never** be modified (enabling better
    475 optimization, allowing the global data to be placed in the read-only
    476 section of an executable, etc). Note that variables that need runtime
    477 initialization cannot be marked ``constant`` as there is a store to the
    478 variable.
    479 
    480 LLVM explicitly allows *declarations* of global variables to be marked
    481 constant, even if the final definition of the global is not. This
    482 capability can be used to enable slightly better optimization of the
    483 program, but requires the language definition to guarantee that
    484 optimizations based on the 'constantness' are valid for the translation
    485 units that do not include the definition.
    486 
    487 As SSA values, global variables define pointer values that are in scope
    488 (i.e. they dominate) all basic blocks in the program. Global variables
    489 always define a pointer to their "content" type because they describe a
    490 region of memory, and all memory objects in LLVM are accessed through
    491 pointers.
    492 
    493 Global variables can be marked with ``unnamed_addr`` which indicates
    494 that the address is not significant, only the content. Constants marked
    495 like this can be merged with other constants if they have the same
    496 initializer. Note that a constant with significant address *can* be
    497 merged with a ``unnamed_addr`` constant, the result being a constant
    498 whose address is significant.
    499 
    500 A global variable may be declared to reside in a target-specific
    501 numbered address space. For targets that support them, address spaces
    502 may affect how optimizations are performed and/or what target
    503 instructions are used to access the variable. The default address space
    504 is zero. The address space qualifier must precede any other attributes.
    505 
    506 LLVM allows an explicit section to be specified for globals. If the
    507 target supports it, it will emit globals to the section specified.
    508 
    509 By default, global initializers are optimized by assuming that global
    510 variables defined within the module are not modified from their
    511 initial values before the start of the global initializer.  This is
    512 true even for variables potentially accessible from outside the
    513 module, including those with external linkage or appearing in
    514 ``@llvm.used``. This assumption may be suppressed by marking the
    515 variable with ``externally_initialized``.
    516 
    517 An explicit alignment may be specified for a global, which must be a
    518 power of 2. If not present, or if the alignment is set to zero, the
    519 alignment of the global is set by the target to whatever it feels
    520 convenient. If an explicit alignment is specified, the global is forced
    521 to have exactly that alignment. Targets and optimizers are not allowed
    522 to over-align the global if the global has an assigned section. In this
    523 case, the extra alignment could be observable: for example, code could
    524 assume that the globals are densely packed in their section and try to
    525 iterate over them as an array, alignment padding would break this
    526 iteration.
    527 
    528 For example, the following defines a global in a numbered address space
    529 with an initializer, section, and alignment:
    530 
    531 .. code-block:: llvm
    532 
    533     @G = addrspace(5) constant float 1.0, section "foo", align 4
    534 
    535 The following example defines a thread-local global with the
    536 ``initialexec`` TLS model:
    537 
    538 .. code-block:: llvm
    539 
    540     @G = thread_local(initialexec) global i32 0, align 4
    541 
    542 .. _functionstructure:
    543 
    544 Functions
    545 ---------
    546 
    547 LLVM function definitions consist of the "``define``" keyword, an
    548 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
    549 style <visibility>`, an optional :ref:`calling convention <callingconv>`,
    550 an optional ``unnamed_addr`` attribute, a return type, an optional
    551 :ref:`parameter attribute <paramattrs>` for the return type, a function
    552 name, a (possibly empty) argument list (each with optional :ref:`parameter
    553 attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
    554 an optional section, an optional alignment, an optional :ref:`garbage
    555 collector name <gc>`, an opening curly brace, a list of basic blocks,
    556 and a closing curly brace.
    557 
    558 LLVM function declarations consist of the "``declare``" keyword, an
    559 optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
    560 style <visibility>`, an optional :ref:`calling convention <callingconv>`,
    561 an optional ``unnamed_addr`` attribute, a return type, an optional
    562 :ref:`parameter attribute <paramattrs>` for the return type, a function
    563 name, a possibly empty list of arguments, an optional alignment, and an
    564 optional :ref:`garbage collector name <gc>`.
    565 
    566 A function definition contains a list of basic blocks, forming the CFG
    567 (Control Flow Graph) for the function. Each basic block may optionally
    568 start with a label (giving the basic block a symbol table entry),
    569 contains a list of instructions, and ends with a
    570 :ref:`terminator <terminators>` instruction (such as a branch or function
    571 return). If explicit label is not provided, a block is assigned an
    572 implicit numbered label, using a next value from the same counter as used
    573 for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
    574 function entry block does not have explicit label, it will be assigned
    575 label "%0", then first unnamed temporary in that block will be "%1", etc.
    576 
    577 The first basic block in a function is special in two ways: it is
    578 immediately executed on entrance to the function, and it is not allowed
    579 to have predecessor basic blocks (i.e. there can not be any branches to
    580 the entry block of a function). Because the block can have no
    581 predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
    582 
    583 LLVM allows an explicit section to be specified for functions. If the
    584 target supports it, it will emit functions to the section specified.
    585 
    586 An explicit alignment may be specified for a function. If not present,
    587 or if the alignment is set to zero, the alignment of the function is set
    588 by the target to whatever it feels convenient. If an explicit alignment
    589 is specified, the function is forced to have at least that much
    590 alignment. All alignments must be a power of 2.
    591 
    592 If the ``unnamed_addr`` attribute is given, the address is know to not
    593 be significant and two identical functions can be merged.
    594 
    595 Syntax::
    596 
    597     define [linkage] [visibility]
    598            [cconv] [ret attrs]
    599            <ResultType> @<FunctionName> ([argument list])
    600            [fn Attrs] [section "name"] [align N]
    601            [gc] { ... }
    602 
    603 .. _langref_aliases:
    604 
    605 Aliases
    606 -------
    607 
    608 Aliases act as "second name" for the aliasee value (which can be either
    609 function, global variable, another alias or bitcast of global value).
    610 Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
    611 :ref:`visibility style <visibility>`.
    612 
    613 Syntax::
    614 
    615     @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
    616 
    617 .. _namedmetadatastructure:
    618 
    619 Named Metadata
    620 --------------
    621 
    622 Named metadata is a collection of metadata. :ref:`Metadata
    623 nodes <metadata>` (but not metadata strings) are the only valid
    624 operands for a named metadata.
    625 
    626 Syntax::
    627 
    628     ; Some unnamed metadata nodes, which are referenced by the named metadata.
    629     !0 = metadata !{metadata !"zero"}
    630     !1 = metadata !{metadata !"one"}
    631     !2 = metadata !{metadata !"two"}
    632     ; A named metadata.
    633     !name = !{!0, !1, !2}
    634 
    635 .. _paramattrs:
    636 
    637 Parameter Attributes
    638 --------------------
    639 
    640 The return type and each parameter of a function type may have a set of
    641 *parameter attributes* associated with them. Parameter attributes are
    642 used to communicate additional information about the result or
    643 parameters of a function. Parameter attributes are considered to be part
    644 of the function, not of the function type, so functions with different
    645 parameter attributes can have the same function type.
    646 
    647 Parameter attributes are simple keywords that follow the type specified.
    648 If multiple parameter attributes are needed, they are space separated.
    649 For example:
    650 
    651 .. code-block:: llvm
    652 
    653     declare i32 @printf(i8* noalias nocapture, ...)
    654     declare i32 @atoi(i8 zeroext)
    655     declare signext i8 @returns_signed_char()
    656 
    657 Note that any attributes for the function result (``nounwind``,
    658 ``readonly``) come immediately after the argument list.
    659 
    660 Currently, only the following parameter attributes are defined:
    661 
    662 ``zeroext``
    663     This indicates to the code generator that the parameter or return
    664     value should be zero-extended to the extent required by the target's
    665     ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
    666     the caller (for a parameter) or the callee (for a return value).
    667 ``signext``
    668     This indicates to the code generator that the parameter or return
    669     value should be sign-extended to the extent required by the target's
    670     ABI (which is usually 32-bits) by the caller (for a parameter) or
    671     the callee (for a return value).
    672 ``inreg``
    673     This indicates that this parameter or return value should be treated
    674     in a special target-dependent fashion during while emitting code for
    675     a function call or return (usually, by putting it in a register as
    676     opposed to memory, though some targets use it to distinguish between
    677     two different kinds of registers). Use of this attribute is
    678     target-specific.
    679 ``byval``
    680     This indicates that the pointer parameter should really be passed by
    681     value to the function. The attribute implies that a hidden copy of
    682     the pointee is made between the caller and the callee, so the callee
    683     is unable to modify the value in the caller. This attribute is only
    684     valid on LLVM pointer arguments. It is generally used to pass
    685     structs and arrays by value, but is also valid on pointers to
    686     scalars. The copy is considered to belong to the caller not the
    687     callee (for example, ``readonly`` functions should not write to
    688     ``byval`` parameters). This is not a valid attribute for return
    689     values.
    690 
    691     The byval attribute also supports specifying an alignment with the
    692     align attribute. It indicates the alignment of the stack slot to
    693     form and the known alignment of the pointer specified to the call
    694     site. If the alignment is not specified, then the code generator
    695     makes a target-specific assumption.
    696 
    697 ``sret``
    698     This indicates that the pointer parameter specifies the address of a
    699     structure that is the return value of the function in the source
    700     program. This pointer must be guaranteed by the caller to be valid:
    701     loads and stores to the structure may be assumed by the callee
    702     not to trap and to be properly aligned. This may only be applied to
    703     the first parameter. This is not a valid attribute for return
    704     values.
    705 ``noalias``
    706     This indicates that pointer values :ref:`based <pointeraliasing>` on
    707     the argument or return value do not alias pointer values which are
    708     not *based* on it, ignoring certain "irrelevant" dependencies. For a
    709     call to the parent function, dependencies between memory references
    710     from before or after the call and from those during the call are
    711     "irrelevant" to the ``noalias`` keyword for the arguments and return
    712     value used in that call. The caller shares the responsibility with
    713     the callee for ensuring that these requirements are met. For further
    714     details, please see the discussion of the NoAlias response in `alias
    715     analysis <AliasAnalysis.html#MustMayNo>`_.
    716 
    717     Note that this definition of ``noalias`` is intentionally similar
    718     to the definition of ``restrict`` in C99 for function arguments,
    719     though it is slightly weaker.
    720 
    721     For function return values, C99's ``restrict`` is not meaningful,
    722     while LLVM's ``noalias`` is.
    723 ``nocapture``
    724     This indicates that the callee does not make any copies of the
    725     pointer that outlive the callee itself. This is not a valid
    726     attribute for return values.
    727 
    728 .. _nest:
    729 
    730 ``nest``
    731     This indicates that the pointer parameter can be excised using the
    732     :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
    733     attribute for return values and can only be applied to one parameter.
    734 
    735 ``returned``
    736     This indicates that the function always returns the argument as its return
    737     value. This is an optimization hint to the code generator when generating
    738     the caller, allowing tail call optimization and omission of register saves
    739     and restores in some cases; it is not checked or enforced when generating
    740     the callee. The parameter and the function return type must be valid
    741     operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
    742     valid attribute for return values and can only be applied to one parameter.
    743 
    744 .. _gc:
    745 
    746 Garbage Collector Names
    747 -----------------------
    748 
    749 Each function may specify a garbage collector name, which is simply a
    750 string:
    751 
    752 .. code-block:: llvm
    753 
    754     define void @f() gc "name" { ... }
    755 
    756 The compiler declares the supported values of *name*. Specifying a
    757 collector which will cause the compiler to alter its output in order to
    758 support the named garbage collection algorithm.
    759 
    760 .. _attrgrp:
    761 
    762 Attribute Groups
    763 ----------------
    764 
    765 Attribute groups are groups of attributes that are referenced by objects within
    766 the IR. They are important for keeping ``.ll`` files readable, because a lot of
    767 functions will use the same set of attributes. In the degenerative case of a
    768 ``.ll`` file that corresponds to a single ``.c`` file, the single attribute
    769 group will capture the important command line flags used to build that file.
    770 
    771 An attribute group is a module-level object. To use an attribute group, an
    772 object references the attribute group's ID (e.g. ``#37``). An object may refer
    773 to more than one attribute group. In that situation, the attributes from the
    774 different groups are merged.
    775 
    776 Here is an example of attribute groups for a function that should always be
    777 inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
    778 
    779 .. code-block:: llvm
    780 
    781    ; Target-independent attributes:
    782    attributes #0 = { alwaysinline alignstack=4 }
    783 
    784    ; Target-dependent attributes:
    785    attributes #1 = { "no-sse" }
    786 
    787    ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
    788    define void @f() #0 #1 { ... }
    789 
    790 .. _fnattrs:
    791 
    792 Function Attributes
    793 -------------------
    794 
    795 Function attributes are set to communicate additional information about
    796 a function. Function attributes are considered to be part of the
    797 function, not of the function type, so functions with different function
    798 attributes can have the same function type.
    799 
    800 Function attributes are simple keywords that follow the type specified.
    801 If multiple attributes are needed, they are space separated. For
    802 example:
    803 
    804 .. code-block:: llvm
    805 
    806     define void @f() noinline { ... }
    807     define void @f() alwaysinline { ... }
    808     define void @f() alwaysinline optsize { ... }
    809     define void @f() optsize { ... }
    810 
    811 ``alignstack(<n>)``
    812     This attribute indicates that, when emitting the prologue and
    813     epilogue, the backend should forcibly align the stack pointer.
    814     Specify the desired alignment, which must be a power of two, in
    815     parentheses.
    816 ``alwaysinline``
    817     This attribute indicates that the inliner should attempt to inline
    818     this function into callers whenever possible, ignoring any active
    819     inlining size threshold for this caller.
    820 ``builtin``
    821     This indicates that the callee function at a call site should be
    822     recognized as a built-in function, even though the function's declaration
    823     uses the ``nobuiltin`` attribute. This is only valid at call sites for
    824     direct calls to functions which are declared with the ``nobuiltin``
    825     attribute.
    826 ``cold``
    827     This attribute indicates that this function is rarely called. When
    828     computing edge weights, basic blocks post-dominated by a cold
    829     function call are also considered to be cold; and, thus, given low
    830     weight.
    831 ``inlinehint``
    832     This attribute indicates that the source code contained a hint that
    833     inlining this function is desirable (such as the "inline" keyword in
    834     C/C++). It is just a hint; it imposes no requirements on the
    835     inliner.
    836 ``naked``
    837     This attribute disables prologue / epilogue emission for the
    838     function. This can have very system-specific consequences.
    839 ``nobuiltin``
    840     This indicates that the callee function at a call site is not recognized as
    841     a built-in function. LLVM will retain the original call and not replace it
    842     with equivalent code based on the semantics of the built-in function, unless
    843     the call site uses the ``builtin`` attribute. This is valid at call sites
    844     and on function declarations and definitions.
    845 ``noduplicate``
    846     This attribute indicates that calls to the function cannot be
    847     duplicated. A call to a ``noduplicate`` function may be moved
    848     within its parent function, but may not be duplicated within
    849     its parent function.
    850 
    851     A function containing a ``noduplicate`` call may still
    852     be an inlining candidate, provided that the call is not
    853     duplicated by inlining. That implies that the function has
    854     internal linkage and only has one call site, so the original
    855     call is dead after inlining.
    856 ``noimplicitfloat``
    857     This attributes disables implicit floating point instructions.
    858 ``noinline``
    859     This attribute indicates that the inliner should never inline this
    860     function in any situation. This attribute may not be used together
    861     with the ``alwaysinline`` attribute.
    862 ``nonlazybind``
    863     This attribute suppresses lazy symbol binding for the function. This
    864     may make calls to the function faster, at the cost of extra program
    865     startup time if the function is not called during program startup.
    866 ``noredzone``
    867     This attribute indicates that the code generator should not use a
    868     red zone, even if the target-specific ABI normally permits it.
    869 ``noreturn``
    870     This function attribute indicates that the function never returns
    871     normally. This produces undefined behavior at runtime if the
    872     function ever does dynamically return.
    873 ``nounwind``
    874     This function attribute indicates that the function never returns
    875     with an unwind or exceptional control flow. If the function does
    876     unwind, its runtime behavior is undefined.
    877 ``optsize``
    878     This attribute suggests that optimization passes and code generator
    879     passes make choices that keep the code size of this function low,
    880     and otherwise do optimizations specifically to reduce code size.
    881 ``readnone``
    882     On a function, this attribute indicates that the function computes its
    883     result (or decides to unwind an exception) based strictly on its arguments,
    884     without dereferencing any pointer arguments or otherwise accessing
    885     any mutable state (e.g. memory, control registers, etc) visible to
    886     caller functions. It does not write through any pointer arguments
    887     (including ``byval`` arguments) and never changes any state visible
    888     to callers. This means that it cannot unwind exceptions by calling
    889     the ``C++`` exception throwing methods.
    890     
    891     On an argument, this attribute indicates that the function does not
    892     dereference that pointer argument, even though it may read or write the
    893     memory that the pointer points to if accessed through other pointers.
    894 ``readonly``
    895     On a function, this attribute indicates that the function does not write
    896     through any pointer arguments (including ``byval`` arguments) or otherwise
    897     modify any state (e.g. memory, control registers, etc) visible to
    898     caller functions. It may dereference pointer arguments and read
    899     state that may be set in the caller. A readonly function always
    900     returns the same value (or unwinds an exception identically) when
    901     called with the same set of arguments and global state. It cannot
    902     unwind an exception by calling the ``C++`` exception throwing
    903     methods.
    904     
    905     On an argument, this attribute indicates that the function does not write
    906     through this pointer argument, even though it may write to the memory that
    907     the pointer points to.
    908 ``returns_twice``
    909     This attribute indicates that this function can return twice. The C
    910     ``setjmp`` is an example of such a function. The compiler disables
    911     some optimizations (like tail calls) in the caller of these
    912     functions.
    913 ``sanitize_address``
    914     This attribute indicates that AddressSanitizer checks
    915     (dynamic address safety analysis) are enabled for this function.
    916 ``sanitize_memory``
    917     This attribute indicates that MemorySanitizer checks (dynamic detection
    918     of accesses to uninitialized memory) are enabled for this function.
    919 ``sanitize_thread``
    920     This attribute indicates that ThreadSanitizer checks
    921     (dynamic thread safety analysis) are enabled for this function.
    922 ``ssp``
    923     This attribute indicates that the function should emit a stack
    924     smashing protector. It is in the form of a "canary" --- a random value
    925     placed on the stack before the local variables that's checked upon
    926     return from the function to see if it has been overwritten. A
    927     heuristic is used to determine if a function needs stack protectors
    928     or not. The heuristic used will enable protectors for functions with:
    929 
    930     - Character arrays larger than ``ssp-buffer-size`` (default 8).
    931     - Aggregates containing character arrays larger than ``ssp-buffer-size``.
    932     - Calls to alloca() with variable sizes or constant sizes greater than
    933       ``ssp-buffer-size``.
    934 
    935     If a function that has an ``ssp`` attribute is inlined into a
    936     function that doesn't have an ``ssp`` attribute, then the resulting
    937     function will have an ``ssp`` attribute.
    938 ``sspreq``
    939     This attribute indicates that the function should *always* emit a
    940     stack smashing protector. This overrides the ``ssp`` function
    941     attribute.
    942 
    943     If a function that has an ``sspreq`` attribute is inlined into a
    944     function that doesn't have an ``sspreq`` attribute or which has an
    945     ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
    946     an ``sspreq`` attribute.
    947 ``sspstrong``
    948     This attribute indicates that the function should emit a stack smashing
    949     protector. This attribute causes a strong heuristic to be used when
    950     determining if a function needs stack protectors.  The strong heuristic
    951     will enable protectors for functions with:
    952 
    953     - Arrays of any size and type
    954     - Aggregates containing an array of any size and type.
    955     - Calls to alloca().
    956     - Local variables that have had their address taken.
    957 
    958     This overrides the ``ssp`` function attribute.
    959 
    960     If a function that has an ``sspstrong`` attribute is inlined into a
    961     function that doesn't have an ``sspstrong`` attribute, then the
    962     resulting function will have an ``sspstrong`` attribute.
    963 ``uwtable``
    964     This attribute indicates that the ABI being targeted requires that
    965     an unwind table entry be produce for this function even if we can
    966     show that no exceptions passes by it. This is normally the case for
    967     the ELF x86-64 abi, but it can be disabled for some compilation
    968     units.
    969 
    970 .. _moduleasm:
    971 
    972 Module-Level Inline Assembly
    973 ----------------------------
    974 
    975 Modules may contain "module-level inline asm" blocks, which corresponds
    976 to the GCC "file scope inline asm" blocks. These blocks are internally
    977 concatenated by LLVM and treated as a single unit, but may be separated
    978 in the ``.ll`` file if desired. The syntax is very simple:
    979 
    980 .. code-block:: llvm
    981 
    982     module asm "inline asm code goes here"
    983     module asm "more can go here"
    984 
    985 The strings can contain any character by escaping non-printable
    986 characters. The escape sequence used is simply "\\xx" where "xx" is the
    987 two digit hex code for the number.
    988 
    989 The inline asm code is simply printed to the machine code .s file when
    990 assembly code is generated.
    991 
    992 .. _langref_datalayout:
    993 
    994 Data Layout
    995 -----------
    996 
    997 A module may specify a target specific data layout string that specifies
    998 how data is to be laid out in memory. The syntax for the data layout is
    999 simply:
   1000 
   1001 .. code-block:: llvm
   1002 
   1003     target datalayout = "layout specification"
   1004 
   1005 The *layout specification* consists of a list of specifications
   1006 separated by the minus sign character ('-'). Each specification starts
   1007 with a letter and may include other information after the letter to
   1008 define some aspect of the data layout. The specifications accepted are
   1009 as follows:
   1010 
   1011 ``E``
   1012     Specifies that the target lays out data in big-endian form. That is,
   1013     the bits with the most significance have the lowest address
   1014     location.
   1015 ``e``
   1016     Specifies that the target lays out data in little-endian form. That
   1017     is, the bits with the least significance have the lowest address
   1018     location.
   1019 ``S<size>``
   1020     Specifies the natural alignment of the stack in bits. Alignment
   1021     promotion of stack variables is limited to the natural stack
   1022     alignment to avoid dynamic stack realignment. The stack alignment
   1023     must be a multiple of 8-bits. If omitted, the natural stack
   1024     alignment defaults to "unspecified", which does not prevent any
   1025     alignment promotions.
   1026 ``p[n]:<size>:<abi>:<pref>``
   1027     This specifies the *size* of a pointer and its ``<abi>`` and
   1028     ``<pref>``\erred alignments for address space ``n``. All sizes are in
   1029     bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
   1030     preceding ``:`` should be omitted too. The address space, ``n`` is
   1031     optional, and if not specified, denotes the default address space 0.
   1032     The value of ``n`` must be in the range [1,2^23).
   1033 ``i<size>:<abi>:<pref>``
   1034     This specifies the alignment for an integer type of a given bit
   1035     ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
   1036 ``v<size>:<abi>:<pref>``
   1037     This specifies the alignment for a vector type of a given bit
   1038     ``<size>``.
   1039 ``f<size>:<abi>:<pref>``
   1040     This specifies the alignment for a floating point type of a given bit
   1041     ``<size>``. Only values of ``<size>`` that are supported by the target
   1042     will work. 32 (float) and 64 (double) are supported on all targets; 80
   1043     or 128 (different flavors of long double) are also supported on some
   1044     targets.
   1045 ``a<size>:<abi>:<pref>``
   1046     This specifies the alignment for an aggregate type of a given bit
   1047     ``<size>``.
   1048 ``s<size>:<abi>:<pref>``
   1049     This specifies the alignment for a stack object of a given bit
   1050     ``<size>``.
   1051 ``n<size1>:<size2>:<size3>...``
   1052     This specifies a set of native integer widths for the target CPU in
   1053     bits. For example, it might contain ``n32`` for 32-bit PowerPC,
   1054     ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
   1055     this set are considered to support most general arithmetic operations
   1056     efficiently.
   1057 
   1058 When constructing the data layout for a given target, LLVM starts with a
   1059 default set of specifications which are then (possibly) overridden by
   1060 the specifications in the ``datalayout`` keyword. The default
   1061 specifications are given in this list:
   1062 
   1063 -  ``E`` - big endian
   1064 -  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
   1065 -  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
   1066    same as the default address space.
   1067 -  ``S0`` - natural stack alignment is unspecified
   1068 -  ``i1:8:8`` - i1 is 8-bit (byte) aligned
   1069 -  ``i8:8:8`` - i8 is 8-bit (byte) aligned
   1070 -  ``i16:16:16`` - i16 is 16-bit aligned
   1071 -  ``i32:32:32`` - i32 is 32-bit aligned
   1072 -  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
   1073    alignment of 64-bits
   1074 -  ``f16:16:16`` - half is 16-bit aligned
   1075 -  ``f32:32:32`` - float is 32-bit aligned
   1076 -  ``f64:64:64`` - double is 64-bit aligned
   1077 -  ``f128:128:128`` - quad is 128-bit aligned
   1078 -  ``v64:64:64`` - 64-bit vector is 64-bit aligned
   1079 -  ``v128:128:128`` - 128-bit vector is 128-bit aligned
   1080 -  ``a0:0:64`` - aggregates are 64-bit aligned
   1081 
   1082 When LLVM is determining the alignment for a given type, it uses the
   1083 following rules:
   1084 
   1085 #. If the type sought is an exact match for one of the specifications,
   1086    that specification is used.
   1087 #. If no match is found, and the type sought is an integer type, then
   1088    the smallest integer type that is larger than the bitwidth of the
   1089    sought type is used. If none of the specifications are larger than
   1090    the bitwidth then the largest integer type is used. For example,
   1091    given the default specifications above, the i7 type will use the
   1092    alignment of i8 (next largest) while both i65 and i256 will use the
   1093    alignment of i64 (largest specified).
   1094 #. If no match is found, and the type sought is a vector type, then the
   1095    largest vector type that is smaller than the sought vector type will
   1096    be used as a fall back. This happens because <128 x double> can be
   1097    implemented in terms of 64 <2 x double>, for example.
   1098 
   1099 The function of the data layout string may not be what you expect.
   1100 Notably, this is not a specification from the frontend of what alignment
   1101 the code generator should use.
   1102 
   1103 Instead, if specified, the target data layout is required to match what
   1104 the ultimate *code generator* expects. This string is used by the
   1105 mid-level optimizers to improve code, and this only works if it matches
   1106 what the ultimate code generator uses. If you would like to generate IR
   1107 that does not embed this target-specific detail into the IR, then you
   1108 don't have to specify the string. This will disable some optimizations
   1109 that require precise layout information, but this also prevents those
   1110 optimizations from introducing target specificity into the IR.
   1111 
   1112 .. _pointeraliasing:
   1113 
   1114 Pointer Aliasing Rules
   1115 ----------------------
   1116 
   1117 Any memory access must be done through a pointer value associated with
   1118 an address range of the memory access, otherwise the behavior is
   1119 undefined. Pointer values are associated with address ranges according
   1120 to the following rules:
   1121 
   1122 -  A pointer value is associated with the addresses associated with any
   1123    value it is *based* on.
   1124 -  An address of a global variable is associated with the address range
   1125    of the variable's storage.
   1126 -  The result value of an allocation instruction is associated with the
   1127    address range of the allocated storage.
   1128 -  A null pointer in the default address-space is associated with no
   1129    address.
   1130 -  An integer constant other than zero or a pointer value returned from
   1131    a function not defined within LLVM may be associated with address
   1132    ranges allocated through mechanisms other than those provided by
   1133    LLVM. Such ranges shall not overlap with any ranges of addresses
   1134    allocated by mechanisms provided by LLVM.
   1135 
   1136 A pointer value is *based* on another pointer value according to the
   1137 following rules:
   1138 
   1139 -  A pointer value formed from a ``getelementptr`` operation is *based*
   1140    on the first operand of the ``getelementptr``.
   1141 -  The result value of a ``bitcast`` is *based* on the operand of the
   1142    ``bitcast``.
   1143 -  A pointer value formed by an ``inttoptr`` is *based* on all pointer
   1144    values that contribute (directly or indirectly) to the computation of
   1145    the pointer's value.
   1146 -  The "*based* on" relationship is transitive.
   1147 
   1148 Note that this definition of *"based"* is intentionally similar to the
   1149 definition of *"based"* in C99, though it is slightly weaker.
   1150 
   1151 LLVM IR does not associate types with memory. The result type of a
   1152 ``load`` merely indicates the size and alignment of the memory from
   1153 which to load, as well as the interpretation of the value. The first
   1154 operand type of a ``store`` similarly only indicates the size and
   1155 alignment of the store.
   1156 
   1157 Consequently, type-based alias analysis, aka TBAA, aka
   1158 ``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
   1159 :ref:`Metadata <metadata>` may be used to encode additional information
   1160 which specialized optimization passes may use to implement type-based
   1161 alias analysis.
   1162 
   1163 .. _volatile:
   1164 
   1165 Volatile Memory Accesses
   1166 ------------------------
   1167 
   1168 Certain memory accesses, such as :ref:`load <i_load>`'s,
   1169 :ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
   1170 marked ``volatile``. The optimizers must not change the number of
   1171 volatile operations or change their order of execution relative to other
   1172 volatile operations. The optimizers *may* change the order of volatile
   1173 operations relative to non-volatile operations. This is not Java's
   1174 "volatile" and has no cross-thread synchronization behavior.
   1175 
   1176 IR-level volatile loads and stores cannot safely be optimized into
   1177 llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
   1178 flagged volatile. Likewise, the backend should never split or merge
   1179 target-legal volatile load/store instructions.
   1180 
   1181 .. admonition:: Rationale
   1182 
   1183  Platforms may rely on volatile loads and stores of natively supported
   1184  data width to be executed as single instruction. For example, in C
   1185  this holds for an l-value of volatile primitive type with native
   1186  hardware support, but not necessarily for aggregate types. The
   1187  frontend upholds these expectations, which are intentionally
   1188  unspecified in the IR. The rules above ensure that IR transformation
   1189  do not violate the frontend's contract with the language.
   1190 
   1191 .. _memmodel:
   1192 
   1193 Memory Model for Concurrent Operations
   1194 --------------------------------------
   1195 
   1196 The LLVM IR does not define any way to start parallel threads of
   1197 execution or to register signal handlers. Nonetheless, there are
   1198 platform-specific ways to create them, and we define LLVM IR's behavior
   1199 in their presence. This model is inspired by the C++0x memory model.
   1200 
   1201 For a more informal introduction to this model, see the :doc:`Atomics`.
   1202 
   1203 We define a *happens-before* partial order as the least partial order
   1204 that
   1205 
   1206 -  Is a superset of single-thread program order, and
   1207 -  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
   1208    ``b``. *Synchronizes-with* pairs are introduced by platform-specific
   1209    techniques, like pthread locks, thread creation, thread joining,
   1210    etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
   1211    Constraints <ordering>`).
   1212 
   1213 Note that program order does not introduce *happens-before* edges
   1214 between a thread and signals executing inside that thread.
   1215 
   1216 Every (defined) read operation (load instructions, memcpy, atomic
   1217 loads/read-modify-writes, etc.) R reads a series of bytes written by
   1218 (defined) write operations (store instructions, atomic
   1219 stores/read-modify-writes, memcpy, etc.). For the purposes of this
   1220 section, initialized globals are considered to have a write of the
   1221 initializer which is atomic and happens before any other read or write
   1222 of the memory in question. For each byte of a read R, R\ :sub:`byte`
   1223 may see any write to the same byte, except:
   1224 
   1225 -  If write\ :sub:`1`  happens before write\ :sub:`2`, and
   1226    write\ :sub:`2` happens before R\ :sub:`byte`, then
   1227    R\ :sub:`byte` does not see write\ :sub:`1`.
   1228 -  If R\ :sub:`byte` happens before write\ :sub:`3`, then
   1229    R\ :sub:`byte` does not see write\ :sub:`3`.
   1230 
   1231 Given that definition, R\ :sub:`byte` is defined as follows:
   1232 
   1233 -  If R is volatile, the result is target-dependent. (Volatile is
   1234    supposed to give guarantees which can support ``sig_atomic_t`` in
   1235    C/C++, and may be used for accesses to addresses which do not behave
   1236    like normal memory. It does not generally provide cross-thread
   1237    synchronization.)
   1238 -  Otherwise, if there is no write to the same byte that happens before
   1239    R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
   1240 -  Otherwise, if R\ :sub:`byte` may see exactly one write,
   1241    R\ :sub:`byte` returns the value written by that write.
   1242 -  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
   1243    see are atomic, it chooses one of the values written. See the :ref:`Atomic
   1244    Memory Ordering Constraints <ordering>` section for additional
   1245    constraints on how the choice is made.
   1246 -  Otherwise R\ :sub:`byte` returns ``undef``.
   1247 
   1248 R returns the value composed of the series of bytes it read. This
   1249 implies that some bytes within the value may be ``undef`` **without**
   1250 the entire value being ``undef``. Note that this only defines the
   1251 semantics of the operation; it doesn't mean that targets will emit more
   1252 than one instruction to read the series of bytes.
   1253 
   1254 Note that in cases where none of the atomic intrinsics are used, this
   1255 model places only one restriction on IR transformations on top of what
   1256 is required for single-threaded execution: introducing a store to a byte
   1257 which might not otherwise be stored is not allowed in general.
   1258 (Specifically, in the case where another thread might write to and read
   1259 from an address, introducing a store can change a load that may see
   1260 exactly one write into a load that may see multiple writes.)
   1261 
   1262 .. _ordering:
   1263 
   1264 Atomic Memory Ordering Constraints
   1265 ----------------------------------
   1266 
   1267 Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
   1268 :ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
   1269 :ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
   1270 an ordering parameter that determines which other atomic instructions on
   1271 the same address they *synchronize with*. These semantics are borrowed
   1272 from Java and C++0x, but are somewhat more colloquial. If these
   1273 descriptions aren't precise enough, check those specs (see spec
   1274 references in the :doc:`atomics guide <Atomics>`).
   1275 :ref:`fence <i_fence>` instructions treat these orderings somewhat
   1276 differently since they don't take an address. See that instruction's
   1277 documentation for details.
   1278 
   1279 For a simpler introduction to the ordering constraints, see the
   1280 :doc:`Atomics`.
   1281 
   1282 ``unordered``
   1283     The set of values that can be read is governed by the happens-before
   1284     partial order. A value cannot be read unless some operation wrote
   1285     it. This is intended to provide a guarantee strong enough to model
   1286     Java's non-volatile shared variables. This ordering cannot be
   1287     specified for read-modify-write operations; it is not strong enough
   1288     to make them atomic in any interesting way.
   1289 ``monotonic``
   1290     In addition to the guarantees of ``unordered``, there is a single
   1291     total order for modifications by ``monotonic`` operations on each
   1292     address. All modification orders must be compatible with the
   1293     happens-before order. There is no guarantee that the modification
   1294     orders can be combined to a global total order for the whole program
   1295     (and this often will not be possible). The read in an atomic
   1296     read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
   1297     :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
   1298     order immediately before the value it writes. If one atomic read
   1299     happens before another atomic read of the same address, the later
   1300     read must see the same value or a later value in the address's
   1301     modification order. This disallows reordering of ``monotonic`` (or
   1302     stronger) operations on the same address. If an address is written
   1303     ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
   1304     read that address repeatedly, the other threads must eventually see
   1305     the write. This corresponds to the C++0x/C1x
   1306     ``memory_order_relaxed``.
   1307 ``acquire``
   1308     In addition to the guarantees of ``monotonic``, a
   1309     *synchronizes-with* edge may be formed with a ``release`` operation.
   1310     This is intended to model C++'s ``memory_order_acquire``.
   1311 ``release``
   1312     In addition to the guarantees of ``monotonic``, if this operation
   1313     writes a value which is subsequently read by an ``acquire``
   1314     operation, it *synchronizes-with* that operation. (This isn't a
   1315     complete description; see the C++0x definition of a release
   1316     sequence.) This corresponds to the C++0x/C1x
   1317     ``memory_order_release``.
   1318 ``acq_rel`` (acquire+release)
   1319     Acts as both an ``acquire`` and ``release`` operation on its
   1320     address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
   1321 ``seq_cst`` (sequentially consistent)
   1322     In addition to the guarantees of ``acq_rel`` (``acquire`` for an
   1323     operation which only reads, ``release`` for an operation which only
   1324     writes), there is a global total order on all
   1325     sequentially-consistent operations on all addresses, which is
   1326     consistent with the *happens-before* partial order and with the
   1327     modification orders of all the affected addresses. Each
   1328     sequentially-consistent read sees the last preceding write to the
   1329     same address in this global order. This corresponds to the C++0x/C1x
   1330     ``memory_order_seq_cst`` and Java volatile.
   1331 
   1332 .. _singlethread:
   1333 
   1334 If an atomic operation is marked ``singlethread``, it only *synchronizes
   1335 with* or participates in modification and seq\_cst total orderings with
   1336 other operations running in the same thread (for example, in signal
   1337 handlers).
   1338 
   1339 .. _fastmath:
   1340 
   1341 Fast-Math Flags
   1342 ---------------
   1343 
   1344 LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
   1345 :ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
   1346 :ref:`frem <i_frem>`) have the following flags that can set to enable
   1347 otherwise unsafe floating point operations
   1348 
   1349 ``nnan``
   1350    No NaNs - Allow optimizations to assume the arguments and result are not
   1351    NaN. Such optimizations are required to retain defined behavior over
   1352    NaNs, but the value of the result is undefined.
   1353 
   1354 ``ninf``
   1355    No Infs - Allow optimizations to assume the arguments and result are not
   1356    +/-Inf. Such optimizations are required to retain defined behavior over
   1357    +/-Inf, but the value of the result is undefined.
   1358 
   1359 ``nsz``
   1360    No Signed Zeros - Allow optimizations to treat the sign of a zero
   1361    argument or result as insignificant.
   1362 
   1363 ``arcp``
   1364    Allow Reciprocal - Allow optimizations to use the reciprocal of an
   1365    argument rather than perform division.
   1366 
   1367 ``fast``
   1368    Fast - Allow algebraically equivalent transformations that may
   1369    dramatically change results in floating point (e.g. reassociate). This
   1370    flag implies all the others.
   1371 
   1372 .. _typesystem:
   1373 
   1374 Type System
   1375 ===========
   1376 
   1377 The LLVM type system is one of the most important features of the
   1378 intermediate representation. Being typed enables a number of
   1379 optimizations to be performed on the intermediate representation
   1380 directly, without having to do extra analyses on the side before the
   1381 transformation. A strong type system makes it easier to read the
   1382 generated code and enables novel analyses and transformations that are
   1383 not feasible to perform on normal three address code representations.
   1384 
   1385 .. _typeclassifications:
   1386 
   1387 Type Classifications
   1388 --------------------
   1389 
   1390 The types fall into a few useful classifications:
   1391 
   1392 
   1393 .. list-table::
   1394    :header-rows: 1
   1395 
   1396    * - Classification
   1397      - Types
   1398 
   1399    * - :ref:`integer <t_integer>`
   1400      - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
   1401        ``i64``, ...
   1402 
   1403    * - :ref:`floating point <t_floating>`
   1404      - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
   1405        ``ppc_fp128``
   1406 
   1407 
   1408    * - first class
   1409 
   1410        .. _t_firstclass:
   1411 
   1412      - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
   1413        :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
   1414        :ref:`structure <t_struct>`, :ref:`array <t_array>`,
   1415        :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
   1416 
   1417    * - :ref:`primitive <t_primitive>`
   1418      - :ref:`label <t_label>`,
   1419        :ref:`void <t_void>`,
   1420        :ref:`integer <t_integer>`,
   1421        :ref:`floating point <t_floating>`,
   1422        :ref:`x86mmx <t_x86mmx>`,
   1423        :ref:`metadata <t_metadata>`.
   1424 
   1425    * - :ref:`derived <t_derived>`
   1426      - :ref:`array <t_array>`,
   1427        :ref:`function <t_function>`,
   1428        :ref:`pointer <t_pointer>`,
   1429        :ref:`structure <t_struct>`,
   1430        :ref:`vector <t_vector>`,
   1431        :ref:`opaque <t_opaque>`.
   1432 
   1433 The :ref:`first class <t_firstclass>` types are perhaps the most important.
   1434 Values of these types are the only ones which can be produced by
   1435 instructions.
   1436 
   1437 .. _t_primitive:
   1438 
   1439 Primitive Types
   1440 ---------------
   1441 
   1442 The primitive types are the fundamental building blocks of the LLVM
   1443 system.
   1444 
   1445 .. _t_integer:
   1446 
   1447 Integer Type
   1448 ^^^^^^^^^^^^
   1449 
   1450 Overview:
   1451 """""""""
   1452 
   1453 The integer type is a very simple type that simply specifies an
   1454 arbitrary bit width for the integer type desired. Any bit width from 1
   1455 bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
   1456 
   1457 Syntax:
   1458 """""""
   1459 
   1460 ::
   1461 
   1462       iN
   1463 
   1464 The number of bits the integer will occupy is specified by the ``N``
   1465 value.
   1466 
   1467 Examples:
   1468 """""""""
   1469 
   1470 +----------------+------------------------------------------------+
   1471 | ``i1``         | a single-bit integer.                          |
   1472 +----------------+------------------------------------------------+
   1473 | ``i32``        | a 32-bit integer.                              |
   1474 +----------------+------------------------------------------------+
   1475 | ``i1942652``   | a really big integer of over 1 million bits.   |
   1476 +----------------+------------------------------------------------+
   1477 
   1478 .. _t_floating:
   1479 
   1480 Floating Point Types
   1481 ^^^^^^^^^^^^^^^^^^^^
   1482 
   1483 .. list-table::
   1484    :header-rows: 1
   1485 
   1486    * - Type
   1487      - Description
   1488 
   1489    * - ``half``
   1490      - 16-bit floating point value
   1491 
   1492    * - ``float``
   1493      - 32-bit floating point value
   1494 
   1495    * - ``double``
   1496      - 64-bit floating point value
   1497 
   1498    * - ``fp128``
   1499      - 128-bit floating point value (112-bit mantissa)
   1500 
   1501    * - ``x86_fp80``
   1502      -  80-bit floating point value (X87)
   1503 
   1504    * - ``ppc_fp128``
   1505      - 128-bit floating point value (two 64-bits)
   1506 
   1507 .. _t_x86mmx:
   1508 
   1509 X86mmx Type
   1510 ^^^^^^^^^^^
   1511 
   1512 Overview:
   1513 """""""""
   1514 
   1515 The x86mmx type represents a value held in an MMX register on an x86
   1516 machine. The operations allowed on it are quite limited: parameters and
   1517 return values, load and store, and bitcast. User-specified MMX
   1518 instructions are represented as intrinsic or asm calls with arguments
   1519 and/or results of this type. There are no arrays, vectors or constants
   1520 of this type.
   1521 
   1522 Syntax:
   1523 """""""
   1524 
   1525 ::
   1526 
   1527       x86mmx
   1528 
   1529 .. _t_void:
   1530 
   1531 Void Type
   1532 ^^^^^^^^^
   1533 
   1534 Overview:
   1535 """""""""
   1536 
   1537 The void type does not represent any value and has no size.
   1538 
   1539 Syntax:
   1540 """""""
   1541 
   1542 ::
   1543 
   1544       void
   1545 
   1546 .. _t_label:
   1547 
   1548 Label Type
   1549 ^^^^^^^^^^
   1550 
   1551 Overview:
   1552 """""""""
   1553 
   1554 The label type represents code labels.
   1555 
   1556 Syntax:
   1557 """""""
   1558 
   1559 ::
   1560 
   1561       label
   1562 
   1563 .. _t_metadata:
   1564 
   1565 Metadata Type
   1566 ^^^^^^^^^^^^^
   1567 
   1568 Overview:
   1569 """""""""
   1570 
   1571 The metadata type represents embedded metadata. No derived types may be
   1572 created from metadata except for :ref:`function <t_function>` arguments.
   1573 
   1574 Syntax:
   1575 """""""
   1576 
   1577 ::
   1578 
   1579       metadata
   1580 
   1581 .. _t_derived:
   1582 
   1583 Derived Types
   1584 -------------
   1585 
   1586 The real power in LLVM comes from the derived types in the system. This
   1587 is what allows a programmer to represent arrays, functions, pointers,
   1588 and other useful types. Each of these types contain one or more element
   1589 types which may be a primitive type, or another derived type. For
   1590 example, it is possible to have a two dimensional array, using an array
   1591 as the element type of another array.
   1592 
   1593 .. _t_aggregate:
   1594 
   1595 Aggregate Types
   1596 ^^^^^^^^^^^^^^^
   1597 
   1598 Aggregate Types are a subset of derived types that can contain multiple
   1599 member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
   1600 aggregate types. :ref:`Vectors <t_vector>` are not considered to be
   1601 aggregate types.
   1602 
   1603 .. _t_array:
   1604 
   1605 Array Type
   1606 ^^^^^^^^^^
   1607 
   1608 Overview:
   1609 """""""""
   1610 
   1611 The array type is a very simple derived type that arranges elements
   1612 sequentially in memory. The array type requires a size (number of
   1613 elements) and an underlying data type.
   1614 
   1615 Syntax:
   1616 """""""
   1617 
   1618 ::
   1619 
   1620       [<# elements> x <elementtype>]
   1621 
   1622 The number of elements is a constant integer value; ``elementtype`` may
   1623 be any type with a size.
   1624 
   1625 Examples:
   1626 """""""""
   1627 
   1628 +------------------+--------------------------------------+
   1629 | ``[40 x i32]``   | Array of 40 32-bit integer values.   |
   1630 +------------------+--------------------------------------+
   1631 | ``[41 x i32]``   | Array of 41 32-bit integer values.   |
   1632 +------------------+--------------------------------------+
   1633 | ``[4 x i8]``     | Array of 4 8-bit integer values.     |
   1634 +------------------+--------------------------------------+
   1635 
   1636 Here are some examples of multidimensional arrays:
   1637 
   1638 +-----------------------------+----------------------------------------------------------+
   1639 | ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
   1640 +-----------------------------+----------------------------------------------------------+
   1641 | ``[12 x [10 x float]]``     | 12x10 array of single precision floating point values.   |
   1642 +-----------------------------+----------------------------------------------------------+
   1643 | ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
   1644 +-----------------------------+----------------------------------------------------------+
   1645 
   1646 There is no restriction on indexing beyond the end of the array implied
   1647 by a static type (though there are restrictions on indexing beyond the
   1648 bounds of an allocated object in some cases). This means that
   1649 single-dimension 'variable sized array' addressing can be implemented in
   1650 LLVM with a zero length array type. An implementation of 'pascal style
   1651 arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
   1652 example.
   1653 
   1654 .. _t_function:
   1655 
   1656 Function Type
   1657 ^^^^^^^^^^^^^
   1658 
   1659 Overview:
   1660 """""""""
   1661 
   1662 The function type can be thought of as a function signature. It consists
   1663 of a return type and a list of formal parameter types. The return type
   1664 of a function type is a first class type or a void type.
   1665 
   1666 Syntax:
   1667 """""""
   1668 
   1669 ::
   1670 
   1671       <returntype> (<parameter list>)
   1672 
   1673 ...where '``<parameter list>``' is a comma-separated list of type
   1674 specifiers. Optionally, the parameter list may include a type ``...``,
   1675 which indicates that the function takes a variable number of arguments.
   1676 Variable argument functions can access their arguments with the
   1677 :ref:`variable argument handling intrinsic <int_varargs>` functions.
   1678 '``<returntype>``' is any type except :ref:`label <t_label>`.
   1679 
   1680 Examples:
   1681 """""""""
   1682 
   1683 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1684 | ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
   1685 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1686 | ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
   1687 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1688 | ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
   1689 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1690 | ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
   1691 +---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1692 
   1693 .. _t_struct:
   1694 
   1695 Structure Type
   1696 ^^^^^^^^^^^^^^
   1697 
   1698 Overview:
   1699 """""""""
   1700 
   1701 The structure type is used to represent a collection of data members
   1702 together in memory. The elements of a structure may be any type that has
   1703 a size.
   1704 
   1705 Structures in memory are accessed using '``load``' and '``store``' by
   1706 getting a pointer to a field with the '``getelementptr``' instruction.
   1707 Structures in registers are accessed using the '``extractvalue``' and
   1708 '``insertvalue``' instructions.
   1709 
   1710 Structures may optionally be "packed" structures, which indicate that
   1711 the alignment of the struct is one byte, and that there is no padding
   1712 between the elements. In non-packed structs, padding between field types
   1713 is inserted as defined by the DataLayout string in the module, which is
   1714 required to match what the underlying code generator expects.
   1715 
   1716 Structures can either be "literal" or "identified". A literal structure
   1717 is defined inline with other types (e.g. ``{i32, i32}*``) whereas
   1718 identified types are always defined at the top level with a name.
   1719 Literal types are uniqued by their contents and can never be recursive
   1720 or opaque since there is no way to write one. Identified types can be
   1721 recursive, can be opaqued, and are never uniqued.
   1722 
   1723 Syntax:
   1724 """""""
   1725 
   1726 ::
   1727 
   1728       %T1 = type { <type list> }     ; Identified normal struct type
   1729       %T2 = type <{ <type list> }>   ; Identified packed struct type
   1730 
   1731 Examples:
   1732 """""""""
   1733 
   1734 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1735 | ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
   1736 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1737 | ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
   1738 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1739 | ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
   1740 +------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
   1741 
   1742 .. _t_opaque:
   1743 
   1744 Opaque Structure Types
   1745 ^^^^^^^^^^^^^^^^^^^^^^
   1746 
   1747 Overview:
   1748 """""""""
   1749 
   1750 Opaque structure types are used to represent named structure types that
   1751 do not have a body specified. This corresponds (for example) to the C
   1752 notion of a forward declared structure.
   1753 
   1754 Syntax:
   1755 """""""
   1756 
   1757 ::
   1758 
   1759       %X = type opaque
   1760       %52 = type opaque
   1761 
   1762 Examples:
   1763 """""""""
   1764 
   1765 +--------------+-------------------+
   1766 | ``opaque``   | An opaque type.   |
   1767 +--------------+-------------------+
   1768 
   1769 .. _t_pointer:
   1770 
   1771 Pointer Type
   1772 ^^^^^^^^^^^^
   1773 
   1774 Overview:
   1775 """""""""
   1776 
   1777 The pointer type is used to specify memory locations. Pointers are
   1778 commonly used to reference objects in memory.
   1779 
   1780 Pointer types may have an optional address space attribute defining the
   1781 numbered address space where the pointed-to object resides. The default
   1782 address space is number zero. The semantics of non-zero address spaces
   1783 are target-specific.
   1784 
   1785 Note that LLVM does not permit pointers to void (``void*``) nor does it
   1786 permit pointers to labels (``label*``). Use ``i8*`` instead.
   1787 
   1788 Syntax:
   1789 """""""
   1790 
   1791 ::
   1792 
   1793       <type> *
   1794 
   1795 Examples:
   1796 """""""""
   1797 
   1798 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   1799 | ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
   1800 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   1801 | ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
   1802 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   1803 | ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
   1804 +-------------------------+--------------------------------------------------------------------------------------------------------------+
   1805 
   1806 .. _t_vector:
   1807 
   1808 Vector Type
   1809 ^^^^^^^^^^^
   1810 
   1811 Overview:
   1812 """""""""
   1813 
   1814 A vector type is a simple derived type that represents a vector of
   1815 elements. Vector types are used when multiple primitive data are
   1816 operated in parallel using a single instruction (SIMD). A vector type
   1817 requires a size (number of elements) and an underlying primitive data
   1818 type. Vector types are considered :ref:`first class <t_firstclass>`.
   1819 
   1820 Syntax:
   1821 """""""
   1822 
   1823 ::
   1824 
   1825       < <# elements> x <elementtype> >
   1826 
   1827 The number of elements is a constant integer value larger than 0;
   1828 elementtype may be any integer or floating point type, or a pointer to
   1829 these types. Vectors of size zero are not allowed.
   1830 
   1831 Examples:
   1832 """""""""
   1833 
   1834 +-------------------+--------------------------------------------------+
   1835 | ``<4 x i32>``     | Vector of 4 32-bit integer values.               |
   1836 +-------------------+--------------------------------------------------+
   1837 | ``<8 x float>``   | Vector of 8 32-bit floating-point values.        |
   1838 +-------------------+--------------------------------------------------+
   1839 | ``<2 x i64>``     | Vector of 2 64-bit integer values.               |
   1840 +-------------------+--------------------------------------------------+
   1841 | ``<4 x i64*>``    | Vector of 4 pointers to 64-bit integer values.   |
   1842 +-------------------+--------------------------------------------------+
   1843 
   1844 Constants
   1845 =========
   1846 
   1847 LLVM has several different basic types of constants. This section
   1848 describes them all and their syntax.
   1849 
   1850 Simple Constants
   1851 ----------------
   1852 
   1853 **Boolean constants**
   1854     The two strings '``true``' and '``false``' are both valid constants
   1855     of the ``i1`` type.
   1856 **Integer constants**
   1857     Standard integers (such as '4') are constants of the
   1858     :ref:`integer <t_integer>` type. Negative numbers may be used with
   1859     integer types.
   1860 **Floating point constants**
   1861     Floating point constants use standard decimal notation (e.g.
   1862     123.421), exponential notation (e.g. 1.23421e+2), or a more precise
   1863     hexadecimal notation (see below). The assembler requires the exact
   1864     decimal value of a floating-point constant. For example, the
   1865     assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
   1866     decimal in binary. Floating point constants must have a :ref:`floating
   1867     point <t_floating>` type.
   1868 **Null pointer constants**
   1869     The identifier '``null``' is recognized as a null pointer constant
   1870     and must be of :ref:`pointer type <t_pointer>`.
   1871 
   1872 The one non-intuitive notation for constants is the hexadecimal form of
   1873 floating point constants. For example, the form
   1874 '``double    0x432ff973cafa8000``' is equivalent to (but harder to read
   1875 than) '``double 4.5e+15``'. The only time hexadecimal floating point
   1876 constants are required (and the only time that they are generated by the
   1877 disassembler) is when a floating point constant must be emitted but it
   1878 cannot be represented as a decimal floating point number in a reasonable
   1879 number of digits. For example, NaN's, infinities, and other special
   1880 values are represented in their IEEE hexadecimal format so that assembly
   1881 and disassembly do not cause any bits to change in the constants.
   1882 
   1883 When using the hexadecimal form, constants of types half, float, and
   1884 double are represented using the 16-digit form shown above (which
   1885 matches the IEEE754 representation for double); half and float values
   1886 must, however, be exactly representable as IEEE 754 half and single
   1887 precision, respectively. Hexadecimal format is always used for long
   1888 double, and there are three forms of long double. The 80-bit format used
   1889 by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
   1890 128-bit format used by PowerPC (two adjacent doubles) is represented by
   1891 ``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
   1892 represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
   1893 will only work if they match the long double format on your target.
   1894 The IEEE 16-bit format (half precision) is represented by ``0xH``
   1895 followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
   1896 (sign bit at the left).
   1897 
   1898 There are no constants of type x86mmx.
   1899 
   1900 .. _complexconstants:
   1901 
   1902 Complex Constants
   1903 -----------------
   1904 
   1905 Complex constants are a (potentially recursive) combination of simple
   1906 constants and smaller complex constants.
   1907 
   1908 **Structure constants**
   1909     Structure constants are represented with notation similar to
   1910     structure type definitions (a comma separated list of elements,
   1911     surrounded by braces (``{}``)). For example:
   1912     "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
   1913     "``@G = external global i32``". Structure constants must have
   1914     :ref:`structure type <t_struct>`, and the number and types of elements
   1915     must match those specified by the type.
   1916 **Array constants**
   1917     Array constants are represented with notation similar to array type
   1918     definitions (a comma separated list of elements, surrounded by
   1919     square brackets (``[]``)). For example:
   1920     "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
   1921     :ref:`array type <t_array>`, and the number and types of elements must
   1922     match those specified by the type.
   1923 **Vector constants**
   1924     Vector constants are represented with notation similar to vector
   1925     type definitions (a comma separated list of elements, surrounded by
   1926     less-than/greater-than's (``<>``)). For example:
   1927     "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
   1928     must have :ref:`vector type <t_vector>`, and the number and types of
   1929     elements must match those specified by the type.
   1930 **Zero initialization**
   1931     The string '``zeroinitializer``' can be used to zero initialize a
   1932     value to zero of *any* type, including scalar and
   1933     :ref:`aggregate <t_aggregate>` types. This is often used to avoid
   1934     having to print large zero initializers (e.g. for large arrays) and
   1935     is always exactly equivalent to using explicit zero initializers.
   1936 **Metadata node**
   1937     A metadata node is a structure-like constant with :ref:`metadata
   1938     type <t_metadata>`. For example:
   1939     "``metadata !{ i32 0, metadata !"test" }``". Unlike other
   1940     constants that are meant to be interpreted as part of the
   1941     instruction stream, metadata is a place to attach additional
   1942     information such as debug info.
   1943 
   1944 Global Variable and Function Addresses
   1945 --------------------------------------
   1946 
   1947 The addresses of :ref:`global variables <globalvars>` and
   1948 :ref:`functions <functionstructure>` are always implicitly valid
   1949 (link-time) constants. These constants are explicitly referenced when
   1950 the :ref:`identifier for the global <identifiers>` is used and always have
   1951 :ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
   1952 file:
   1953 
   1954 .. code-block:: llvm
   1955 
   1956     @X = global i32 17
   1957     @Y = global i32 42
   1958     @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
   1959 
   1960 .. _undefvalues:
   1961 
   1962 Undefined Values
   1963 ----------------
   1964 
   1965 The string '``undef``' can be used anywhere a constant is expected, and
   1966 indicates that the user of the value may receive an unspecified
   1967 bit-pattern. Undefined values may be of any type (other than '``label``'
   1968 or '``void``') and be used anywhere a constant is permitted.
   1969 
   1970 Undefined values are useful because they indicate to the compiler that
   1971 the program is well defined no matter what value is used. This gives the
   1972 compiler more freedom to optimize. Here are some examples of
   1973 (potentially surprising) transformations that are valid (in pseudo IR):
   1974 
   1975 .. code-block:: llvm
   1976 
   1977       %A = add %X, undef
   1978       %B = sub %X, undef
   1979       %C = xor %X, undef
   1980     Safe:
   1981       %A = undef
   1982       %B = undef
   1983       %C = undef
   1984 
   1985 This is safe because all of the output bits are affected by the undef
   1986 bits. Any output bit can have a zero or one depending on the input bits.
   1987 
   1988 .. code-block:: llvm
   1989 
   1990       %A = or %X, undef
   1991       %B = and %X, undef
   1992     Safe:
   1993       %A = -1
   1994       %B = 0
   1995     Unsafe:
   1996       %A = undef
   1997       %B = undef
   1998 
   1999 These logical operations have bits that are not always affected by the
   2000 input. For example, if ``%X`` has a zero bit, then the output of the
   2001 '``and``' operation will always be a zero for that bit, no matter what
   2002 the corresponding bit from the '``undef``' is. As such, it is unsafe to
   2003 optimize or assume that the result of the '``and``' is '``undef``'.
   2004 However, it is safe to assume that all bits of the '``undef``' could be
   2005 0, and optimize the '``and``' to 0. Likewise, it is safe to assume that
   2006 all the bits of the '``undef``' operand to the '``or``' could be set,
   2007 allowing the '``or``' to be folded to -1.
   2008 
   2009 .. code-block:: llvm
   2010 
   2011       %A = select undef, %X, %Y
   2012       %B = select undef, 42, %Y
   2013       %C = select %X, %Y, undef
   2014     Safe:
   2015       %A = %X     (or %Y)
   2016       %B = 42     (or %Y)
   2017       %C = %Y
   2018     Unsafe:
   2019       %A = undef
   2020       %B = undef
   2021       %C = undef
   2022 
   2023 This set of examples shows that undefined '``select``' (and conditional
   2024 branch) conditions can go *either way*, but they have to come from one
   2025 of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
   2026 both known to have a clear low bit, then ``%A`` would have to have a
   2027 cleared low bit. However, in the ``%C`` example, the optimizer is
   2028 allowed to assume that the '``undef``' operand could be the same as
   2029 ``%Y``, allowing the whole '``select``' to be eliminated.
   2030 
   2031 .. code-block:: llvm
   2032 
   2033       %A = xor undef, undef
   2034 
   2035       %B = undef
   2036       %C = xor %B, %B
   2037 
   2038       %D = undef
   2039       %E = icmp lt %D, 4
   2040       %F = icmp gte %D, 4
   2041 
   2042     Safe:
   2043       %A = undef
   2044       %B = undef
   2045       %C = undef
   2046       %D = undef
   2047       %E = undef
   2048       %F = undef
   2049 
   2050 This example points out that two '``undef``' operands are not
   2051 necessarily the same. This can be surprising to people (and also matches
   2052 C semantics) where they assume that "``X^X``" is always zero, even if
   2053 ``X`` is undefined. This isn't true for a number of reasons, but the
   2054 short answer is that an '``undef``' "variable" can arbitrarily change
   2055 its value over its "live range". This is true because the variable
   2056 doesn't actually *have a live range*. Instead, the value is logically
   2057 read from arbitrary registers that happen to be around when needed, so
   2058 the value is not necessarily consistent over time. In fact, ``%A`` and
   2059 ``%C`` need to have the same semantics or the core LLVM "replace all
   2060 uses with" concept would not hold.
   2061 
   2062 .. code-block:: llvm
   2063 
   2064       %A = fdiv undef, %X
   2065       %B = fdiv %X, undef
   2066     Safe:
   2067       %A = undef
   2068     b: unreachable
   2069 
   2070 These examples show the crucial difference between an *undefined value*
   2071 and *undefined behavior*. An undefined value (like '``undef``') is
   2072 allowed to have an arbitrary bit-pattern. This means that the ``%A``
   2073 operation can be constant folded to '``undef``', because the '``undef``'
   2074 could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
   2075 However, in the second example, we can make a more aggressive
   2076 assumption: because the ``undef`` is allowed to be an arbitrary value,
   2077 we are allowed to assume that it could be zero. Since a divide by zero
   2078 has *undefined behavior*, we are allowed to assume that the operation
   2079 does not execute at all. This allows us to delete the divide and all
   2080 code after it. Because the undefined operation "can't happen", the
   2081 optimizer can assume that it occurs in dead code.
   2082 
   2083 .. code-block:: llvm
   2084 
   2085     a:  store undef -> %X
   2086     b:  store %X -> undef
   2087     Safe:
   2088     a: <deleted>
   2089     b: unreachable
   2090 
   2091 These examples reiterate the ``fdiv`` example: a store *of* an undefined
   2092 value can be assumed to not have any effect; we can assume that the
   2093 value is overwritten with bits that happen to match what was already
   2094 there. However, a store *to* an undefined location could clobber
   2095 arbitrary memory, therefore, it has undefined behavior.
   2096 
   2097 .. _poisonvalues:
   2098 
   2099 Poison Values
   2100 -------------
   2101 
   2102 Poison values are similar to :ref:`undef values <undefvalues>`, however
   2103 they also represent the fact that an instruction or constant expression
   2104 which cannot evoke side effects has nevertheless detected a condition
   2105 which results in undefined behavior.
   2106 
   2107 There is currently no way of representing a poison value in the IR; they
   2108 only exist when produced by operations such as :ref:`add <i_add>` with
   2109 the ``nsw`` flag.
   2110 
   2111 Poison value behavior is defined in terms of value *dependence*:
   2112 
   2113 -  Values other than :ref:`phi <i_phi>` nodes depend on their operands.
   2114 -  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
   2115    their dynamic predecessor basic block.
   2116 -  Function arguments depend on the corresponding actual argument values
   2117    in the dynamic callers of their functions.
   2118 -  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
   2119    instructions that dynamically transfer control back to them.
   2120 -  :ref:`Invoke <i_invoke>` instructions depend on the
   2121    :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
   2122    call instructions that dynamically transfer control back to them.
   2123 -  Non-volatile loads and stores depend on the most recent stores to all
   2124    of the referenced memory addresses, following the order in the IR
   2125    (including loads and stores implied by intrinsics such as
   2126    :ref:`@llvm.memcpy <int_memcpy>`.)
   2127 -  An instruction with externally visible side effects depends on the
   2128    most recent preceding instruction with externally visible side
   2129    effects, following the order in the IR. (This includes :ref:`volatile
   2130    operations <volatile>`.)
   2131 -  An instruction *control-depends* on a :ref:`terminator
   2132    instruction <terminators>` if the terminator instruction has
   2133    multiple successors and the instruction is always executed when
   2134    control transfers to one of the successors, and may not be executed
   2135    when control is transferred to another.
   2136 -  Additionally, an instruction also *control-depends* on a terminator
   2137    instruction if the set of instructions it otherwise depends on would
   2138    be different if the terminator had transferred control to a different
   2139    successor.
   2140 -  Dependence is transitive.
   2141 
   2142 Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
   2143 with the additional affect that any instruction which has a *dependence*
   2144 on a poison value has undefined behavior.
   2145 
   2146 Here are some examples:
   2147 
   2148 .. code-block:: llvm
   2149 
   2150     entry:
   2151       %poison = sub nuw i32 0, 1           ; Results in a poison value.
   2152       %still_poison = and i32 %poison, 0   ; 0, but also poison.
   2153       %poison_yet_again = getelementptr i32* @h, i32 %still_poison
   2154       store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
   2155 
   2156       store i32 %poison, i32* @g           ; Poison value stored to memory.
   2157       %poison2 = load i32* @g              ; Poison value loaded back from memory.
   2158 
   2159       store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
   2160 
   2161       %narrowaddr = bitcast i32* @g to i16*
   2162       %wideaddr = bitcast i32* @g to i64*
   2163       %poison3 = load i16* %narrowaddr     ; Returns a poison value.
   2164       %poison4 = load i64* %wideaddr       ; Returns a poison value.
   2165 
   2166       %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
   2167       br i1 %cmp, label %true, label %end  ; Branch to either destination.
   2168 
   2169     true:
   2170       store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
   2171                                            ; it has undefined behavior.
   2172       br label %end
   2173 
   2174     end:
   2175       %p = phi i32 [ 0, %entry ], [ 1, %true ]
   2176                                            ; Both edges into this PHI are
   2177                                            ; control-dependent on %cmp, so this
   2178                                            ; always results in a poison value.
   2179 
   2180       store volatile i32 0, i32* @g        ; This would depend on the store in %true
   2181                                            ; if %cmp is true, or the store in %entry
   2182                                            ; otherwise, so this is undefined behavior.
   2183 
   2184       br i1 %cmp, label %second_true, label %second_end
   2185                                            ; The same branch again, but this time the
   2186                                            ; true block doesn't have side effects.
   2187 
   2188     second_true:
   2189       ; No side effects!
   2190       ret void
   2191 
   2192     second_end:
   2193       store volatile i32 0, i32* @g        ; This time, the instruction always depends
   2194                                            ; on the store in %end. Also, it is
   2195                                            ; control-equivalent to %end, so this is
   2196                                            ; well-defined (ignoring earlier undefined
   2197                                            ; behavior in this example).
   2198 
   2199 .. _blockaddress:
   2200 
   2201 Addresses of Basic Blocks
   2202 -------------------------
   2203 
   2204 ``blockaddress(@function, %block)``
   2205 
   2206 The '``blockaddress``' constant computes the address of the specified
   2207 basic block in the specified function, and always has an ``i8*`` type.
   2208 Taking the address of the entry block is illegal.
   2209 
   2210 This value only has defined behavior when used as an operand to the
   2211 ':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
   2212 against null. Pointer equality tests between labels addresses results in
   2213 undefined behavior --- though, again, comparison against null is ok, and
   2214 no label is equal to the null pointer. This may be passed around as an
   2215 opaque pointer sized value as long as the bits are not inspected. This
   2216 allows ``ptrtoint`` and arithmetic to be performed on these values so
   2217 long as the original value is reconstituted before the ``indirectbr``
   2218 instruction.
   2219 
   2220 Finally, some targets may provide defined semantics when using the value
   2221 as the operand to an inline assembly, but that is target specific.
   2222 
   2223 .. _constantexprs:
   2224 
   2225 Constant Expressions
   2226 --------------------
   2227 
   2228 Constant expressions are used to allow expressions involving other
   2229 constants to be used as constants. Constant expressions may be of any
   2230 :ref:`first class <t_firstclass>` type and may involve any LLVM operation
   2231 that does not have side effects (e.g. load and call are not supported).
   2232 The following is the syntax for constant expressions:
   2233 
   2234 ``trunc (CST to TYPE)``
   2235     Truncate a constant to another type. The bit size of CST must be
   2236     larger than the bit size of TYPE. Both types must be integers.
   2237 ``zext (CST to TYPE)``
   2238     Zero extend a constant to another type. The bit size of CST must be
   2239     smaller than the bit size of TYPE. Both types must be integers.
   2240 ``sext (CST to TYPE)``
   2241     Sign extend a constant to another type. The bit size of CST must be
   2242     smaller than the bit size of TYPE. Both types must be integers.
   2243 ``fptrunc (CST to TYPE)``
   2244     Truncate a floating point constant to another floating point type.
   2245     The size of CST must be larger than the size of TYPE. Both types
   2246     must be floating point.
   2247 ``fpext (CST to TYPE)``
   2248     Floating point extend a constant to another type. The size of CST
   2249     must be smaller or equal to the size of TYPE. Both types must be
   2250     floating point.
   2251 ``fptoui (CST to TYPE)``
   2252     Convert a floating point constant to the corresponding unsigned
   2253     integer constant. TYPE must be a scalar or vector integer type. CST
   2254     must be of scalar or vector floating point type. Both CST and TYPE
   2255     must be scalars, or vectors of the same number of elements. If the
   2256     value won't fit in the integer type, the results are undefined.
   2257 ``fptosi (CST to TYPE)``
   2258     Convert a floating point constant to the corresponding signed
   2259     integer constant. TYPE must be a scalar or vector integer type. CST
   2260     must be of scalar or vector floating point type. Both CST and TYPE
   2261     must be scalars, or vectors of the same number of elements. If the
   2262     value won't fit in the integer type, the results are undefined.
   2263 ``uitofp (CST to TYPE)``
   2264     Convert an unsigned integer constant to the corresponding floating
   2265     point constant. TYPE must be a scalar or vector floating point type.
   2266     CST must be of scalar or vector integer type. Both CST and TYPE must
   2267     be scalars, or vectors of the same number of elements. If the value
   2268     won't fit in the floating point type, the results are undefined.
   2269 ``sitofp (CST to TYPE)``
   2270     Convert a signed integer constant to the corresponding floating
   2271     point constant. TYPE must be a scalar or vector floating point type.
   2272     CST must be of scalar or vector integer type. Both CST and TYPE must
   2273     be scalars, or vectors of the same number of elements. If the value
   2274     won't fit in the floating point type, the results are undefined.
   2275 ``ptrtoint (CST to TYPE)``
   2276     Convert a pointer typed constant to the corresponding integer
   2277     constant. ``TYPE`` must be an integer type. ``CST`` must be of
   2278     pointer type. The ``CST`` value is zero extended, truncated, or
   2279     unchanged to make it fit in ``TYPE``.
   2280 ``inttoptr (CST to TYPE)``
   2281     Convert an integer constant to a pointer constant. TYPE must be a
   2282     pointer type. CST must be of integer type. The CST value is zero
   2283     extended, truncated, or unchanged to make it fit in a pointer size.
   2284     This one is *really* dangerous!
   2285 ``bitcast (CST to TYPE)``
   2286     Convert a constant, CST, to another TYPE. The constraints of the
   2287     operands are the same as those for the :ref:`bitcast
   2288     instruction <i_bitcast>`.
   2289 ``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
   2290     Perform the :ref:`getelementptr operation <i_getelementptr>` on
   2291     constants. As with the :ref:`getelementptr <i_getelementptr>`
   2292     instruction, the index list may have zero or more indexes, which are
   2293     required to make sense for the type of "CSTPTR".
   2294 ``select (COND, VAL1, VAL2)``
   2295     Perform the :ref:`select operation <i_select>` on constants.
   2296 ``icmp COND (VAL1, VAL2)``
   2297     Performs the :ref:`icmp operation <i_icmp>` on constants.
   2298 ``fcmp COND (VAL1, VAL2)``
   2299     Performs the :ref:`fcmp operation <i_fcmp>` on constants.
   2300 ``extractelement (VAL, IDX)``
   2301     Perform the :ref:`extractelement operation <i_extractelement>` on
   2302     constants.
   2303 ``insertelement (VAL, ELT, IDX)``
   2304     Perform the :ref:`insertelement operation <i_insertelement>` on
   2305     constants.
   2306 ``shufflevector (VEC1, VEC2, IDXMASK)``
   2307     Perform the :ref:`shufflevector operation <i_shufflevector>` on
   2308     constants.
   2309 ``extractvalue (VAL, IDX0, IDX1, ...)``
   2310     Perform the :ref:`extractvalue operation <i_extractvalue>` on
   2311     constants. The index list is interpreted in a similar manner as
   2312     indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
   2313     least one index value must be specified.
   2314 ``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
   2315     Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
   2316     The index list is interpreted in a similar manner as indices in a
   2317     ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
   2318     value must be specified.
   2319 ``OPCODE (LHS, RHS)``
   2320     Perform the specified operation of the LHS and RHS constants. OPCODE
   2321     may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
   2322     binary <bitwiseops>` operations. The constraints on operands are
   2323     the same as those for the corresponding instruction (e.g. no bitwise
   2324     operations on floating point values are allowed).
   2325 
   2326 Other Values
   2327 ============
   2328 
   2329 .. _inlineasmexprs:
   2330 
   2331 Inline Assembler Expressions
   2332 ----------------------------
   2333 
   2334 LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
   2335 Inline Assembly <moduleasm>`) through the use of a special value. This
   2336 value represents the inline assembler as a string (containing the
   2337 instructions to emit), a list of operand constraints (stored as a
   2338 string), a flag that indicates whether or not the inline asm expression
   2339 has side effects, and a flag indicating whether the function containing
   2340 the asm needs to align its stack conservatively. An example inline
   2341 assembler expression is:
   2342 
   2343 .. code-block:: llvm
   2344 
   2345     i32 (i32) asm "bswap $0", "=r,r"
   2346 
   2347 Inline assembler expressions may **only** be used as the callee operand
   2348 of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
   2349 Thus, typically we have:
   2350 
   2351 .. code-block:: llvm
   2352 
   2353     %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
   2354 
   2355 Inline asms with side effects not visible in the constraint list must be
   2356 marked as having side effects. This is done through the use of the
   2357 '``sideeffect``' keyword, like so:
   2358 
   2359 .. code-block:: llvm
   2360 
   2361     call void asm sideeffect "eieio", ""()
   2362 
   2363 In some cases inline asms will contain code that will not work unless
   2364 the stack is aligned in some way, such as calls or SSE instructions on
   2365 x86, yet will not contain code that does that alignment within the asm.
   2366 The compiler should make conservative assumptions about what the asm
   2367 might contain and should generate its usual stack alignment code in the
   2368 prologue if the '``alignstack``' keyword is present:
   2369 
   2370 .. code-block:: llvm
   2371 
   2372     call void asm alignstack "eieio", ""()
   2373 
   2374 Inline asms also support using non-standard assembly dialects. The
   2375 assumed dialect is ATT. When the '``inteldialect``' keyword is present,
   2376 the inline asm is using the Intel dialect. Currently, ATT and Intel are
   2377 the only supported dialects. An example is:
   2378 
   2379 .. code-block:: llvm
   2380 
   2381     call void asm inteldialect "eieio", ""()
   2382 
   2383 If multiple keywords appear the '``sideeffect``' keyword must come
   2384 first, the '``alignstack``' keyword second and the '``inteldialect``'
   2385 keyword last.
   2386 
   2387 Inline Asm Metadata
   2388 ^^^^^^^^^^^^^^^^^^^
   2389 
   2390 The call instructions that wrap inline asm nodes may have a
   2391 "``!srcloc``" MDNode attached to it that contains a list of constant
   2392 integers. If present, the code generator will use the integer as the
   2393 location cookie value when report errors through the ``LLVMContext``
   2394 error reporting mechanisms. This allows a front-end to correlate backend
   2395 errors that occur with inline asm back to the source code that produced
   2396 it. For example:
   2397 
   2398 .. code-block:: llvm
   2399 
   2400     call void asm sideeffect "something bad", ""(), !srcloc !42
   2401     ...
   2402     !42 = !{ i32 1234567 }
   2403 
   2404 It is up to the front-end to make sense of the magic numbers it places
   2405 in the IR. If the MDNode contains multiple constants, the code generator
   2406 will use the one that corresponds to the line of the asm that the error
   2407 occurs on.
   2408 
   2409 .. _metadata:
   2410 
   2411 Metadata Nodes and Metadata Strings
   2412 -----------------------------------
   2413 
   2414 LLVM IR allows metadata to be attached to instructions in the program
   2415 that can convey extra information about the code to the optimizers and
   2416 code generator. One example application of metadata is source-level
   2417 debug information. There are two metadata primitives: strings and nodes.
   2418 All metadata has the ``metadata`` type and is identified in syntax by a
   2419 preceding exclamation point ('``!``').
   2420 
   2421 A metadata string is a string surrounded by double quotes. It can
   2422 contain any character by escaping non-printable characters with
   2423 "``\xx``" where "``xx``" is the two digit hex code. For example:
   2424 "``!"test\00"``".
   2425 
   2426 Metadata nodes are represented with notation similar to structure
   2427 constants (a comma separated list of elements, surrounded by braces and
   2428 preceded by an exclamation point). Metadata nodes can have any values as
   2429 their operand. For example:
   2430 
   2431 .. code-block:: llvm
   2432 
   2433     !{ metadata !"test\00", i32 10}
   2434 
   2435 A :ref:`named metadata <namedmetadatastructure>` is a collection of
   2436 metadata nodes, which can be looked up in the module symbol table. For
   2437 example:
   2438 
   2439 .. code-block:: llvm
   2440 
   2441     !foo =  metadata !{!4, !3}
   2442 
   2443 Metadata can be used as function arguments. Here ``llvm.dbg.value``
   2444 function is using two metadata arguments:
   2445 
   2446 .. code-block:: llvm
   2447 
   2448     call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
   2449 
   2450 Metadata can be attached with an instruction. Here metadata ``!21`` is
   2451 attached to the ``add`` instruction using the ``!dbg`` identifier:
   2452 
   2453 .. code-block:: llvm
   2454 
   2455     %indvar.next = add i64 %indvar, 1, !dbg !21
   2456 
   2457 More information about specific metadata nodes recognized by the
   2458 optimizers and code generator is found below.
   2459 
   2460 '``tbaa``' Metadata
   2461 ^^^^^^^^^^^^^^^^^^^
   2462 
   2463 In LLVM IR, memory does not have types, so LLVM's own type system is not
   2464 suitable for doing TBAA. Instead, metadata is added to the IR to
   2465 describe a type system of a higher level language. This can be used to
   2466 implement typical C/C++ TBAA, but it can also be used to implement
   2467 custom alias analysis behavior for other languages.
   2468 
   2469 The current metadata format is very simple. TBAA metadata nodes have up
   2470 to three fields, e.g.:
   2471 
   2472 .. code-block:: llvm
   2473 
   2474     !0 = metadata !{ metadata !"an example type tree" }
   2475     !1 = metadata !{ metadata !"int", metadata !0 }
   2476     !2 = metadata !{ metadata !"float", metadata !0 }
   2477     !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
   2478 
   2479 The first field is an identity field. It can be any value, usually a
   2480 metadata string, which uniquely identifies the type. The most important
   2481 name in the tree is the name of the root node. Two trees with different
   2482 root node names are entirely disjoint, even if they have leaves with
   2483 common names.
   2484 
   2485 The second field identifies the type's parent node in the tree, or is
   2486 null or omitted for a root node. A type is considered to alias all of
   2487 its descendants and all of its ancestors in the tree. Also, a type is
   2488 considered to alias all types in other trees, so that bitcode produced
   2489 from multiple front-ends is handled conservatively.
   2490 
   2491 If the third field is present, it's an integer which if equal to 1
   2492 indicates that the type is "constant" (meaning
   2493 ``pointsToConstantMemory`` should return true; see `other useful
   2494 AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
   2495 
   2496 '``tbaa.struct``' Metadata
   2497 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   2498 
   2499 The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
   2500 aggregate assignment operations in C and similar languages, however it
   2501 is defined to copy a contiguous region of memory, which is more than
   2502 strictly necessary for aggregate types which contain holes due to
   2503 padding. Also, it doesn't contain any TBAA information about the fields
   2504 of the aggregate.
   2505 
   2506 ``!tbaa.struct`` metadata can describe which memory subregions in a
   2507 memcpy are padding and what the TBAA tags of the struct are.
   2508 
   2509 The current metadata format is very simple. ``!tbaa.struct`` metadata
   2510 nodes are a list of operands which are in conceptual groups of three.
   2511 For each group of three, the first operand gives the byte offset of a
   2512 field in bytes, the second gives its size in bytes, and the third gives
   2513 its tbaa tag. e.g.:
   2514 
   2515 .. code-block:: llvm
   2516 
   2517     !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
   2518 
   2519 This describes a struct with two fields. The first is at offset 0 bytes
   2520 with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
   2521 and has size 4 bytes and has tbaa tag !2.
   2522 
   2523 Note that the fields need not be contiguous. In this example, there is a
   2524 4 byte gap between the two fields. This gap represents padding which
   2525 does not carry useful data and need not be preserved.
   2526 
   2527 '``fpmath``' Metadata
   2528 ^^^^^^^^^^^^^^^^^^^^^
   2529 
   2530 ``fpmath`` metadata may be attached to any instruction of floating point
   2531 type. It can be used to express the maximum acceptable error in the
   2532 result of that instruction, in ULPs, thus potentially allowing the
   2533 compiler to use a more efficient but less accurate method of computing
   2534 it. ULP is defined as follows:
   2535 
   2536     If ``x`` is a real number that lies between two finite consecutive
   2537     floating-point numbers ``a`` and ``b``, without being equal to one
   2538     of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
   2539     distance between the two non-equal finite floating-point numbers
   2540     nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
   2541 
   2542 The metadata node shall consist of a single positive floating point
   2543 number representing the maximum relative error, for example:
   2544 
   2545 .. code-block:: llvm
   2546 
   2547     !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
   2548 
   2549 '``range``' Metadata
   2550 ^^^^^^^^^^^^^^^^^^^^
   2551 
   2552 ``range`` metadata may be attached only to loads of integer types. It
   2553 expresses the possible ranges the loaded value is in. The ranges are
   2554 represented with a flattened list of integers. The loaded value is known
   2555 to be in the union of the ranges defined by each consecutive pair. Each
   2556 pair has the following properties:
   2557 
   2558 -  The type must match the type loaded by the instruction.
   2559 -  The pair ``a,b`` represents the range ``[a,b)``.
   2560 -  Both ``a`` and ``b`` are constants.
   2561 -  The range is allowed to wrap.
   2562 -  The range should not represent the full or empty set. That is,
   2563    ``a!=b``.
   2564 
   2565 In addition, the pairs must be in signed order of the lower bound and
   2566 they must be non-contiguous.
   2567 
   2568 Examples:
   2569 
   2570 .. code-block:: llvm
   2571 
   2572       %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
   2573       %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
   2574       %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
   2575       %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
   2576     ...
   2577     !0 = metadata !{ i8 0, i8 2 }
   2578     !1 = metadata !{ i8 255, i8 2 }
   2579     !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
   2580     !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
   2581 
   2582 '``llvm.loop``'
   2583 ^^^^^^^^^^^^^^^
   2584 
   2585 It is sometimes useful to attach information to loop constructs. Currently,
   2586 loop metadata is implemented as metadata attached to the branch instruction
   2587 in the loop latch block. This type of metadata refer to a metadata node that is
   2588 guaranteed to be separate for each loop. The loop identifier metadata is
   2589 specified with the name ``llvm.loop``.
   2590 
   2591 The loop identifier metadata is implemented using a metadata that refers to
   2592 itself to avoid merging it with any other identifier metadata, e.g.,
   2593 during module linkage or function inlining. That is, each loop should refer
   2594 to their own identification metadata even if they reside in separate functions.
   2595 The following example contains loop identifier metadata for two separate loop
   2596 constructs:
   2597 
   2598 .. code-block:: llvm
   2599 
   2600     !0 = metadata !{ metadata !0 }
   2601     !1 = metadata !{ metadata !1 }
   2602 
   2603 The loop identifier metadata can be used to specify additional per-loop
   2604 metadata. Any operands after the first operand can be treated as user-defined
   2605 metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
   2606 by the loop vectorizer to indicate how many times to unroll the loop:
   2607 
   2608 .. code-block:: llvm
   2609 
   2610       br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
   2611     ...
   2612     !0 = metadata !{ metadata !0, metadata !1 }
   2613     !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
   2614 
   2615 '``llvm.mem``'
   2616 ^^^^^^^^^^^^^^^
   2617 
   2618 Metadata types used to annotate memory accesses with information helpful
   2619 for optimizations are prefixed with ``llvm.mem``.
   2620 
   2621 '``llvm.mem.parallel_loop_access``' Metadata
   2622 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   2623 
   2624 For a loop to be parallel, in addition to using
   2625 the ``llvm.loop`` metadata to mark the loop latch branch instruction,
   2626 also all of the memory accessing instructions in the loop body need to be
   2627 marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
   2628 is at least one memory accessing instruction not marked with the metadata,
   2629 the loop must be considered a sequential loop. This causes parallel loops to be
   2630 converted to sequential loops due to optimization passes that are unaware of
   2631 the parallel semantics and that insert new memory instructions to the loop
   2632 body.
   2633 
   2634 Example of a loop that is considered parallel due to its correct use of
   2635 both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
   2636 metadata types that refer to the same loop identifier metadata.
   2637 
   2638 .. code-block:: llvm
   2639 
   2640    for.body:
   2641      ...
   2642      %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
   2643      ...
   2644      store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
   2645      ...
   2646      br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
   2647 
   2648    for.end:
   2649    ...
   2650    !0 = metadata !{ metadata !0 }
   2651 
   2652 It is also possible to have nested parallel loops. In that case the
   2653 memory accesses refer to a list of loop identifier metadata nodes instead of
   2654 the loop identifier metadata node directly:
   2655 
   2656 .. code-block:: llvm
   2657 
   2658    outer.for.body:
   2659    ...
   2660 
   2661    inner.for.body:
   2662      ...
   2663      %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
   2664      ...
   2665      store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
   2666      ...
   2667      br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
   2668 
   2669    inner.for.end:
   2670      ...
   2671      %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
   2672      ...
   2673      store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
   2674      ...
   2675      br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
   2676 
   2677    outer.for.end:                                          ; preds = %for.body
   2678    ...
   2679    !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
   2680    !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
   2681    !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
   2682 
   2683 '``llvm.vectorizer``'
   2684 ^^^^^^^^^^^^^^^^^^^^^
   2685 
   2686 Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
   2687 vectorization parameters such as vectorization factor and unroll factor.
   2688 
   2689 ``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
   2690 loop identification metadata.
   2691 
   2692 '``llvm.vectorizer.unroll``' Metadata
   2693 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   2694 
   2695 This metadata instructs the loop vectorizer to unroll the specified
   2696 loop exactly ``N`` times.
   2697 
   2698 The first operand is the string ``llvm.vectorizer.unroll`` and the second
   2699 operand is an integer specifying the unroll factor. For example:
   2700 
   2701 .. code-block:: llvm
   2702 
   2703    !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
   2704 
   2705 Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
   2706 loop.
   2707 
   2708 If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
   2709 determined automatically.
   2710 
   2711 '``llvm.vectorizer.width``' Metadata
   2712 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   2713 
   2714 This metadata sets the target width of the vectorizer to ``N``. Without
   2715 this metadata, the vectorizer will choose a width automatically.
   2716 Regardless of this metadata, the vectorizer will only vectorize loops if
   2717 it believes it is valid to do so.
   2718 
   2719 The first operand is the string ``llvm.vectorizer.width`` and the second
   2720 operand is an integer specifying the width. For example:
   2721 
   2722 .. code-block:: llvm
   2723 
   2724    !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
   2725 
   2726 Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
   2727 loop.
   2728 
   2729 If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
   2730 automatically.
   2731 
   2732 Module Flags Metadata
   2733 =====================
   2734 
   2735 Information about the module as a whole is difficult to convey to LLVM's
   2736 subsystems. The LLVM IR isn't sufficient to transmit this information.
   2737 The ``llvm.module.flags`` named metadata exists in order to facilitate
   2738 this. These flags are in the form of key / value pairs --- much like a
   2739 dictionary --- making it easy for any subsystem who cares about a flag to
   2740 look it up.
   2741 
   2742 The ``llvm.module.flags`` metadata contains a list of metadata triplets.
   2743 Each triplet has the following form:
   2744 
   2745 -  The first element is a *behavior* flag, which specifies the behavior
   2746    when two (or more) modules are merged together, and it encounters two
   2747    (or more) metadata with the same ID. The supported behaviors are
   2748    described below.
   2749 -  The second element is a metadata string that is a unique ID for the
   2750    metadata. Each module may only have one flag entry for each unique ID (not
   2751    including entries with the **Require** behavior).
   2752 -  The third element is the value of the flag.
   2753 
   2754 When two (or more) modules are merged together, the resulting
   2755 ``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
   2756 each unique metadata ID string, there will be exactly one entry in the merged
   2757 modules ``llvm.module.flags`` metadata table, and the value for that entry will
   2758 be determined by the merge behavior flag, as described below. The only exception
   2759 is that entries with the *Require* behavior are always preserved.
   2760 
   2761 The following behaviors are supported:
   2762 
   2763 .. list-table::
   2764    :header-rows: 1
   2765    :widths: 10 90
   2766 
   2767    * - Value
   2768      - Behavior
   2769 
   2770    * - 1
   2771      - **Error**
   2772            Emits an error if two values disagree, otherwise the resulting value
   2773            is that of the operands.
   2774 
   2775    * - 2
   2776      - **Warning**
   2777            Emits a warning if two values disagree. The result value will be the
   2778            operand for the flag from the first module being linked.
   2779 
   2780    * - 3
   2781      - **Require**
   2782            Adds a requirement that another module flag be present and have a
   2783            specified value after linking is performed. The value must be a
   2784            metadata pair, where the first element of the pair is the ID of the
   2785            module flag to be restricted, and the second element of the pair is
   2786            the value the module flag should be restricted to. This behavior can
   2787            be used to restrict the allowable results (via triggering of an
   2788            error) of linking IDs with the **Override** behavior.
   2789 
   2790    * - 4
   2791      - **Override**
   2792            Uses the specified value, regardless of the behavior or value of the
   2793            other module. If both modules specify **Override**, but the values
   2794            differ, an error will be emitted.
   2795 
   2796    * - 5
   2797      - **Append**
   2798            Appends the two values, which are required to be metadata nodes.
   2799 
   2800    * - 6
   2801      - **AppendUnique**
   2802            Appends the two values, which are required to be metadata
   2803            nodes. However, duplicate entries in the second list are dropped
   2804            during the append operation.
   2805 
   2806 It is an error for a particular unique flag ID to have multiple behaviors,
   2807 except in the case of **Require** (which adds restrictions on another metadata
   2808 value) or **Override**.
   2809 
   2810 An example of module flags:
   2811 
   2812 .. code-block:: llvm
   2813 
   2814     !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
   2815     !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
   2816     !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
   2817     !3 = metadata !{ i32 3, metadata !"qux",
   2818       metadata !{
   2819         metadata !"foo", i32 1
   2820       }
   2821     }
   2822     !llvm.module.flags = !{ !0, !1, !2, !3 }
   2823 
   2824 -  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
   2825    if two or more ``!"foo"`` flags are seen is to emit an error if their
   2826    values are not equal.
   2827 
   2828 -  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
   2829    behavior if two or more ``!"bar"`` flags are seen is to use the value
   2830    '37'.
   2831 
   2832 -  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
   2833    behavior if two or more ``!"qux"`` flags are seen is to emit a
   2834    warning if their values are not equal.
   2835 
   2836 -  Metadata ``!3`` has the ID ``!"qux"`` and the value:
   2837 
   2838    ::
   2839 
   2840        metadata !{ metadata !"foo", i32 1 }
   2841 
   2842    The behavior is to emit an error if the ``llvm.module.flags`` does not
   2843    contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
   2844    performed.
   2845 
   2846 Objective-C Garbage Collection Module Flags Metadata
   2847 ----------------------------------------------------
   2848 
   2849 On the Mach-O platform, Objective-C stores metadata about garbage
   2850 collection in a special section called "image info". The metadata
   2851 consists of a version number and a bitmask specifying what types of
   2852 garbage collection are supported (if any) by the file. If two or more
   2853 modules are linked together their garbage collection metadata needs to
   2854 be merged rather than appended together.
   2855 
   2856 The Objective-C garbage collection module flags metadata consists of the
   2857 following key-value pairs:
   2858 
   2859 .. list-table::
   2860    :header-rows: 1
   2861    :widths: 30 70
   2862 
   2863    * - Key
   2864      - Value
   2865 
   2866    * - ``Objective-C Version``
   2867      - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
   2868 
   2869    * - ``Objective-C Image Info Version``
   2870      - **[Required]** --- The version of the image info section. Currently
   2871        always 0.
   2872 
   2873    * - ``Objective-C Image Info Section``
   2874      - **[Required]** --- The section to place the metadata. Valid values are
   2875        ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
   2876        ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
   2877        Objective-C ABI version 2.
   2878 
   2879    * - ``Objective-C Garbage Collection``
   2880      - **[Required]** --- Specifies whether garbage collection is supported or
   2881        not. Valid values are 0, for no garbage collection, and 2, for garbage
   2882        collection supported.
   2883 
   2884    * - ``Objective-C GC Only``
   2885      - **[Optional]** --- Specifies that only garbage collection is supported.
   2886        If present, its value must be 6. This flag requires that the
   2887        ``Objective-C Garbage Collection`` flag have the value 2.
   2888 
   2889 Some important flag interactions:
   2890 
   2891 -  If a module with ``Objective-C Garbage Collection`` set to 0 is
   2892    merged with a module with ``Objective-C Garbage Collection`` set to
   2893    2, then the resulting module has the
   2894    ``Objective-C Garbage Collection`` flag set to 0.
   2895 -  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
   2896    merged with a module with ``Objective-C GC Only`` set to 6.
   2897 
   2898 Automatic Linker Flags Module Flags Metadata
   2899 --------------------------------------------
   2900 
   2901 Some targets support embedding flags to the linker inside individual object
   2902 files. Typically this is used in conjunction with language extensions which
   2903 allow source files to explicitly declare the libraries they depend on, and have
   2904 these automatically be transmitted to the linker via object files.
   2905 
   2906 These flags are encoded in the IR using metadata in the module flags section,
   2907 using the ``Linker Options`` key. The merge behavior for this flag is required
   2908 to be ``AppendUnique``, and the value for the key is expected to be a metadata
   2909 node which should be a list of other metadata nodes, each of which should be a
   2910 list of metadata strings defining linker options.
   2911 
   2912 For example, the following metadata section specifies two separate sets of
   2913 linker options, presumably to link against ``libz`` and the ``Cocoa``
   2914 framework::
   2915 
   2916     !0 = metadata !{ i32 6, metadata !"Linker Options",
   2917        metadata !{
   2918           metadata !{ metadata !"-lz" },
   2919           metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
   2920     !llvm.module.flags = !{ !0 }
   2921 
   2922 The metadata encoding as lists of lists of options, as opposed to a collapsed
   2923 list of options, is chosen so that the IR encoding can use multiple option
   2924 strings to specify e.g., a single library, while still having that specifier be
   2925 preserved as an atomic element that can be recognized by a target specific
   2926 assembly writer or object file emitter.
   2927 
   2928 Each individual option is required to be either a valid option for the target's
   2929 linker, or an option that is reserved by the target specific assembly writer or
   2930 object file emitter. No other aspect of these options is defined by the IR.
   2931 
   2932 .. _intrinsicglobalvariables:
   2933 
   2934 Intrinsic Global Variables
   2935 ==========================
   2936 
   2937 LLVM has a number of "magic" global variables that contain data that
   2938 affect code generation or other IR semantics. These are documented here.
   2939 All globals of this sort should have a section specified as
   2940 "``llvm.metadata``". This section and all globals that start with
   2941 "``llvm.``" are reserved for use by LLVM.
   2942 
   2943 .. _gv_llvmused:
   2944 
   2945 The '``llvm.used``' Global Variable
   2946 -----------------------------------
   2947 
   2948 The ``@llvm.used`` global is an array which has
   2949 :ref:`appending linkage <linkage_appending>`. This array contains a list of
   2950 pointers to named global variables, functions and aliases which may optionally
   2951 have a pointer cast formed of bitcast or getelementptr. For example, a legal
   2952 use of it is:
   2953 
   2954 .. code-block:: llvm
   2955 
   2956     @X = global i8 4
   2957     @Y = global i32 123
   2958 
   2959     @llvm.used = appending global [2 x i8*] [
   2960        i8* @X,
   2961        i8* bitcast (i32* @Y to i8*)
   2962     ], section "llvm.metadata"
   2963 
   2964 If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
   2965 and linker are required to treat the symbol as if there is a reference to the
   2966 symbol that it cannot see (which is why they have to be named). For example, if
   2967 a variable has internal linkage and no references other than that from the
   2968 ``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
   2969 references from inline asms and other things the compiler cannot "see", and
   2970 corresponds to "``attribute((used))``" in GNU C.
   2971 
   2972 On some targets, the code generator must emit a directive to the
   2973 assembler or object file to prevent the assembler and linker from
   2974 molesting the symbol.
   2975 
   2976 .. _gv_llvmcompilerused:
   2977 
   2978 The '``llvm.compiler.used``' Global Variable
   2979 --------------------------------------------
   2980 
   2981 The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
   2982 directive, except that it only prevents the compiler from touching the
   2983 symbol. On targets that support it, this allows an intelligent linker to
   2984 optimize references to the symbol without being impeded as it would be
   2985 by ``@llvm.used``.
   2986 
   2987 This is a rare construct that should only be used in rare circumstances,
   2988 and should not be exposed to source languages.
   2989 
   2990 .. _gv_llvmglobalctors:
   2991 
   2992 The '``llvm.global_ctors``' Global Variable
   2993 -------------------------------------------
   2994 
   2995 .. code-block:: llvm
   2996 
   2997     %0 = type { i32, void ()* }
   2998     @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
   2999 
   3000 The ``@llvm.global_ctors`` array contains a list of constructor
   3001 functions and associated priorities. The functions referenced by this
   3002 array will be called in ascending order of priority (i.e. lowest first)
   3003 when the module is loaded. The order of functions with the same priority
   3004 is not defined.
   3005 
   3006 .. _llvmglobaldtors:
   3007 
   3008 The '``llvm.global_dtors``' Global Variable
   3009 -------------------------------------------
   3010 
   3011 .. code-block:: llvm
   3012 
   3013     %0 = type { i32, void ()* }
   3014     @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
   3015 
   3016 The ``@llvm.global_dtors`` array contains a list of destructor functions
   3017 and associated priorities. The functions referenced by this array will
   3018 be called in descending order of priority (i.e. highest first) when the
   3019 module is loaded. The order of functions with the same priority is not
   3020 defined.
   3021 
   3022 Instruction Reference
   3023 =====================
   3024 
   3025 The LLVM instruction set consists of several different classifications
   3026 of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
   3027 instructions <binaryops>`, :ref:`bitwise binary
   3028 instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
   3029 :ref:`other instructions <otherops>`.
   3030 
   3031 .. _terminators:
   3032 
   3033 Terminator Instructions
   3034 -----------------------
   3035 
   3036 As mentioned :ref:`previously <functionstructure>`, every basic block in a
   3037 program ends with a "Terminator" instruction, which indicates which
   3038 block should be executed after the current block is finished. These
   3039 terminator instructions typically yield a '``void``' value: they produce
   3040 control flow, not values (the one exception being the
   3041 ':ref:`invoke <i_invoke>`' instruction).
   3042 
   3043 The terminator instructions are: ':ref:`ret <i_ret>`',
   3044 ':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
   3045 ':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
   3046 ':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
   3047 
   3048 .. _i_ret:
   3049 
   3050 '``ret``' Instruction
   3051 ^^^^^^^^^^^^^^^^^^^^^
   3052 
   3053 Syntax:
   3054 """""""
   3055 
   3056 ::
   3057 
   3058       ret <type> <value>       ; Return a value from a non-void function
   3059       ret void                 ; Return from void function
   3060 
   3061 Overview:
   3062 """""""""
   3063 
   3064 The '``ret``' instruction is used to return control flow (and optionally
   3065 a value) from a function back to the caller.
   3066 
   3067 There are two forms of the '``ret``' instruction: one that returns a
   3068 value and then causes control flow, and one that just causes control
   3069 flow to occur.
   3070 
   3071 Arguments:
   3072 """"""""""
   3073 
   3074 The '``ret``' instruction optionally accepts a single argument, the
   3075 return value. The type of the return value must be a ':ref:`first
   3076 class <t_firstclass>`' type.
   3077 
   3078 A function is not :ref:`well formed <wellformed>` if it it has a non-void
   3079 return type and contains a '``ret``' instruction with no return value or
   3080 a return value with a type that does not match its type, or if it has a
   3081 void return type and contains a '``ret``' instruction with a return
   3082 value.
   3083 
   3084 Semantics:
   3085 """"""""""
   3086 
   3087 When the '``ret``' instruction is executed, control flow returns back to
   3088 the calling function's context. If the caller is a
   3089 ":ref:`call <i_call>`" instruction, execution continues at the
   3090 instruction after the call. If the caller was an
   3091 ":ref:`invoke <i_invoke>`" instruction, execution continues at the
   3092 beginning of the "normal" destination block. If the instruction returns
   3093 a value, that value shall set the call or invoke instruction's return
   3094 value.
   3095 
   3096 Example:
   3097 """"""""
   3098 
   3099 .. code-block:: llvm
   3100 
   3101       ret i32 5                       ; Return an integer value of 5
   3102       ret void                        ; Return from a void function
   3103       ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
   3104 
   3105 .. _i_br:
   3106 
   3107 '``br``' Instruction
   3108 ^^^^^^^^^^^^^^^^^^^^
   3109 
   3110 Syntax:
   3111 """""""
   3112 
   3113 ::
   3114 
   3115       br i1 <cond>, label <iftrue>, label <iffalse>
   3116       br label <dest>          ; Unconditional branch
   3117 
   3118 Overview:
   3119 """""""""
   3120 
   3121 The '``br``' instruction is used to cause control flow to transfer to a
   3122 different basic block in the current function. There are two forms of
   3123 this instruction, corresponding to a conditional branch and an
   3124 unconditional branch.
   3125 
   3126 Arguments:
   3127 """"""""""
   3128 
   3129 The conditional branch form of the '``br``' instruction takes a single
   3130 '``i1``' value and two '``label``' values. The unconditional form of the
   3131 '``br``' instruction takes a single '``label``' value as a target.
   3132 
   3133 Semantics:
   3134 """"""""""
   3135 
   3136 Upon execution of a conditional '``br``' instruction, the '``i1``'
   3137 argument is evaluated. If the value is ``true``, control flows to the
   3138 '``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
   3139 to the '``iffalse``' ``label`` argument.
   3140 
   3141 Example:
   3142 """"""""
   3143 
   3144 .. code-block:: llvm
   3145 
   3146     Test:
   3147       %cond = icmp eq i32 %a, %b
   3148       br i1 %cond, label %IfEqual, label %IfUnequal
   3149     IfEqual:
   3150       ret i32 1
   3151     IfUnequal:
   3152       ret i32 0
   3153 
   3154 .. _i_switch:
   3155 
   3156 '``switch``' Instruction
   3157 ^^^^^^^^^^^^^^^^^^^^^^^^
   3158 
   3159 Syntax:
   3160 """""""
   3161 
   3162 ::
   3163 
   3164       switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
   3165 
   3166 Overview:
   3167 """""""""
   3168 
   3169 The '``switch``' instruction is used to transfer control flow to one of
   3170 several different places. It is a generalization of the '``br``'
   3171 instruction, allowing a branch to occur to one of many possible
   3172 destinations.
   3173 
   3174 Arguments:
   3175 """"""""""
   3176 
   3177 The '``switch``' instruction uses three parameters: an integer
   3178 comparison value '``value``', a default '``label``' destination, and an
   3179 array of pairs of comparison value constants and '``label``'s. The table
   3180 is not allowed to contain duplicate constant entries.
   3181 
   3182 Semantics:
   3183 """"""""""
   3184 
   3185 The ``switch`` instruction specifies a table of values and destinations.
   3186 When the '``switch``' instruction is executed, this table is searched
   3187 for the given value. If the value is found, control flow is transferred
   3188 to the corresponding destination; otherwise, control flow is transferred
   3189 to the default destination.
   3190 
   3191 Implementation:
   3192 """""""""""""""
   3193 
   3194 Depending on properties of the target machine and the particular
   3195 ``switch`` instruction, this instruction may be code generated in
   3196 different ways. For example, it could be generated as a series of
   3197 chained conditional branches or with a lookup table.
   3198 
   3199 Example:
   3200 """"""""
   3201 
   3202 .. code-block:: llvm
   3203 
   3204      ; Emulate a conditional br instruction
   3205      %Val = zext i1 %value to i32
   3206      switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
   3207 
   3208      ; Emulate an unconditional br instruction
   3209      switch i32 0, label %dest [ ]
   3210 
   3211      ; Implement a jump table:
   3212      switch i32 %val, label %otherwise [ i32 0, label %onzero
   3213                                          i32 1, label %onone
   3214                                          i32 2, label %ontwo ]
   3215 
   3216 .. _i_indirectbr:
   3217 
   3218 '``indirectbr``' Instruction
   3219 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3220 
   3221 Syntax:
   3222 """""""
   3223 
   3224 ::
   3225 
   3226       indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
   3227 
   3228 Overview:
   3229 """""""""
   3230 
   3231 The '``indirectbr``' instruction implements an indirect branch to a
   3232 label within the current function, whose address is specified by
   3233 "``address``". Address must be derived from a
   3234 :ref:`blockaddress <blockaddress>` constant.
   3235 
   3236 Arguments:
   3237 """"""""""
   3238 
   3239 The '``address``' argument is the address of the label to jump to. The
   3240 rest of the arguments indicate the full set of possible destinations
   3241 that the address may point to. Blocks are allowed to occur multiple
   3242 times in the destination list, though this isn't particularly useful.
   3243 
   3244 This destination list is required so that dataflow analysis has an
   3245 accurate understanding of the CFG.
   3246 
   3247 Semantics:
   3248 """"""""""
   3249 
   3250 Control transfers to the block specified in the address argument. All
   3251 possible destination blocks must be listed in the label list, otherwise
   3252 this instruction has undefined behavior. This implies that jumps to
   3253 labels defined in other functions have undefined behavior as well.
   3254 
   3255 Implementation:
   3256 """""""""""""""
   3257 
   3258 This is typically implemented with a jump through a register.
   3259 
   3260 Example:
   3261 """"""""
   3262 
   3263 .. code-block:: llvm
   3264 
   3265      indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
   3266 
   3267 .. _i_invoke:
   3268 
   3269 '``invoke``' Instruction
   3270 ^^^^^^^^^^^^^^^^^^^^^^^^
   3271 
   3272 Syntax:
   3273 """""""
   3274 
   3275 ::
   3276 
   3277       <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
   3278                     to label <normal label> unwind label <exception label>
   3279 
   3280 Overview:
   3281 """""""""
   3282 
   3283 The '``invoke``' instruction causes control to transfer to a specified
   3284 function, with the possibility of control flow transfer to either the
   3285 '``normal``' label or the '``exception``' label. If the callee function
   3286 returns with the "``ret``" instruction, control flow will return to the
   3287 "normal" label. If the callee (or any indirect callees) returns via the
   3288 ":ref:`resume <i_resume>`" instruction or other exception handling
   3289 mechanism, control is interrupted and continued at the dynamically
   3290 nearest "exception" label.
   3291 
   3292 The '``exception``' label is a `landing
   3293 pad <ExceptionHandling.html#overview>`_ for the exception. As such,
   3294 '``exception``' label is required to have the
   3295 ":ref:`landingpad <i_landingpad>`" instruction, which contains the
   3296 information about the behavior of the program after unwinding happens,
   3297 as its first non-PHI instruction. The restrictions on the
   3298 "``landingpad``" instruction's tightly couples it to the "``invoke``"
   3299 instruction, so that the important information contained within the
   3300 "``landingpad``" instruction can't be lost through normal code motion.
   3301 
   3302 Arguments:
   3303 """"""""""
   3304 
   3305 This instruction requires several arguments:
   3306 
   3307 #. The optional "cconv" marker indicates which :ref:`calling
   3308    convention <callingconv>` the call should use. If none is
   3309    specified, the call defaults to using C calling conventions.
   3310 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   3311    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   3312    are valid here.
   3313 #. '``ptr to function ty``': shall be the signature of the pointer to
   3314    function value being invoked. In most cases, this is a direct
   3315    function invocation, but indirect ``invoke``'s are just as possible,
   3316    branching off an arbitrary pointer to function value.
   3317 #. '``function ptr val``': An LLVM value containing a pointer to a
   3318    function to be invoked.
   3319 #. '``function args``': argument list whose types match the function
   3320    signature argument types and parameter attributes. All arguments must
   3321    be of :ref:`first class <t_firstclass>` type. If the function signature
   3322    indicates the function accepts a variable number of arguments, the
   3323    extra arguments can be specified.
   3324 #. '``normal label``': the label reached when the called function
   3325    executes a '``ret``' instruction.
   3326 #. '``exception label``': the label reached when a callee returns via
   3327    the :ref:`resume <i_resume>` instruction or other exception handling
   3328    mechanism.
   3329 #. The optional :ref:`function attributes <fnattrs>` list. Only
   3330    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
   3331    attributes are valid here.
   3332 
   3333 Semantics:
   3334 """"""""""
   3335 
   3336 This instruction is designed to operate as a standard '``call``'
   3337 instruction in most regards. The primary difference is that it
   3338 establishes an association with a label, which is used by the runtime
   3339 library to unwind the stack.
   3340 
   3341 This instruction is used in languages with destructors to ensure that
   3342 proper cleanup is performed in the case of either a ``longjmp`` or a
   3343 thrown exception. Additionally, this is important for implementation of
   3344 '``catch``' clauses in high-level languages that support them.
   3345 
   3346 For the purposes of the SSA form, the definition of the value returned
   3347 by the '``invoke``' instruction is deemed to occur on the edge from the
   3348 current block to the "normal" label. If the callee unwinds then no
   3349 return value is available.
   3350 
   3351 Example:
   3352 """"""""
   3353 
   3354 .. code-block:: llvm
   3355 
   3356       %retval = invoke i32 @Test(i32 15) to label %Continue
   3357                   unwind label %TestCleanup              ; {i32}:retval set
   3358       %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
   3359                   unwind label %TestCleanup              ; {i32}:retval set
   3360 
   3361 .. _i_resume:
   3362 
   3363 '``resume``' Instruction
   3364 ^^^^^^^^^^^^^^^^^^^^^^^^
   3365 
   3366 Syntax:
   3367 """""""
   3368 
   3369 ::
   3370 
   3371       resume <type> <value>
   3372 
   3373 Overview:
   3374 """""""""
   3375 
   3376 The '``resume``' instruction is a terminator instruction that has no
   3377 successors.
   3378 
   3379 Arguments:
   3380 """"""""""
   3381 
   3382 The '``resume``' instruction requires one argument, which must have the
   3383 same type as the result of any '``landingpad``' instruction in the same
   3384 function.
   3385 
   3386 Semantics:
   3387 """"""""""
   3388 
   3389 The '``resume``' instruction resumes propagation of an existing
   3390 (in-flight) exception whose unwinding was interrupted with a
   3391 :ref:`landingpad <i_landingpad>` instruction.
   3392 
   3393 Example:
   3394 """"""""
   3395 
   3396 .. code-block:: llvm
   3397 
   3398       resume { i8*, i32 } %exn
   3399 
   3400 .. _i_unreachable:
   3401 
   3402 '``unreachable``' Instruction
   3403 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   3404 
   3405 Syntax:
   3406 """""""
   3407 
   3408 ::
   3409 
   3410       unreachable
   3411 
   3412 Overview:
   3413 """""""""
   3414 
   3415 The '``unreachable``' instruction has no defined semantics. This
   3416 instruction is used to inform the optimizer that a particular portion of
   3417 the code is not reachable. This can be used to indicate that the code
   3418 after a no-return function cannot be reached, and other facts.
   3419 
   3420 Semantics:
   3421 """"""""""
   3422 
   3423 The '``unreachable``' instruction has no defined semantics.
   3424 
   3425 .. _binaryops:
   3426 
   3427 Binary Operations
   3428 -----------------
   3429 
   3430 Binary operators are used to do most of the computation in a program.
   3431 They require two operands of the same type, execute an operation on
   3432 them, and produce a single value. The operands might represent multiple
   3433 data, as is the case with the :ref:`vector <t_vector>` data type. The
   3434 result value has the same type as its operands.
   3435 
   3436 There are several different binary operators:
   3437 
   3438 .. _i_add:
   3439 
   3440 '``add``' Instruction
   3441 ^^^^^^^^^^^^^^^^^^^^^
   3442 
   3443 Syntax:
   3444 """""""
   3445 
   3446 ::
   3447 
   3448       <result> = add <ty> <op1>, <op2>          ; yields {ty}:result
   3449       <result> = add nuw <ty> <op1>, <op2>      ; yields {ty}:result
   3450       <result> = add nsw <ty> <op1>, <op2>      ; yields {ty}:result
   3451       <result> = add nuw nsw <ty> <op1>, <op2>  ; yields {ty}:result
   3452 
   3453 Overview:
   3454 """""""""
   3455 
   3456 The '``add``' instruction returns the sum of its two operands.
   3457 
   3458 Arguments:
   3459 """"""""""
   3460 
   3461 The two arguments to the '``add``' instruction must be
   3462 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3463 arguments must have identical types.
   3464 
   3465 Semantics:
   3466 """"""""""
   3467 
   3468 The value produced is the integer sum of the two operands.
   3469 
   3470 If the sum has unsigned overflow, the result returned is the
   3471 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
   3472 the result.
   3473 
   3474 Because LLVM integers use a two's complement representation, this
   3475 instruction is appropriate for both signed and unsigned integers.
   3476 
   3477 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   3478 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   3479 result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
   3480 unsigned and/or signed overflow, respectively, occurs.
   3481 
   3482 Example:
   3483 """"""""
   3484 
   3485 .. code-block:: llvm
   3486 
   3487       <result> = add i32 4, %var          ; yields {i32}:result = 4 + %var
   3488 
   3489 .. _i_fadd:
   3490 
   3491 '``fadd``' Instruction
   3492 ^^^^^^^^^^^^^^^^^^^^^^
   3493 
   3494 Syntax:
   3495 """""""
   3496 
   3497 ::
   3498 
   3499       <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields {ty}:result
   3500 
   3501 Overview:
   3502 """""""""
   3503 
   3504 The '``fadd``' instruction returns the sum of its two operands.
   3505 
   3506 Arguments:
   3507 """"""""""
   3508 
   3509 The two arguments to the '``fadd``' instruction must be :ref:`floating
   3510 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   3511 Both arguments must have identical types.
   3512 
   3513 Semantics:
   3514 """"""""""
   3515 
   3516 The value produced is the floating point sum of the two operands. This
   3517 instruction can also take any number of :ref:`fast-math flags <fastmath>`,
   3518 which are optimization hints to enable otherwise unsafe floating point
   3519 optimizations:
   3520 
   3521 Example:
   3522 """"""""
   3523 
   3524 .. code-block:: llvm
   3525 
   3526       <result> = fadd float 4.0, %var          ; yields {float}:result = 4.0 + %var
   3527 
   3528 '``sub``' Instruction
   3529 ^^^^^^^^^^^^^^^^^^^^^
   3530 
   3531 Syntax:
   3532 """""""
   3533 
   3534 ::
   3535 
   3536       <result> = sub <ty> <op1>, <op2>          ; yields {ty}:result
   3537       <result> = sub nuw <ty> <op1>, <op2>      ; yields {ty}:result
   3538       <result> = sub nsw <ty> <op1>, <op2>      ; yields {ty}:result
   3539       <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields {ty}:result
   3540 
   3541 Overview:
   3542 """""""""
   3543 
   3544 The '``sub``' instruction returns the difference of its two operands.
   3545 
   3546 Note that the '``sub``' instruction is used to represent the '``neg``'
   3547 instruction present in most other intermediate representations.
   3548 
   3549 Arguments:
   3550 """"""""""
   3551 
   3552 The two arguments to the '``sub``' instruction must be
   3553 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3554 arguments must have identical types.
   3555 
   3556 Semantics:
   3557 """"""""""
   3558 
   3559 The value produced is the integer difference of the two operands.
   3560 
   3561 If the difference has unsigned overflow, the result returned is the
   3562 mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
   3563 the result.
   3564 
   3565 Because LLVM integers use a two's complement representation, this
   3566 instruction is appropriate for both signed and unsigned integers.
   3567 
   3568 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   3569 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   3570 result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
   3571 unsigned and/or signed overflow, respectively, occurs.
   3572 
   3573 Example:
   3574 """"""""
   3575 
   3576 .. code-block:: llvm
   3577 
   3578       <result> = sub i32 4, %var          ; yields {i32}:result = 4 - %var
   3579       <result> = sub i32 0, %val          ; yields {i32}:result = -%var
   3580 
   3581 .. _i_fsub:
   3582 
   3583 '``fsub``' Instruction
   3584 ^^^^^^^^^^^^^^^^^^^^^^
   3585 
   3586 Syntax:
   3587 """""""
   3588 
   3589 ::
   3590 
   3591       <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields {ty}:result
   3592 
   3593 Overview:
   3594 """""""""
   3595 
   3596 The '``fsub``' instruction returns the difference of its two operands.
   3597 
   3598 Note that the '``fsub``' instruction is used to represent the '``fneg``'
   3599 instruction present in most other intermediate representations.
   3600 
   3601 Arguments:
   3602 """"""""""
   3603 
   3604 The two arguments to the '``fsub``' instruction must be :ref:`floating
   3605 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   3606 Both arguments must have identical types.
   3607 
   3608 Semantics:
   3609 """"""""""
   3610 
   3611 The value produced is the floating point difference of the two operands.
   3612 This instruction can also take any number of :ref:`fast-math
   3613 flags <fastmath>`, which are optimization hints to enable otherwise
   3614 unsafe floating point optimizations:
   3615 
   3616 Example:
   3617 """"""""
   3618 
   3619 .. code-block:: llvm
   3620 
   3621       <result> = fsub float 4.0, %var           ; yields {float}:result = 4.0 - %var
   3622       <result> = fsub float -0.0, %val          ; yields {float}:result = -%var
   3623 
   3624 '``mul``' Instruction
   3625 ^^^^^^^^^^^^^^^^^^^^^
   3626 
   3627 Syntax:
   3628 """""""
   3629 
   3630 ::
   3631 
   3632       <result> = mul <ty> <op1>, <op2>          ; yields {ty}:result
   3633       <result> = mul nuw <ty> <op1>, <op2>      ; yields {ty}:result
   3634       <result> = mul nsw <ty> <op1>, <op2>      ; yields {ty}:result
   3635       <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields {ty}:result
   3636 
   3637 Overview:
   3638 """""""""
   3639 
   3640 The '``mul``' instruction returns the product of its two operands.
   3641 
   3642 Arguments:
   3643 """"""""""
   3644 
   3645 The two arguments to the '``mul``' instruction must be
   3646 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3647 arguments must have identical types.
   3648 
   3649 Semantics:
   3650 """"""""""
   3651 
   3652 The value produced is the integer product of the two operands.
   3653 
   3654 If the result of the multiplication has unsigned overflow, the result
   3655 returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
   3656 bit width of the result.
   3657 
   3658 Because LLVM integers use a two's complement representation, and the
   3659 result is the same width as the operands, this instruction returns the
   3660 correct result for both signed and unsigned integers. If a full product
   3661 (e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
   3662 sign-extended or zero-extended as appropriate to the width of the full
   3663 product.
   3664 
   3665 ``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
   3666 respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
   3667 result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
   3668 unsigned and/or signed overflow, respectively, occurs.
   3669 
   3670 Example:
   3671 """"""""
   3672 
   3673 .. code-block:: llvm
   3674 
   3675       <result> = mul i32 4, %var          ; yields {i32}:result = 4 * %var
   3676 
   3677 .. _i_fmul:
   3678 
   3679 '``fmul``' Instruction
   3680 ^^^^^^^^^^^^^^^^^^^^^^
   3681 
   3682 Syntax:
   3683 """""""
   3684 
   3685 ::
   3686 
   3687       <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields {ty}:result
   3688 
   3689 Overview:
   3690 """""""""
   3691 
   3692 The '``fmul``' instruction returns the product of its two operands.
   3693 
   3694 Arguments:
   3695 """"""""""
   3696 
   3697 The two arguments to the '``fmul``' instruction must be :ref:`floating
   3698 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   3699 Both arguments must have identical types.
   3700 
   3701 Semantics:
   3702 """"""""""
   3703 
   3704 The value produced is the floating point product of the two operands.
   3705 This instruction can also take any number of :ref:`fast-math
   3706 flags <fastmath>`, which are optimization hints to enable otherwise
   3707 unsafe floating point optimizations:
   3708 
   3709 Example:
   3710 """"""""
   3711 
   3712 .. code-block:: llvm
   3713 
   3714       <result> = fmul float 4.0, %var          ; yields {float}:result = 4.0 * %var
   3715 
   3716 '``udiv``' Instruction
   3717 ^^^^^^^^^^^^^^^^^^^^^^
   3718 
   3719 Syntax:
   3720 """""""
   3721 
   3722 ::
   3723 
   3724       <result> = udiv <ty> <op1>, <op2>         ; yields {ty}:result
   3725       <result> = udiv exact <ty> <op1>, <op2>   ; yields {ty}:result
   3726 
   3727 Overview:
   3728 """""""""
   3729 
   3730 The '``udiv``' instruction returns the quotient of its two operands.
   3731 
   3732 Arguments:
   3733 """"""""""
   3734 
   3735 The two arguments to the '``udiv``' instruction must be
   3736 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3737 arguments must have identical types.
   3738 
   3739 Semantics:
   3740 """"""""""
   3741 
   3742 The value produced is the unsigned integer quotient of the two operands.
   3743 
   3744 Note that unsigned integer division and signed integer division are
   3745 distinct operations; for signed integer division, use '``sdiv``'.
   3746 
   3747 Division by zero leads to undefined behavior.
   3748 
   3749 If the ``exact`` keyword is present, the result value of the ``udiv`` is
   3750 a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
   3751 such, "((a udiv exact b) mul b) == a").
   3752 
   3753 Example:
   3754 """"""""
   3755 
   3756 .. code-block:: llvm
   3757 
   3758       <result> = udiv i32 4, %var          ; yields {i32}:result = 4 / %var
   3759 
   3760 '``sdiv``' Instruction
   3761 ^^^^^^^^^^^^^^^^^^^^^^
   3762 
   3763 Syntax:
   3764 """""""
   3765 
   3766 ::
   3767 
   3768       <result> = sdiv <ty> <op1>, <op2>         ; yields {ty}:result
   3769       <result> = sdiv exact <ty> <op1>, <op2>   ; yields {ty}:result
   3770 
   3771 Overview:
   3772 """""""""
   3773 
   3774 The '``sdiv``' instruction returns the quotient of its two operands.
   3775 
   3776 Arguments:
   3777 """"""""""
   3778 
   3779 The two arguments to the '``sdiv``' instruction must be
   3780 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3781 arguments must have identical types.
   3782 
   3783 Semantics:
   3784 """"""""""
   3785 
   3786 The value produced is the signed integer quotient of the two operands
   3787 rounded towards zero.
   3788 
   3789 Note that signed integer division and unsigned integer division are
   3790 distinct operations; for unsigned integer division, use '``udiv``'.
   3791 
   3792 Division by zero leads to undefined behavior. Overflow also leads to
   3793 undefined behavior; this is a rare case, but can occur, for example, by
   3794 doing a 32-bit division of -2147483648 by -1.
   3795 
   3796 If the ``exact`` keyword is present, the result value of the ``sdiv`` is
   3797 a :ref:`poison value <poisonvalues>` if the result would be rounded.
   3798 
   3799 Example:
   3800 """"""""
   3801 
   3802 .. code-block:: llvm
   3803 
   3804       <result> = sdiv i32 4, %var          ; yields {i32}:result = 4 / %var
   3805 
   3806 .. _i_fdiv:
   3807 
   3808 '``fdiv``' Instruction
   3809 ^^^^^^^^^^^^^^^^^^^^^^
   3810 
   3811 Syntax:
   3812 """""""
   3813 
   3814 ::
   3815 
   3816       <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields {ty}:result
   3817 
   3818 Overview:
   3819 """""""""
   3820 
   3821 The '``fdiv``' instruction returns the quotient of its two operands.
   3822 
   3823 Arguments:
   3824 """"""""""
   3825 
   3826 The two arguments to the '``fdiv``' instruction must be :ref:`floating
   3827 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   3828 Both arguments must have identical types.
   3829 
   3830 Semantics:
   3831 """"""""""
   3832 
   3833 The value produced is the floating point quotient of the two operands.
   3834 This instruction can also take any number of :ref:`fast-math
   3835 flags <fastmath>`, which are optimization hints to enable otherwise
   3836 unsafe floating point optimizations:
   3837 
   3838 Example:
   3839 """"""""
   3840 
   3841 .. code-block:: llvm
   3842 
   3843       <result> = fdiv float 4.0, %var          ; yields {float}:result = 4.0 / %var
   3844 
   3845 '``urem``' Instruction
   3846 ^^^^^^^^^^^^^^^^^^^^^^
   3847 
   3848 Syntax:
   3849 """""""
   3850 
   3851 ::
   3852 
   3853       <result> = urem <ty> <op1>, <op2>   ; yields {ty}:result
   3854 
   3855 Overview:
   3856 """""""""
   3857 
   3858 The '``urem``' instruction returns the remainder from the unsigned
   3859 division of its two arguments.
   3860 
   3861 Arguments:
   3862 """"""""""
   3863 
   3864 The two arguments to the '``urem``' instruction must be
   3865 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3866 arguments must have identical types.
   3867 
   3868 Semantics:
   3869 """"""""""
   3870 
   3871 This instruction returns the unsigned integer *remainder* of a division.
   3872 This instruction always performs an unsigned division to get the
   3873 remainder.
   3874 
   3875 Note that unsigned integer remainder and signed integer remainder are
   3876 distinct operations; for signed integer remainder, use '``srem``'.
   3877 
   3878 Taking the remainder of a division by zero leads to undefined behavior.
   3879 
   3880 Example:
   3881 """"""""
   3882 
   3883 .. code-block:: llvm
   3884 
   3885       <result> = urem i32 4, %var          ; yields {i32}:result = 4 % %var
   3886 
   3887 '``srem``' Instruction
   3888 ^^^^^^^^^^^^^^^^^^^^^^
   3889 
   3890 Syntax:
   3891 """""""
   3892 
   3893 ::
   3894 
   3895       <result> = srem <ty> <op1>, <op2>   ; yields {ty}:result
   3896 
   3897 Overview:
   3898 """""""""
   3899 
   3900 The '``srem``' instruction returns the remainder from the signed
   3901 division of its two operands. This instruction can also take
   3902 :ref:`vector <t_vector>` versions of the values in which case the elements
   3903 must be integers.
   3904 
   3905 Arguments:
   3906 """"""""""
   3907 
   3908 The two arguments to the '``srem``' instruction must be
   3909 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   3910 arguments must have identical types.
   3911 
   3912 Semantics:
   3913 """"""""""
   3914 
   3915 This instruction returns the *remainder* of a division (where the result
   3916 is either zero or has the same sign as the dividend, ``op1``), not the
   3917 *modulo* operator (where the result is either zero or has the same sign
   3918 as the divisor, ``op2``) of a value. For more information about the
   3919 difference, see `The Math
   3920 Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
   3921 table of how this is implemented in various languages, please see
   3922 `Wikipedia: modulo
   3923 operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
   3924 
   3925 Note that signed integer remainder and unsigned integer remainder are
   3926 distinct operations; for unsigned integer remainder, use '``urem``'.
   3927 
   3928 Taking the remainder of a division by zero leads to undefined behavior.
   3929 Overflow also leads to undefined behavior; this is a rare case, but can
   3930 occur, for example, by taking the remainder of a 32-bit division of
   3931 -2147483648 by -1. (The remainder doesn't actually overflow, but this
   3932 rule lets srem be implemented using instructions that return both the
   3933 result of the division and the remainder.)
   3934 
   3935 Example:
   3936 """"""""
   3937 
   3938 .. code-block:: llvm
   3939 
   3940       <result> = srem i32 4, %var          ; yields {i32}:result = 4 % %var
   3941 
   3942 .. _i_frem:
   3943 
   3944 '``frem``' Instruction
   3945 ^^^^^^^^^^^^^^^^^^^^^^
   3946 
   3947 Syntax:
   3948 """""""
   3949 
   3950 ::
   3951 
   3952       <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields {ty}:result
   3953 
   3954 Overview:
   3955 """""""""
   3956 
   3957 The '``frem``' instruction returns the remainder from the division of
   3958 its two operands.
   3959 
   3960 Arguments:
   3961 """"""""""
   3962 
   3963 The two arguments to the '``frem``' instruction must be :ref:`floating
   3964 point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
   3965 Both arguments must have identical types.
   3966 
   3967 Semantics:
   3968 """"""""""
   3969 
   3970 This instruction returns the *remainder* of a division. The remainder
   3971 has the same sign as the dividend. This instruction can also take any
   3972 number of :ref:`fast-math flags <fastmath>`, which are optimization hints
   3973 to enable otherwise unsafe floating point optimizations:
   3974 
   3975 Example:
   3976 """"""""
   3977 
   3978 .. code-block:: llvm
   3979 
   3980       <result> = frem float 4.0, %var          ; yields {float}:result = 4.0 % %var
   3981 
   3982 .. _bitwiseops:
   3983 
   3984 Bitwise Binary Operations
   3985 -------------------------
   3986 
   3987 Bitwise binary operators are used to do various forms of bit-twiddling
   3988 in a program. They are generally very efficient instructions and can
   3989 commonly be strength reduced from other instructions. They require two
   3990 operands of the same type, execute an operation on them, and produce a
   3991 single value. The resulting value is the same type as its operands.
   3992 
   3993 '``shl``' Instruction
   3994 ^^^^^^^^^^^^^^^^^^^^^
   3995 
   3996 Syntax:
   3997 """""""
   3998 
   3999 ::
   4000 
   4001       <result> = shl <ty> <op1>, <op2>           ; yields {ty}:result
   4002       <result> = shl nuw <ty> <op1>, <op2>       ; yields {ty}:result
   4003       <result> = shl nsw <ty> <op1>, <op2>       ; yields {ty}:result
   4004       <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields {ty}:result
   4005 
   4006 Overview:
   4007 """""""""
   4008 
   4009 The '``shl``' instruction returns the first operand shifted to the left
   4010 a specified number of bits.
   4011 
   4012 Arguments:
   4013 """"""""""
   4014 
   4015 Both arguments to the '``shl``' instruction must be the same
   4016 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   4017 '``op2``' is treated as an unsigned value.
   4018 
   4019 Semantics:
   4020 """"""""""
   4021 
   4022 The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
   4023 where ``n`` is the width of the result. If ``op2`` is (statically or
   4024 dynamically) negative or equal to or larger than the number of bits in
   4025 ``op1``, the result is undefined. If the arguments are vectors, each
   4026 vector element of ``op1`` is shifted by the corresponding shift amount
   4027 in ``op2``.
   4028 
   4029 If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
   4030 value <poisonvalues>` if it shifts out any non-zero bits. If the
   4031 ``nsw`` keyword is present, then the shift produces a :ref:`poison
   4032 value <poisonvalues>` if it shifts out any bits that disagree with the
   4033 resultant sign bit. As such, NUW/NSW have the same semantics as they
   4034 would if the shift were expressed as a mul instruction with the same
   4035 nsw/nuw bits in (mul %op1, (shl 1, %op2)).
   4036 
   4037 Example:
   4038 """"""""
   4039 
   4040 .. code-block:: llvm
   4041 
   4042       <result> = shl i32 4, %var   ; yields {i32}: 4 << %var
   4043       <result> = shl i32 4, 2      ; yields {i32}: 16
   4044       <result> = shl i32 1, 10     ; yields {i32}: 1024
   4045       <result> = shl i32 1, 32     ; undefined
   4046       <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
   4047 
   4048 '``lshr``' Instruction
   4049 ^^^^^^^^^^^^^^^^^^^^^^
   4050 
   4051 Syntax:
   4052 """""""
   4053 
   4054 ::
   4055 
   4056       <result> = lshr <ty> <op1>, <op2>         ; yields {ty}:result
   4057       <result> = lshr exact <ty> <op1>, <op2>   ; yields {ty}:result
   4058 
   4059 Overview:
   4060 """""""""
   4061 
   4062 The '``lshr``' instruction (logical shift right) returns the first
   4063 operand shifted to the right a specified number of bits with zero fill.
   4064 
   4065 Arguments:
   4066 """"""""""
   4067 
   4068 Both arguments to the '``lshr``' instruction must be the same
   4069 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   4070 '``op2``' is treated as an unsigned value.
   4071 
   4072 Semantics:
   4073 """"""""""
   4074 
   4075 This instruction always performs a logical shift right operation. The
   4076 most significant bits of the result will be filled with zero bits after
   4077 the shift. If ``op2`` is (statically or dynamically) equal to or larger
   4078 than the number of bits in ``op1``, the result is undefined. If the
   4079 arguments are vectors, each vector element of ``op1`` is shifted by the
   4080 corresponding shift amount in ``op2``.
   4081 
   4082 If the ``exact`` keyword is present, the result value of the ``lshr`` is
   4083 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
   4084 non-zero.
   4085 
   4086 Example:
   4087 """"""""
   4088 
   4089 .. code-block:: llvm
   4090 
   4091       <result> = lshr i32 4, 1   ; yields {i32}:result = 2
   4092       <result> = lshr i32 4, 2   ; yields {i32}:result = 1
   4093       <result> = lshr i8  4, 3   ; yields {i8}:result = 0
   4094       <result> = lshr i8 -2, 1   ; yields {i8}:result = 0x7F
   4095       <result> = lshr i32 1, 32  ; undefined
   4096       <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
   4097 
   4098 '``ashr``' Instruction
   4099 ^^^^^^^^^^^^^^^^^^^^^^
   4100 
   4101 Syntax:
   4102 """""""
   4103 
   4104 ::
   4105 
   4106       <result> = ashr <ty> <op1>, <op2>         ; yields {ty}:result
   4107       <result> = ashr exact <ty> <op1>, <op2>   ; yields {ty}:result
   4108 
   4109 Overview:
   4110 """""""""
   4111 
   4112 The '``ashr``' instruction (arithmetic shift right) returns the first
   4113 operand shifted to the right a specified number of bits with sign
   4114 extension.
   4115 
   4116 Arguments:
   4117 """"""""""
   4118 
   4119 Both arguments to the '``ashr``' instruction must be the same
   4120 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
   4121 '``op2``' is treated as an unsigned value.
   4122 
   4123 Semantics:
   4124 """"""""""
   4125 
   4126 This instruction always performs an arithmetic shift right operation,
   4127 The most significant bits of the result will be filled with the sign bit
   4128 of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
   4129 than the number of bits in ``op1``, the result is undefined. If the
   4130 arguments are vectors, each vector element of ``op1`` is shifted by the
   4131 corresponding shift amount in ``op2``.
   4132 
   4133 If the ``exact`` keyword is present, the result value of the ``ashr`` is
   4134 a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
   4135 non-zero.
   4136 
   4137 Example:
   4138 """"""""
   4139 
   4140 .. code-block:: llvm
   4141 
   4142       <result> = ashr i32 4, 1   ; yields {i32}:result = 2
   4143       <result> = ashr i32 4, 2   ; yields {i32}:result = 1
   4144       <result> = ashr i8  4, 3   ; yields {i8}:result = 0
   4145       <result> = ashr i8 -2, 1   ; yields {i8}:result = -1
   4146       <result> = ashr i32 1, 32  ; undefined
   4147       <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
   4148 
   4149 '``and``' Instruction
   4150 ^^^^^^^^^^^^^^^^^^^^^
   4151 
   4152 Syntax:
   4153 """""""
   4154 
   4155 ::
   4156 
   4157       <result> = and <ty> <op1>, <op2>   ; yields {ty}:result
   4158 
   4159 Overview:
   4160 """""""""
   4161 
   4162 The '``and``' instruction returns the bitwise logical and of its two
   4163 operands.
   4164 
   4165 Arguments:
   4166 """"""""""
   4167 
   4168 The two arguments to the '``and``' instruction must be
   4169 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4170 arguments must have identical types.
   4171 
   4172 Semantics:
   4173 """"""""""
   4174 
   4175 The truth table used for the '``and``' instruction is:
   4176 
   4177 +-----+-----+-----+
   4178 | In0 | In1 | Out |
   4179 +-----+-----+-----+
   4180 |   0 |   0 |   0 |
   4181 +-----+-----+-----+
   4182 |   0 |   1 |   0 |
   4183 +-----+-----+-----+
   4184 |   1 |   0 |   0 |
   4185 +-----+-----+-----+
   4186 |   1 |   1 |   1 |
   4187 +-----+-----+-----+
   4188 
   4189 Example:
   4190 """"""""
   4191 
   4192 .. code-block:: llvm
   4193 
   4194       <result> = and i32 4, %var         ; yields {i32}:result = 4 & %var
   4195       <result> = and i32 15, 40          ; yields {i32}:result = 8
   4196       <result> = and i32 4, 8            ; yields {i32}:result = 0
   4197 
   4198 '``or``' Instruction
   4199 ^^^^^^^^^^^^^^^^^^^^
   4200 
   4201 Syntax:
   4202 """""""
   4203 
   4204 ::
   4205 
   4206       <result> = or <ty> <op1>, <op2>   ; yields {ty}:result
   4207 
   4208 Overview:
   4209 """""""""
   4210 
   4211 The '``or``' instruction returns the bitwise logical inclusive or of its
   4212 two operands.
   4213 
   4214 Arguments:
   4215 """"""""""
   4216 
   4217 The two arguments to the '``or``' instruction must be
   4218 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4219 arguments must have identical types.
   4220 
   4221 Semantics:
   4222 """"""""""
   4223 
   4224 The truth table used for the '``or``' instruction is:
   4225 
   4226 +-----+-----+-----+
   4227 | In0 | In1 | Out |
   4228 +-----+-----+-----+
   4229 |   0 |   0 |   0 |
   4230 +-----+-----+-----+
   4231 |   0 |   1 |   1 |
   4232 +-----+-----+-----+
   4233 |   1 |   0 |   1 |
   4234 +-----+-----+-----+
   4235 |   1 |   1 |   1 |
   4236 +-----+-----+-----+
   4237 
   4238 Example:
   4239 """"""""
   4240 
   4241 ::
   4242 
   4243       <result> = or i32 4, %var         ; yields {i32}:result = 4 | %var
   4244       <result> = or i32 15, 40          ; yields {i32}:result = 47
   4245       <result> = or i32 4, 8            ; yields {i32}:result = 12
   4246 
   4247 '``xor``' Instruction
   4248 ^^^^^^^^^^^^^^^^^^^^^
   4249 
   4250 Syntax:
   4251 """""""
   4252 
   4253 ::
   4254 
   4255       <result> = xor <ty> <op1>, <op2>   ; yields {ty}:result
   4256 
   4257 Overview:
   4258 """""""""
   4259 
   4260 The '``xor``' instruction returns the bitwise logical exclusive or of
   4261 its two operands. The ``xor`` is used to implement the "one's
   4262 complement" operation, which is the "~" operator in C.
   4263 
   4264 Arguments:
   4265 """"""""""
   4266 
   4267 The two arguments to the '``xor``' instruction must be
   4268 :ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
   4269 arguments must have identical types.
   4270 
   4271 Semantics:
   4272 """"""""""
   4273 
   4274 The truth table used for the '``xor``' instruction is:
   4275 
   4276 +-----+-----+-----+
   4277 | In0 | In1 | Out |
   4278 +-----+-----+-----+
   4279 |   0 |   0 |   0 |
   4280 +-----+-----+-----+
   4281 |   0 |   1 |   1 |
   4282 +-----+-----+-----+
   4283 |   1 |   0 |   1 |
   4284 +-----+-----+-----+
   4285 |   1 |   1 |   0 |
   4286 +-----+-----+-----+
   4287 
   4288 Example:
   4289 """"""""
   4290 
   4291 .. code-block:: llvm
   4292 
   4293       <result> = xor i32 4, %var         ; yields {i32}:result = 4 ^ %var
   4294       <result> = xor i32 15, 40          ; yields {i32}:result = 39
   4295       <result> = xor i32 4, 8            ; yields {i32}:result = 12
   4296       <result> = xor i32 %V, -1          ; yields {i32}:result = ~%V
   4297 
   4298 Vector Operations
   4299 -----------------
   4300 
   4301 LLVM supports several instructions to represent vector operations in a
   4302 target-independent manner. These instructions cover the element-access
   4303 and vector-specific operations needed to process vectors effectively.
   4304 While LLVM does directly support these vector operations, many
   4305 sophisticated algorithms will want to use target-specific intrinsics to
   4306 take full advantage of a specific target.
   4307 
   4308 .. _i_extractelement:
   4309 
   4310 '``extractelement``' Instruction
   4311 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4312 
   4313 Syntax:
   4314 """""""
   4315 
   4316 ::
   4317 
   4318       <result> = extractelement <n x <ty>> <val>, i32 <idx>    ; yields <ty>
   4319 
   4320 Overview:
   4321 """""""""
   4322 
   4323 The '``extractelement``' instruction extracts a single scalar element
   4324 from a vector at a specified index.
   4325 
   4326 Arguments:
   4327 """"""""""
   4328 
   4329 The first operand of an '``extractelement``' instruction is a value of
   4330 :ref:`vector <t_vector>` type. The second operand is an index indicating
   4331 the position from which to extract the element. The index may be a
   4332 variable.
   4333 
   4334 Semantics:
   4335 """"""""""
   4336 
   4337 The result is a scalar of the same type as the element type of ``val``.
   4338 Its value is the value at position ``idx`` of ``val``. If ``idx``
   4339 exceeds the length of ``val``, the results are undefined.
   4340 
   4341 Example:
   4342 """"""""
   4343 
   4344 .. code-block:: llvm
   4345 
   4346       <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
   4347 
   4348 .. _i_insertelement:
   4349 
   4350 '``insertelement``' Instruction
   4351 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4352 
   4353 Syntax:
   4354 """""""
   4355 
   4356 ::
   4357 
   4358       <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx>    ; yields <n x <ty>>
   4359 
   4360 Overview:
   4361 """""""""
   4362 
   4363 The '``insertelement``' instruction inserts a scalar element into a
   4364 vector at a specified index.
   4365 
   4366 Arguments:
   4367 """"""""""
   4368 
   4369 The first operand of an '``insertelement``' instruction is a value of
   4370 :ref:`vector <t_vector>` type. The second operand is a scalar value whose
   4371 type must equal the element type of the first operand. The third operand
   4372 is an index indicating the position at which to insert the value. The
   4373 index may be a variable.
   4374 
   4375 Semantics:
   4376 """"""""""
   4377 
   4378 The result is a vector of the same type as ``val``. Its element values
   4379 are those of ``val`` except at position ``idx``, where it gets the value
   4380 ``elt``. If ``idx`` exceeds the length of ``val``, the results are
   4381 undefined.
   4382 
   4383 Example:
   4384 """"""""
   4385 
   4386 .. code-block:: llvm
   4387 
   4388       <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
   4389 
   4390 .. _i_shufflevector:
   4391 
   4392 '``shufflevector``' Instruction
   4393 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4394 
   4395 Syntax:
   4396 """""""
   4397 
   4398 ::
   4399 
   4400       <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
   4401 
   4402 Overview:
   4403 """""""""
   4404 
   4405 The '``shufflevector``' instruction constructs a permutation of elements
   4406 from two input vectors, returning a vector with the same element type as
   4407 the input and length that is the same as the shuffle mask.
   4408 
   4409 Arguments:
   4410 """"""""""
   4411 
   4412 The first two operands of a '``shufflevector``' instruction are vectors
   4413 with the same type. The third argument is a shuffle mask whose element
   4414 type is always 'i32'. The result of the instruction is a vector whose
   4415 length is the same as the shuffle mask and whose element type is the
   4416 same as the element type of the first two operands.
   4417 
   4418 The shuffle mask operand is required to be a constant vector with either
   4419 constant integer or undef values.
   4420 
   4421 Semantics:
   4422 """"""""""
   4423 
   4424 The elements of the two input vectors are numbered from left to right
   4425 across both of the vectors. The shuffle mask operand specifies, for each
   4426 element of the result vector, which element of the two input vectors the
   4427 result element gets. The element selector may be undef (meaning "don't
   4428 care") and the second operand may be undef if performing a shuffle from
   4429 only one vector.
   4430 
   4431 Example:
   4432 """"""""
   4433 
   4434 .. code-block:: llvm
   4435 
   4436       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
   4437                               <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
   4438       <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
   4439                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
   4440       <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
   4441                               <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
   4442       <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
   4443                               <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
   4444 
   4445 Aggregate Operations
   4446 --------------------
   4447 
   4448 LLVM supports several instructions for working with
   4449 :ref:`aggregate <t_aggregate>` values.
   4450 
   4451 .. _i_extractvalue:
   4452 
   4453 '``extractvalue``' Instruction
   4454 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4455 
   4456 Syntax:
   4457 """""""
   4458 
   4459 ::
   4460 
   4461       <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
   4462 
   4463 Overview:
   4464 """""""""
   4465 
   4466 The '``extractvalue``' instruction extracts the value of a member field
   4467 from an :ref:`aggregate <t_aggregate>` value.
   4468 
   4469 Arguments:
   4470 """"""""""
   4471 
   4472 The first operand of an '``extractvalue``' instruction is a value of
   4473 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
   4474 constant indices to specify which value to extract in a similar manner
   4475 as indices in a '``getelementptr``' instruction.
   4476 
   4477 The major differences to ``getelementptr`` indexing are:
   4478 
   4479 -  Since the value being indexed is not a pointer, the first index is
   4480    omitted and assumed to be zero.
   4481 -  At least one index must be specified.
   4482 -  Not only struct indices but also array indices must be in bounds.
   4483 
   4484 Semantics:
   4485 """"""""""
   4486 
   4487 The result is the value at the position in the aggregate specified by
   4488 the index operands.
   4489 
   4490 Example:
   4491 """"""""
   4492 
   4493 .. code-block:: llvm
   4494 
   4495       <result> = extractvalue {i32, float} %agg, 0    ; yields i32
   4496 
   4497 .. _i_insertvalue:
   4498 
   4499 '``insertvalue``' Instruction
   4500 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4501 
   4502 Syntax:
   4503 """""""
   4504 
   4505 ::
   4506 
   4507       <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
   4508 
   4509 Overview:
   4510 """""""""
   4511 
   4512 The '``insertvalue``' instruction inserts a value into a member field in
   4513 an :ref:`aggregate <t_aggregate>` value.
   4514 
   4515 Arguments:
   4516 """"""""""
   4517 
   4518 The first operand of an '``insertvalue``' instruction is a value of
   4519 :ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
   4520 a first-class value to insert. The following operands are constant
   4521 indices indicating the position at which to insert the value in a
   4522 similar manner as indices in a '``extractvalue``' instruction. The value
   4523 to insert must have the same type as the value identified by the
   4524 indices.
   4525 
   4526 Semantics:
   4527 """"""""""
   4528 
   4529 The result is an aggregate of the same type as ``val``. Its value is
   4530 that of ``val`` except that the value at the position specified by the
   4531 indices is that of ``elt``.
   4532 
   4533 Example:
   4534 """"""""
   4535 
   4536 .. code-block:: llvm
   4537 
   4538       %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
   4539       %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
   4540       %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    ; yields {i32 1, float %val}
   4541 
   4542 .. _memoryops:
   4543 
   4544 Memory Access and Addressing Operations
   4545 ---------------------------------------
   4546 
   4547 A key design point of an SSA-based representation is how it represents
   4548 memory. In LLVM, no memory locations are in SSA form, which makes things
   4549 very simple. This section describes how to read, write, and allocate
   4550 memory in LLVM.
   4551 
   4552 .. _i_alloca:
   4553 
   4554 '``alloca``' Instruction
   4555 ^^^^^^^^^^^^^^^^^^^^^^^^
   4556 
   4557 Syntax:
   4558 """""""
   4559 
   4560 ::
   4561 
   4562       <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>]     ; yields {type*}:result
   4563 
   4564 Overview:
   4565 """""""""
   4566 
   4567 The '``alloca``' instruction allocates memory on the stack frame of the
   4568 currently executing function, to be automatically released when this
   4569 function returns to its caller. The object is always allocated in the
   4570 generic address space (address space zero).
   4571 
   4572 Arguments:
   4573 """"""""""
   4574 
   4575 The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
   4576 bytes of memory on the runtime stack, returning a pointer of the
   4577 appropriate type to the program. If "NumElements" is specified, it is
   4578 the number of elements allocated, otherwise "NumElements" is defaulted
   4579 to be one. If a constant alignment is specified, the value result of the
   4580 allocation is guaranteed to be aligned to at least that boundary. If not
   4581 specified, or if zero, the target can choose to align the allocation on
   4582 any convenient boundary compatible with the type.
   4583 
   4584 '``type``' may be any sized type.
   4585 
   4586 Semantics:
   4587 """"""""""
   4588 
   4589 Memory is allocated; a pointer is returned. The operation is undefined
   4590 if there is insufficient stack space for the allocation. '``alloca``'d
   4591 memory is automatically released when the function returns. The
   4592 '``alloca``' instruction is commonly used to represent automatic
   4593 variables that must have an address available. When the function returns
   4594 (either with the ``ret`` or ``resume`` instructions), the memory is
   4595 reclaimed. Allocating zero bytes is legal, but the result is undefined.
   4596 The order in which memory is allocated (ie., which way the stack grows)
   4597 is not specified.
   4598 
   4599 Example:
   4600 """"""""
   4601 
   4602 .. code-block:: llvm
   4603 
   4604       %ptr = alloca i32                             ; yields {i32*}:ptr
   4605       %ptr = alloca i32, i32 4                      ; yields {i32*}:ptr
   4606       %ptr = alloca i32, i32 4, align 1024          ; yields {i32*}:ptr
   4607       %ptr = alloca i32, align 1024                 ; yields {i32*}:ptr
   4608 
   4609 .. _i_load:
   4610 
   4611 '``load``' Instruction
   4612 ^^^^^^^^^^^^^^^^^^^^^^
   4613 
   4614 Syntax:
   4615 """""""
   4616 
   4617 ::
   4618 
   4619       <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
   4620       <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
   4621       !<index> = !{ i32 1 }
   4622 
   4623 Overview:
   4624 """""""""
   4625 
   4626 The '``load``' instruction is used to read from memory.
   4627 
   4628 Arguments:
   4629 """"""""""
   4630 
   4631 The argument to the ``load`` instruction specifies the memory address
   4632 from which to load. The pointer must point to a :ref:`first
   4633 class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
   4634 then the optimizer is not allowed to modify the number or order of
   4635 execution of this ``load`` with other :ref:`volatile
   4636 operations <volatile>`.
   4637 
   4638 If the ``load`` is marked as ``atomic``, it takes an extra
   4639 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
   4640 ``release`` and ``acq_rel`` orderings are not valid on ``load``
   4641 instructions. Atomic loads produce :ref:`defined <memmodel>` results
   4642 when they may see multiple atomic stores. The type of the pointee must
   4643 be an integer type whose bit width is a power of two greater than or
   4644 equal to eight and less than or equal to a target-specific size limit.
   4645 ``align`` must be explicitly specified on atomic loads, and the load has
   4646 undefined behavior if the alignment is not set to a value which is at
   4647 least the size in bytes of the pointee. ``!nontemporal`` does not have
   4648 any defined semantics for atomic loads.
   4649 
   4650 The optional constant ``align`` argument specifies the alignment of the
   4651 operation (that is, the alignment of the memory address). A value of 0
   4652 or an omitted ``align`` argument means that the operation has the ABI
   4653 alignment for the target. It is the responsibility of the code emitter
   4654 to ensure that the alignment information is correct. Overestimating the
   4655 alignment results in undefined behavior. Underestimating the alignment
   4656 may produce less efficient code. An alignment of 1 is always safe.
   4657 
   4658 The optional ``!nontemporal`` metadata must reference a single
   4659 metadata name ``<index>`` corresponding to a metadata node with one
   4660 ``i32`` entry of value 1. The existence of the ``!nontemporal``
   4661 metadata on the instruction tells the optimizer and code generator
   4662 that this load is not expected to be reused in the cache. The code
   4663 generator may select special instructions to save cache bandwidth, such
   4664 as the ``MOVNT`` instruction on x86.
   4665 
   4666 The optional ``!invariant.load`` metadata must reference a single
   4667 metadata name ``<index>`` corresponding to a metadata node with no
   4668 entries. The existence of the ``!invariant.load`` metadata on the
   4669 instruction tells the optimizer and code generator that this load
   4670 address points to memory which does not change value during program
   4671 execution. The optimizer may then move this load around, for example, by
   4672 hoisting it out of loops using loop invariant code motion.
   4673 
   4674 Semantics:
   4675 """"""""""
   4676 
   4677 The location of memory pointed to is loaded. If the value being loaded
   4678 is of scalar type then the number of bytes read does not exceed the
   4679 minimum number of bytes needed to hold all bits of the type. For
   4680 example, loading an ``i24`` reads at most three bytes. When loading a
   4681 value of a type like ``i20`` with a size that is not an integral number
   4682 of bytes, the result is undefined if the value was not originally
   4683 written using a store of the same type.
   4684 
   4685 Examples:
   4686 """""""""
   4687 
   4688 .. code-block:: llvm
   4689 
   4690       %ptr = alloca i32                               ; yields {i32*}:ptr
   4691       store i32 3, i32* %ptr                          ; yields {void}
   4692       %val = load i32* %ptr                           ; yields {i32}:val = i32 3
   4693 
   4694 .. _i_store:
   4695 
   4696 '``store``' Instruction
   4697 ^^^^^^^^^^^^^^^^^^^^^^^
   4698 
   4699 Syntax:
   4700 """""""
   4701 
   4702 ::
   4703 
   4704       store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>]        ; yields {void}
   4705       store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment>  ; yields {void}
   4706 
   4707 Overview:
   4708 """""""""
   4709 
   4710 The '``store``' instruction is used to write to memory.
   4711 
   4712 Arguments:
   4713 """"""""""
   4714 
   4715 There are two arguments to the ``store`` instruction: a value to store
   4716 and an address at which to store it. The type of the ``<pointer>``
   4717 operand must be a pointer to the :ref:`first class <t_firstclass>` type of
   4718 the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
   4719 then the optimizer is not allowed to modify the number or order of
   4720 execution of this ``store`` with other :ref:`volatile
   4721 operations <volatile>`.
   4722 
   4723 If the ``store`` is marked as ``atomic``, it takes an extra
   4724 :ref:`ordering <ordering>` and optional ``singlethread`` argument. The
   4725 ``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
   4726 instructions. Atomic loads produce :ref:`defined <memmodel>` results
   4727 when they may see multiple atomic stores. The type of the pointee must
   4728 be an integer type whose bit width is a power of two greater than or
   4729 equal to eight and less than or equal to a target-specific size limit.
   4730 ``align`` must be explicitly specified on atomic stores, and the store
   4731 has undefined behavior if the alignment is not set to a value which is
   4732 at least the size in bytes of the pointee. ``!nontemporal`` does not
   4733 have any defined semantics for atomic stores.
   4734 
   4735 The optional constant ``align`` argument specifies the alignment of the
   4736 operation (that is, the alignment of the memory address). A value of 0
   4737 or an omitted ``align`` argument means that the operation has the ABI
   4738 alignment for the target. It is the responsibility of the code emitter
   4739 to ensure that the alignment information is correct. Overestimating the
   4740 alignment results in undefined behavior. Underestimating the
   4741 alignment may produce less efficient code. An alignment of 1 is always
   4742 safe.
   4743 
   4744 The optional ``!nontemporal`` metadata must reference a single metadata
   4745 name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
   4746 value 1. The existence of the ``!nontemporal`` metadata on the instruction
   4747 tells the optimizer and code generator that this load is not expected to
   4748 be reused in the cache. The code generator may select special
   4749 instructions to save cache bandwidth, such as the MOVNT instruction on
   4750 x86.
   4751 
   4752 Semantics:
   4753 """"""""""
   4754 
   4755 The contents of memory are updated to contain ``<value>`` at the
   4756 location specified by the ``<pointer>`` operand. If ``<value>`` is
   4757 of scalar type then the number of bytes written does not exceed the
   4758 minimum number of bytes needed to hold all bits of the type. For
   4759 example, storing an ``i24`` writes at most three bytes. When writing a
   4760 value of a type like ``i20`` with a size that is not an integral number
   4761 of bytes, it is unspecified what happens to the extra bits that do not
   4762 belong to the type, but they will typically be overwritten.
   4763 
   4764 Example:
   4765 """"""""
   4766 
   4767 .. code-block:: llvm
   4768 
   4769       %ptr = alloca i32                               ; yields {i32*}:ptr
   4770       store i32 3, i32* %ptr                          ; yields {void}
   4771       %val = load i32* %ptr                           ; yields {i32}:val = i32 3
   4772 
   4773 .. _i_fence:
   4774 
   4775 '``fence``' Instruction
   4776 ^^^^^^^^^^^^^^^^^^^^^^^
   4777 
   4778 Syntax:
   4779 """""""
   4780 
   4781 ::
   4782 
   4783       fence [singlethread] <ordering>                   ; yields {void}
   4784 
   4785 Overview:
   4786 """""""""
   4787 
   4788 The '``fence``' instruction is used to introduce happens-before edges
   4789 between operations.
   4790 
   4791 Arguments:
   4792 """"""""""
   4793 
   4794 '``fence``' instructions take an :ref:`ordering <ordering>` argument which
   4795 defines what *synchronizes-with* edges they add. They can only be given
   4796 ``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
   4797 
   4798 Semantics:
   4799 """"""""""
   4800 
   4801 A fence A which has (at least) ``release`` ordering semantics
   4802 *synchronizes with* a fence B with (at least) ``acquire`` ordering
   4803 semantics if and only if there exist atomic operations X and Y, both
   4804 operating on some atomic object M, such that A is sequenced before X, X
   4805 modifies M (either directly or through some side effect of a sequence
   4806 headed by X), Y is sequenced before B, and Y observes M. This provides a
   4807 *happens-before* dependency between A and B. Rather than an explicit
   4808 ``fence``, one (but not both) of the atomic operations X or Y might
   4809 provide a ``release`` or ``acquire`` (resp.) ordering constraint and
   4810 still *synchronize-with* the explicit ``fence`` and establish the
   4811 *happens-before* edge.
   4812 
   4813 A ``fence`` which has ``seq_cst`` ordering, in addition to having both
   4814 ``acquire`` and ``release`` semantics specified above, participates in
   4815 the global program order of other ``seq_cst`` operations and/or fences.
   4816 
   4817 The optional ":ref:`singlethread <singlethread>`" argument specifies
   4818 that the fence only synchronizes with other fences in the same thread.
   4819 (This is useful for interacting with signal handlers.)
   4820 
   4821 Example:
   4822 """"""""
   4823 
   4824 .. code-block:: llvm
   4825 
   4826       fence acquire                          ; yields {void}
   4827       fence singlethread seq_cst             ; yields {void}
   4828 
   4829 .. _i_cmpxchg:
   4830 
   4831 '``cmpxchg``' Instruction
   4832 ^^^^^^^^^^^^^^^^^^^^^^^^^
   4833 
   4834 Syntax:
   4835 """""""
   4836 
   4837 ::
   4838 
   4839       cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering>  ; yields {ty}
   4840 
   4841 Overview:
   4842 """""""""
   4843 
   4844 The '``cmpxchg``' instruction is used to atomically modify memory. It
   4845 loads a value in memory and compares it to a given value. If they are
   4846 equal, it stores a new value into the memory.
   4847 
   4848 Arguments:
   4849 """"""""""
   4850 
   4851 There are three arguments to the '``cmpxchg``' instruction: an address
   4852 to operate on, a value to compare to the value currently be at that
   4853 address, and a new value to place at that address if the compared values
   4854 are equal. The type of '<cmp>' must be an integer type whose bit width
   4855 is a power of two greater than or equal to eight and less than or equal
   4856 to a target-specific size limit. '<cmp>' and '<new>' must have the same
   4857 type, and the type of '<pointer>' must be a pointer to that type. If the
   4858 ``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
   4859 to modify the number or order of execution of this ``cmpxchg`` with
   4860 other :ref:`volatile operations <volatile>`.
   4861 
   4862 The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
   4863 synchronizes with other atomic operations.
   4864 
   4865 The optional "``singlethread``" argument declares that the ``cmpxchg``
   4866 is only atomic with respect to code (usually signal handlers) running in
   4867 the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
   4868 respect to all other code in the system.
   4869 
   4870 The pointer passed into cmpxchg must have alignment greater than or
   4871 equal to the size in memory of the operand.
   4872 
   4873 Semantics:
   4874 """"""""""
   4875 
   4876 The contents of memory at the location specified by the '``<pointer>``'
   4877 operand is read and compared to '``<cmp>``'; if the read value is the
   4878 equal, '``<new>``' is written. The original value at the location is
   4879 returned.
   4880 
   4881 A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
   4882 of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
   4883 atomic load with an ordering parameter determined by dropping any
   4884 ``release`` part of the ``cmpxchg``'s ordering.
   4885 
   4886 Example:
   4887 """"""""
   4888 
   4889 .. code-block:: llvm
   4890 
   4891     entry:
   4892       %orig = atomic load i32* %ptr unordered                   ; yields {i32}
   4893       br label %loop
   4894 
   4895     loop:
   4896       %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
   4897       %squared = mul i32 %cmp, %cmp
   4898       %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          ; yields {i32}
   4899       %success = icmp eq i32 %cmp, %old
   4900       br i1 %success, label %done, label %loop
   4901 
   4902     done:
   4903       ...
   4904 
   4905 .. _i_atomicrmw:
   4906 
   4907 '``atomicrmw``' Instruction
   4908 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4909 
   4910 Syntax:
   4911 """""""
   4912 
   4913 ::
   4914 
   4915       atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering>                   ; yields {ty}
   4916 
   4917 Overview:
   4918 """""""""
   4919 
   4920 The '``atomicrmw``' instruction is used to atomically modify memory.
   4921 
   4922 Arguments:
   4923 """"""""""
   4924 
   4925 There are three arguments to the '``atomicrmw``' instruction: an
   4926 operation to apply, an address whose value to modify, an argument to the
   4927 operation. The operation must be one of the following keywords:
   4928 
   4929 -  xchg
   4930 -  add
   4931 -  sub
   4932 -  and
   4933 -  nand
   4934 -  or
   4935 -  xor
   4936 -  max
   4937 -  min
   4938 -  umax
   4939 -  umin
   4940 
   4941 The type of '<value>' must be an integer type whose bit width is a power
   4942 of two greater than or equal to eight and less than or equal to a
   4943 target-specific size limit. The type of the '``<pointer>``' operand must
   4944 be a pointer to that type. If the ``atomicrmw`` is marked as
   4945 ``volatile``, then the optimizer is not allowed to modify the number or
   4946 order of execution of this ``atomicrmw`` with other :ref:`volatile
   4947 operations <volatile>`.
   4948 
   4949 Semantics:
   4950 """"""""""
   4951 
   4952 The contents of memory at the location specified by the '``<pointer>``'
   4953 operand are atomically read, modified, and written back. The original
   4954 value at the location is returned. The modification is specified by the
   4955 operation argument:
   4956 
   4957 -  xchg: ``*ptr = val``
   4958 -  add: ``*ptr = *ptr + val``
   4959 -  sub: ``*ptr = *ptr - val``
   4960 -  and: ``*ptr = *ptr & val``
   4961 -  nand: ``*ptr = ~(*ptr & val)``
   4962 -  or: ``*ptr = *ptr | val``
   4963 -  xor: ``*ptr = *ptr ^ val``
   4964 -  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
   4965 -  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
   4966 -  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
   4967    comparison)
   4968 -  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
   4969    comparison)
   4970 
   4971 Example:
   4972 """"""""
   4973 
   4974 .. code-block:: llvm
   4975 
   4976       %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields {i32}
   4977 
   4978 .. _i_getelementptr:
   4979 
   4980 '``getelementptr``' Instruction
   4981 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   4982 
   4983 Syntax:
   4984 """""""
   4985 
   4986 ::
   4987 
   4988       <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
   4989       <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
   4990       <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
   4991 
   4992 Overview:
   4993 """""""""
   4994 
   4995 The '``getelementptr``' instruction is used to get the address of a
   4996 subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
   4997 address calculation only and does not access memory.
   4998 
   4999 Arguments:
   5000 """"""""""
   5001 
   5002 The first argument is always a pointer or a vector of pointers, and
   5003 forms the basis of the calculation. The remaining arguments are indices
   5004 that indicate which of the elements of the aggregate object are indexed.
   5005 The interpretation of each index is dependent on the type being indexed
   5006 into. The first index always indexes the pointer value given as the
   5007 first argument, the second index indexes a value of the type pointed to
   5008 (not necessarily the value directly pointed to, since the first index
   5009 can be non-zero), etc. The first type indexed into must be a pointer
   5010 value, subsequent types can be arrays, vectors, and structs. Note that
   5011 subsequent types being indexed into can never be pointers, since that
   5012 would require loading the pointer before continuing calculation.
   5013 
   5014 The type of each index argument depends on the type it is indexing into.
   5015 When indexing into a (optionally packed) structure, only ``i32`` integer
   5016 **constants** are allowed (when using a vector of indices they must all
   5017 be the **same** ``i32`` integer constant). When indexing into an array,
   5018 pointer or vector, integers of any width are allowed, and they are not
   5019 required to be constant. These integers are treated as signed values
   5020 where relevant.
   5021 
   5022 For example, let's consider a C code fragment and how it gets compiled
   5023 to LLVM:
   5024 
   5025 .. code-block:: c
   5026 
   5027     struct RT {
   5028       char A;
   5029       int B[10][20];
   5030       char C;
   5031     };
   5032     struct ST {
   5033       int X;
   5034       double Y;
   5035       struct RT Z;
   5036     };
   5037 
   5038     int *foo(struct ST *s) {
   5039       return &s[1].Z.B[5][13];
   5040     }
   5041 
   5042 The LLVM code generated by Clang is:
   5043 
   5044 .. code-block:: llvm
   5045 
   5046     %struct.RT = type { i8, [10 x [20 x i32]], i8 }
   5047     %struct.ST = type { i32, double, %struct.RT }
   5048 
   5049     define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
   5050     entry:
   5051       %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
   5052       ret i32* %arrayidx
   5053     }
   5054 
   5055 Semantics:
   5056 """"""""""
   5057 
   5058 In the example above, the first index is indexing into the
   5059 '``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
   5060 = '``{ i32, double, %struct.RT }``' type, a structure. The second index
   5061 indexes into the third element of the structure, yielding a
   5062 '``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
   5063 structure. The third index indexes into the second element of the
   5064 structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
   5065 dimensions of the array are subscripted into, yielding an '``i32``'
   5066 type. The '``getelementptr``' instruction returns a pointer to this
   5067 element, thus computing a value of '``i32*``' type.
   5068 
   5069 Note that it is perfectly legal to index partially through a structure,
   5070 returning a pointer to an inner element. Because of this, the LLVM code
   5071 for the given testcase is equivalent to:
   5072 
   5073 .. code-block:: llvm
   5074 
   5075     define i32* @foo(%struct.ST* %s) {
   5076       %t1 = getelementptr %struct.ST* %s, i32 1                 ; yields %struct.ST*:%t1
   5077       %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         ; yields %struct.RT*:%t2
   5078       %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         ; yields [10 x [20 x i32]]*:%t3
   5079       %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
   5080       %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        ; yields i32*:%t5
   5081       ret i32* %t5
   5082     }
   5083 
   5084 If the ``inbounds`` keyword is present, the result value of the
   5085 ``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
   5086 pointer is not an *in bounds* address of an allocated object, or if any
   5087 of the addresses that would be formed by successive addition of the
   5088 offsets implied by the indices to the base address with infinitely
   5089 precise signed arithmetic are not an *in bounds* address of that
   5090 allocated object. The *in bounds* addresses for an allocated object are
   5091 all the addresses that point into the object, plus the address one byte
   5092 past the end. In cases where the base is a vector of pointers the
   5093 ``inbounds`` keyword applies to each of the computations element-wise.
   5094 
   5095 If the ``inbounds`` keyword is not present, the offsets are added to the
   5096 base address with silently-wrapping two's complement arithmetic. If the
   5097 offsets have a different width from the pointer, they are sign-extended
   5098 or truncated to the width of the pointer. The result value of the
   5099 ``getelementptr`` may be outside the object pointed to by the base
   5100 pointer. The result value may not necessarily be used to access memory
   5101 though, even if it happens to point into allocated storage. See the
   5102 :ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
   5103 information.
   5104 
   5105 The getelementptr instruction is often confusing. For some more insight
   5106 into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
   5107 
   5108 Example:
   5109 """"""""
   5110 
   5111 .. code-block:: llvm
   5112 
   5113         ; yields [12 x i8]*:aptr
   5114         %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
   5115         ; yields i8*:vptr
   5116         %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
   5117         ; yields i8*:eptr
   5118         %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
   5119         ; yields i32*:iptr
   5120         %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
   5121 
   5122 In cases where the pointer argument is a vector of pointers, each index
   5123 must be a vector with the same number of elements. For example:
   5124 
   5125 .. code-block:: llvm
   5126 
   5127      %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
   5128 
   5129 Conversion Operations
   5130 ---------------------
   5131 
   5132 The instructions in this category are the conversion instructions
   5133 (casting) which all take a single operand and a type. They perform
   5134 various bit conversions on the operand.
   5135 
   5136 '``trunc .. to``' Instruction
   5137 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5138 
   5139 Syntax:
   5140 """""""
   5141 
   5142 ::
   5143 
   5144       <result> = trunc <ty> <value> to <ty2>             ; yields ty2
   5145 
   5146 Overview:
   5147 """""""""
   5148 
   5149 The '``trunc``' instruction truncates its operand to the type ``ty2``.
   5150 
   5151 Arguments:
   5152 """"""""""
   5153 
   5154 The '``trunc``' instruction takes a value to trunc, and a type to trunc
   5155 it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
   5156 of the same number of integers. The bit size of the ``value`` must be
   5157 larger than the bit size of the destination type, ``ty2``. Equal sized
   5158 types are not allowed.
   5159 
   5160 Semantics:
   5161 """"""""""
   5162 
   5163 The '``trunc``' instruction truncates the high order bits in ``value``
   5164 and converts the remaining bits to ``ty2``. Since the source size must
   5165 be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
   5166 It will always truncate bits.
   5167 
   5168 Example:
   5169 """"""""
   5170 
   5171 .. code-block:: llvm
   5172 
   5173       %X = trunc i32 257 to i8                        ; yields i8:1
   5174       %Y = trunc i32 123 to i1                        ; yields i1:true
   5175       %Z = trunc i32 122 to i1                        ; yields i1:false
   5176       %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
   5177 
   5178 '``zext .. to``' Instruction
   5179 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5180 
   5181 Syntax:
   5182 """""""
   5183 
   5184 ::
   5185 
   5186       <result> = zext <ty> <value> to <ty2>             ; yields ty2
   5187 
   5188 Overview:
   5189 """""""""
   5190 
   5191 The '``zext``' instruction zero extends its operand to type ``ty2``.
   5192 
   5193 Arguments:
   5194 """"""""""
   5195 
   5196 The '``zext``' instruction takes a value to cast, and a type to cast it
   5197 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
   5198 the same number of integers. The bit size of the ``value`` must be
   5199 smaller than the bit size of the destination type, ``ty2``.
   5200 
   5201 Semantics:
   5202 """"""""""
   5203 
   5204 The ``zext`` fills the high order bits of the ``value`` with zero bits
   5205 until it reaches the size of the destination type, ``ty2``.
   5206 
   5207 When zero extending from i1, the result will always be either 0 or 1.
   5208 
   5209 Example:
   5210 """"""""
   5211 
   5212 .. code-block:: llvm
   5213 
   5214       %X = zext i32 257 to i64              ; yields i64:257
   5215       %Y = zext i1 true to i32              ; yields i32:1
   5216       %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
   5217 
   5218 '``sext .. to``' Instruction
   5219 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5220 
   5221 Syntax:
   5222 """""""
   5223 
   5224 ::
   5225 
   5226       <result> = sext <ty> <value> to <ty2>             ; yields ty2
   5227 
   5228 Overview:
   5229 """""""""
   5230 
   5231 The '``sext``' sign extends ``value`` to the type ``ty2``.
   5232 
   5233 Arguments:
   5234 """"""""""
   5235 
   5236 The '``sext``' instruction takes a value to cast, and a type to cast it
   5237 to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
   5238 the same number of integers. The bit size of the ``value`` must be
   5239 smaller than the bit size of the destination type, ``ty2``.
   5240 
   5241 Semantics:
   5242 """"""""""
   5243 
   5244 The '``sext``' instruction performs a sign extension by copying the sign
   5245 bit (highest order bit) of the ``value`` until it reaches the bit size
   5246 of the type ``ty2``.
   5247 
   5248 When sign extending from i1, the extension always results in -1 or 0.
   5249 
   5250 Example:
   5251 """"""""
   5252 
   5253 .. code-block:: llvm
   5254 
   5255       %X = sext i8  -1 to i16              ; yields i16   :65535
   5256       %Y = sext i1 true to i32             ; yields i32:-1
   5257       %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
   5258 
   5259 '``fptrunc .. to``' Instruction
   5260 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5261 
   5262 Syntax:
   5263 """""""
   5264 
   5265 ::
   5266 
   5267       <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
   5268 
   5269 Overview:
   5270 """""""""
   5271 
   5272 The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
   5273 
   5274 Arguments:
   5275 """"""""""
   5276 
   5277 The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
   5278 value to cast and a :ref:`floating point <t_floating>` type to cast it to.
   5279 The size of ``value`` must be larger than the size of ``ty2``. This
   5280 implies that ``fptrunc`` cannot be used to make a *no-op cast*.
   5281 
   5282 Semantics:
   5283 """"""""""
   5284 
   5285 The '``fptrunc``' instruction truncates a ``value`` from a larger
   5286 :ref:`floating point <t_floating>` type to a smaller :ref:`floating
   5287 point <t_floating>` type. If the value cannot fit within the
   5288 destination type, ``ty2``, then the results are undefined.
   5289 
   5290 Example:
   5291 """"""""
   5292 
   5293 .. code-block:: llvm
   5294 
   5295       %X = fptrunc double 123.0 to float         ; yields float:123.0
   5296       %Y = fptrunc double 1.0E+300 to float      ; yields undefined
   5297 
   5298 '``fpext .. to``' Instruction
   5299 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5300 
   5301 Syntax:
   5302 """""""
   5303 
   5304 ::
   5305 
   5306       <result> = fpext <ty> <value> to <ty2>             ; yields ty2
   5307 
   5308 Overview:
   5309 """""""""
   5310 
   5311 The '``fpext``' extends a floating point ``value`` to a larger floating
   5312 point value.
   5313 
   5314 Arguments:
   5315 """"""""""
   5316 
   5317 The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
   5318 ``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
   5319 to. The source type must be smaller than the destination type.
   5320 
   5321 Semantics:
   5322 """"""""""
   5323 
   5324 The '``fpext``' instruction extends the ``value`` from a smaller
   5325 :ref:`floating point <t_floating>` type to a larger :ref:`floating
   5326 point <t_floating>` type. The ``fpext`` cannot be used to make a
   5327 *no-op cast* because it always changes bits. Use ``bitcast`` to make a
   5328 *no-op cast* for a floating point cast.
   5329 
   5330 Example:
   5331 """"""""
   5332 
   5333 .. code-block:: llvm
   5334 
   5335       %X = fpext float 3.125 to double         ; yields double:3.125000e+00
   5336       %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
   5337 
   5338 '``fptoui .. to``' Instruction
   5339 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5340 
   5341 Syntax:
   5342 """""""
   5343 
   5344 ::
   5345 
   5346       <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
   5347 
   5348 Overview:
   5349 """""""""
   5350 
   5351 The '``fptoui``' converts a floating point ``value`` to its unsigned
   5352 integer equivalent of type ``ty2``.
   5353 
   5354 Arguments:
   5355 """"""""""
   5356 
   5357 The '``fptoui``' instruction takes a value to cast, which must be a
   5358 scalar or vector :ref:`floating point <t_floating>` value, and a type to
   5359 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
   5360 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
   5361 type with the same number of elements as ``ty``
   5362 
   5363 Semantics:
   5364 """"""""""
   5365 
   5366 The '``fptoui``' instruction converts its :ref:`floating
   5367 point <t_floating>` operand into the nearest (rounding towards zero)
   5368 unsigned integer value. If the value cannot fit in ``ty2``, the results
   5369 are undefined.
   5370 
   5371 Example:
   5372 """"""""
   5373 
   5374 .. code-block:: llvm
   5375 
   5376       %X = fptoui double 123.0 to i32      ; yields i32:123
   5377       %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
   5378       %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
   5379 
   5380 '``fptosi .. to``' Instruction
   5381 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5382 
   5383 Syntax:
   5384 """""""
   5385 
   5386 ::
   5387 
   5388       <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
   5389 
   5390 Overview:
   5391 """""""""
   5392 
   5393 The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
   5394 ``value`` to type ``ty2``.
   5395 
   5396 Arguments:
   5397 """"""""""
   5398 
   5399 The '``fptosi``' instruction takes a value to cast, which must be a
   5400 scalar or vector :ref:`floating point <t_floating>` value, and a type to
   5401 cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
   5402 ``ty`` is a vector floating point type, ``ty2`` must be a vector integer
   5403 type with the same number of elements as ``ty``
   5404 
   5405 Semantics:
   5406 """"""""""
   5407 
   5408 The '``fptosi``' instruction converts its :ref:`floating
   5409 point <t_floating>` operand into the nearest (rounding towards zero)
   5410 signed integer value. If the value cannot fit in ``ty2``, the results
   5411 are undefined.
   5412 
   5413 Example:
   5414 """"""""
   5415 
   5416 .. code-block:: llvm
   5417 
   5418       %X = fptosi double -123.0 to i32      ; yields i32:-123
   5419       %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
   5420       %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
   5421 
   5422 '``uitofp .. to``' Instruction
   5423 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5424 
   5425 Syntax:
   5426 """""""
   5427 
   5428 ::
   5429 
   5430       <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
   5431 
   5432 Overview:
   5433 """""""""
   5434 
   5435 The '``uitofp``' instruction regards ``value`` as an unsigned integer
   5436 and converts that value to the ``ty2`` type.
   5437 
   5438 Arguments:
   5439 """"""""""
   5440 
   5441 The '``uitofp``' instruction takes a value to cast, which must be a
   5442 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
   5443 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
   5444 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
   5445 type with the same number of elements as ``ty``
   5446 
   5447 Semantics:
   5448 """"""""""
   5449 
   5450 The '``uitofp``' instruction interprets its operand as an unsigned
   5451 integer quantity and converts it to the corresponding floating point
   5452 value. If the value cannot fit in the floating point value, the results
   5453 are undefined.
   5454 
   5455 Example:
   5456 """"""""
   5457 
   5458 .. code-block:: llvm
   5459 
   5460       %X = uitofp i32 257 to float         ; yields float:257.0
   5461       %Y = uitofp i8 -1 to double          ; yields double:255.0
   5462 
   5463 '``sitofp .. to``' Instruction
   5464 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5465 
   5466 Syntax:
   5467 """""""
   5468 
   5469 ::
   5470 
   5471       <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
   5472 
   5473 Overview:
   5474 """""""""
   5475 
   5476 The '``sitofp``' instruction regards ``value`` as a signed integer and
   5477 converts that value to the ``ty2`` type.
   5478 
   5479 Arguments:
   5480 """"""""""
   5481 
   5482 The '``sitofp``' instruction takes a value to cast, which must be a
   5483 scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
   5484 ``ty2``, which must be an :ref:`floating point <t_floating>` type. If
   5485 ``ty`` is a vector integer type, ``ty2`` must be a vector floating point
   5486 type with the same number of elements as ``ty``
   5487 
   5488 Semantics:
   5489 """"""""""
   5490 
   5491 The '``sitofp``' instruction interprets its operand as a signed integer
   5492 quantity and converts it to the corresponding floating point value. If
   5493 the value cannot fit in the floating point value, the results are
   5494 undefined.
   5495 
   5496 Example:
   5497 """"""""
   5498 
   5499 .. code-block:: llvm
   5500 
   5501       %X = sitofp i32 257 to float         ; yields float:257.0
   5502       %Y = sitofp i8 -1 to double          ; yields double:-1.0
   5503 
   5504 .. _i_ptrtoint:
   5505 
   5506 '``ptrtoint .. to``' Instruction
   5507 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5508 
   5509 Syntax:
   5510 """""""
   5511 
   5512 ::
   5513 
   5514       <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
   5515 
   5516 Overview:
   5517 """""""""
   5518 
   5519 The '``ptrtoint``' instruction converts the pointer or a vector of
   5520 pointers ``value`` to the integer (or vector of integers) type ``ty2``.
   5521 
   5522 Arguments:
   5523 """"""""""
   5524 
   5525 The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
   5526 a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
   5527 type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
   5528 a vector of integers type.
   5529 
   5530 Semantics:
   5531 """"""""""
   5532 
   5533 The '``ptrtoint``' instruction converts ``value`` to integer type
   5534 ``ty2`` by interpreting the pointer value as an integer and either
   5535 truncating or zero extending that value to the size of the integer type.
   5536 If ``value`` is smaller than ``ty2`` then a zero extension is done. If
   5537 ``value`` is larger than ``ty2`` then a truncation is done. If they are
   5538 the same size, then nothing is done (*no-op cast*) other than a type
   5539 change.
   5540 
   5541 Example:
   5542 """"""""
   5543 
   5544 .. code-block:: llvm
   5545 
   5546       %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
   5547       %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
   5548       %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
   5549 
   5550 .. _i_inttoptr:
   5551 
   5552 '``inttoptr .. to``' Instruction
   5553 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5554 
   5555 Syntax:
   5556 """""""
   5557 
   5558 ::
   5559 
   5560       <result> = inttoptr <ty> <value> to <ty2>             ; yields ty2
   5561 
   5562 Overview:
   5563 """""""""
   5564 
   5565 The '``inttoptr``' instruction converts an integer ``value`` to a
   5566 pointer type, ``ty2``.
   5567 
   5568 Arguments:
   5569 """"""""""
   5570 
   5571 The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
   5572 cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
   5573 type.
   5574 
   5575 Semantics:
   5576 """"""""""
   5577 
   5578 The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
   5579 applying either a zero extension or a truncation depending on the size
   5580 of the integer ``value``. If ``value`` is larger than the size of a
   5581 pointer then a truncation is done. If ``value`` is smaller than the size
   5582 of a pointer then a zero extension is done. If they are the same size,
   5583 nothing is done (*no-op cast*).
   5584 
   5585 Example:
   5586 """"""""
   5587 
   5588 .. code-block:: llvm
   5589 
   5590       %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
   5591       %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
   5592       %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
   5593       %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
   5594 
   5595 .. _i_bitcast:
   5596 
   5597 '``bitcast .. to``' Instruction
   5598 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   5599 
   5600 Syntax:
   5601 """""""
   5602 
   5603 ::
   5604 
   5605       <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
   5606 
   5607 Overview:
   5608 """""""""
   5609 
   5610 The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
   5611 changing any bits.
   5612 
   5613 Arguments:
   5614 """"""""""
   5615 
   5616 The '``bitcast``' instruction takes a value to cast, which must be a
   5617 non-aggregate first class value, and a type to cast it to, which must
   5618 also be a non-aggregate :ref:`first class <t_firstclass>` type. The
   5619 bit sizes of ``value`` and the destination type, ``ty2``, must be
   5620 identical.  If the source type is a pointer, the destination type must
   5621 also be a pointer of the same size. This instruction supports bitwise
   5622 conversion of vectors to integers and to vectors of other types (as
   5623 long as they have the same size).
   5624 
   5625 Semantics:
   5626 """"""""""
   5627 
   5628 The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
   5629 is always a *no-op cast* because no bits change with this
   5630 conversion. The conversion is done as if the ``value`` had been stored
   5631 to memory and read back as type ``ty2``. Pointer (or vector of
   5632 pointers) types may only be converted to other pointer (or vector of
   5633 pointers) types with this instruction if the pointer sizes are
   5634 equal. To convert pointers to other types, use the :ref:`inttoptr
   5635 <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
   5636 
   5637 Example:
   5638 """"""""
   5639 
   5640 .. code-block:: llvm
   5641 
   5642       %X = bitcast i8 255 to i8              ; yields i8 :-1
   5643       %Y = bitcast i32* %x to sint*          ; yields sint*:%x
   5644       %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
   5645       %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
   5646 
   5647 .. _otherops:
   5648 
   5649 Other Operations
   5650 ----------------
   5651 
   5652 The instructions in this category are the "miscellaneous" instructions,
   5653 which defy better classification.
   5654 
   5655 .. _i_icmp:
   5656 
   5657 '``icmp``' Instruction
   5658 ^^^^^^^^^^^^^^^^^^^^^^
   5659 
   5660 Syntax:
   5661 """""""
   5662 
   5663 ::
   5664 
   5665       <result> = icmp <cond> <ty> <op1>, <op2>   ; yields {i1} or {<N x i1>}:result
   5666 
   5667 Overview:
   5668 """""""""
   5669 
   5670 The '``icmp``' instruction returns a boolean value or a vector of
   5671 boolean values based on comparison of its two integer, integer vector,
   5672 pointer, or pointer vector operands.
   5673 
   5674 Arguments:
   5675 """"""""""
   5676 
   5677 The '``icmp``' instruction takes three operands. The first operand is
   5678 the condition code indicating the kind of comparison to perform. It is
   5679 not a value, just a keyword. The possible condition code are:
   5680 
   5681 #. ``eq``: equal
   5682 #. ``ne``: not equal
   5683 #. ``ugt``: unsigned greater than
   5684 #. ``uge``: unsigned greater or equal
   5685 #. ``ult``: unsigned less than
   5686 #. ``ule``: unsigned less or equal
   5687 #. ``sgt``: signed greater than
   5688 #. ``sge``: signed greater or equal
   5689 #. ``slt``: signed less than
   5690 #. ``sle``: signed less or equal
   5691 
   5692 The remaining two arguments must be :ref:`integer <t_integer>` or
   5693 :ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
   5694 must also be identical types.
   5695 
   5696 Semantics:
   5697 """"""""""
   5698 
   5699 The '``icmp``' compares ``op1`` and ``op2`` according to the condition
   5700 code given as ``cond``. The comparison performed always yields either an
   5701 :ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
   5702 
   5703 #. ``eq``: yields ``true`` if the operands are equal, ``false``
   5704    otherwise. No sign interpretation is necessary or performed.
   5705 #. ``ne``: yields ``true`` if the operands are unequal, ``false``
   5706    otherwise. No sign interpretation is necessary or performed.
   5707 #. ``ugt``: interprets the operands as unsigned values and yields
   5708    ``true`` if ``op1`` is greater than ``op2``.
   5709 #. ``uge``: interprets the operands as unsigned values and yields
   5710    ``true`` if ``op1`` is greater than or equal to ``op2``.
   5711 #. ``ult``: interprets the operands as unsigned values and yields
   5712    ``true`` if ``op1`` is less than ``op2``.
   5713 #. ``ule``: interprets the operands as unsigned values and yields
   5714    ``true`` if ``op1`` is less than or equal to ``op2``.
   5715 #. ``sgt``: interprets the operands as signed values and yields ``true``
   5716    if ``op1`` is greater than ``op2``.
   5717 #. ``sge``: interprets the operands as signed values and yields ``true``
   5718    if ``op1`` is greater than or equal to ``op2``.
   5719 #. ``slt``: interprets the operands as signed values and yields ``true``
   5720    if ``op1`` is less than ``op2``.
   5721 #. ``sle``: interprets the operands as signed values and yields ``true``
   5722    if ``op1`` is less than or equal to ``op2``.
   5723 
   5724 If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
   5725 are compared as if they were integers.
   5726 
   5727 If the operands are integer vectors, then they are compared element by
   5728 element. The result is an ``i1`` vector with the same number of elements
   5729 as the values being compared. Otherwise, the result is an ``i1``.
   5730 
   5731 Example:
   5732 """"""""
   5733 
   5734 .. code-block:: llvm
   5735 
   5736       <result> = icmp eq i32 4, 5          ; yields: result=false
   5737       <result> = icmp ne float* %X, %X     ; yields: result=false
   5738       <result> = icmp ult i16  4, 5        ; yields: result=true
   5739       <result> = icmp sgt i16  4, 5        ; yields: result=false
   5740       <result> = icmp ule i16 -4, 5        ; yields: result=false
   5741       <result> = icmp sge i16  4, 5        ; yields: result=false
   5742 
   5743 Note that the code generator does not yet support vector types with the
   5744 ``icmp`` instruction.
   5745 
   5746 .. _i_fcmp:
   5747 
   5748 '``fcmp``' Instruction
   5749 ^^^^^^^^^^^^^^^^^^^^^^
   5750 
   5751 Syntax:
   5752 """""""
   5753 
   5754 ::
   5755 
   5756       <result> = fcmp <cond> <ty> <op1>, <op2>     ; yields {i1} or {<N x i1>}:result
   5757 
   5758 Overview:
   5759 """""""""
   5760 
   5761 The '``fcmp``' instruction returns a boolean value or vector of boolean
   5762 values based on comparison of its operands.
   5763 
   5764 If the operands are floating point scalars, then the result type is a
   5765 boolean (:ref:`i1 <t_integer>`).
   5766 
   5767 If the operands are floating point vectors, then the result type is a
   5768 vector of boolean with the same number of elements as the operands being
   5769 compared.
   5770 
   5771 Arguments:
   5772 """"""""""
   5773 
   5774 The '``fcmp``' instruction takes three operands. The first operand is
   5775 the condition code indicating the kind of comparison to perform. It is
   5776 not a value, just a keyword. The possible condition code are:
   5777 
   5778 #. ``false``: no comparison, always returns false
   5779 #. ``oeq``: ordered and equal
   5780 #. ``ogt``: ordered and greater than
   5781 #. ``oge``: ordered and greater than or equal
   5782 #. ``olt``: ordered and less than
   5783 #. ``ole``: ordered and less than or equal
   5784 #. ``one``: ordered and not equal
   5785 #. ``ord``: ordered (no nans)
   5786 #. ``ueq``: unordered or equal
   5787 #. ``ugt``: unordered or greater than
   5788 #. ``uge``: unordered or greater than or equal
   5789 #. ``ult``: unordered or less than
   5790 #. ``ule``: unordered or less than or equal
   5791 #. ``une``: unordered or not equal
   5792 #. ``uno``: unordered (either nans)
   5793 #. ``true``: no comparison, always returns true
   5794 
   5795 *Ordered* means that neither operand is a QNAN while *unordered* means
   5796 that either operand may be a QNAN.
   5797 
   5798 Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
   5799 point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
   5800 type. They must have identical types.
   5801 
   5802 Semantics:
   5803 """"""""""
   5804 
   5805 The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
   5806 condition code given as ``cond``. If the operands are vectors, then the
   5807 vectors are compared element by element. Each comparison performed
   5808 always yields an :ref:`i1 <t_integer>` result, as follows:
   5809 
   5810 #. ``false``: always yields ``false``, regardless of operands.
   5811 #. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
   5812    is equal to ``op2``.
   5813 #. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
   5814    is greater than ``op2``.
   5815 #. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
   5816    is greater than or equal to ``op2``.
   5817 #. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
   5818    is less than ``op2``.
   5819 #. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
   5820    is less than or equal to ``op2``.
   5821 #. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
   5822    is not equal to ``op2``.
   5823 #. ``ord``: yields ``true`` if both operands are not a QNAN.
   5824 #. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5825    equal to ``op2``.
   5826 #. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5827    greater than ``op2``.
   5828 #. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5829    greater than or equal to ``op2``.
   5830 #. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5831    less than ``op2``.
   5832 #. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5833    less than or equal to ``op2``.
   5834 #. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
   5835    not equal to ``op2``.
   5836 #. ``uno``: yields ``true`` if either operand is a QNAN.
   5837 #. ``true``: always yields ``true``, regardless of operands.
   5838 
   5839 Example:
   5840 """"""""
   5841 
   5842 .. code-block:: llvm
   5843 
   5844       <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
   5845       <result> = fcmp one float 4.0, 5.0    ; yields: result=true
   5846       <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
   5847       <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
   5848 
   5849 Note that the code generator does not yet support vector types with the
   5850 ``fcmp`` instruction.
   5851 
   5852 .. _i_phi:
   5853 
   5854 '``phi``' Instruction
   5855 ^^^^^^^^^^^^^^^^^^^^^
   5856 
   5857 Syntax:
   5858 """""""
   5859 
   5860 ::
   5861 
   5862       <result> = phi <ty> [ <val0>, <label0>], ...
   5863 
   5864 Overview:
   5865 """""""""
   5866 
   5867 The '``phi``' instruction is used to implement the  node in the SSA
   5868 graph representing the function.
   5869 
   5870 Arguments:
   5871 """"""""""
   5872 
   5873 The type of the incoming values is specified with the first type field.
   5874 After this, the '``phi``' instruction takes a list of pairs as
   5875 arguments, with one pair for each predecessor basic block of the current
   5876 block. Only values of :ref:`first class <t_firstclass>` type may be used as
   5877 the value arguments to the PHI node. Only labels may be used as the
   5878 label arguments.
   5879 
   5880 There must be no non-phi instructions between the start of a basic block
   5881 and the PHI instructions: i.e. PHI instructions must be first in a basic
   5882 block.
   5883 
   5884 For the purposes of the SSA form, the use of each incoming value is
   5885 deemed to occur on the edge from the corresponding predecessor block to
   5886 the current block (but after any definition of an '``invoke``'
   5887 instruction's return value on the same edge).
   5888 
   5889 Semantics:
   5890 """"""""""
   5891 
   5892 At runtime, the '``phi``' instruction logically takes on the value
   5893 specified by the pair corresponding to the predecessor basic block that
   5894 executed just prior to the current block.
   5895 
   5896 Example:
   5897 """"""""
   5898 
   5899 .. code-block:: llvm
   5900 
   5901     Loop:       ; Infinite loop that counts from 0 on up...
   5902       %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
   5903       %nextindvar = add i32 %indvar, 1
   5904       br label %Loop
   5905 
   5906 .. _i_select:
   5907 
   5908 '``select``' Instruction
   5909 ^^^^^^^^^^^^^^^^^^^^^^^^
   5910 
   5911 Syntax:
   5912 """""""
   5913 
   5914 ::
   5915 
   5916       <result> = select selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
   5917 
   5918       selty is either i1 or {<N x i1>}
   5919 
   5920 Overview:
   5921 """""""""
   5922 
   5923 The '``select``' instruction is used to choose one value based on a
   5924 condition, without branching.
   5925 
   5926 Arguments:
   5927 """"""""""
   5928 
   5929 The '``select``' instruction requires an 'i1' value or a vector of 'i1'
   5930 values indicating the condition, and two values of the same :ref:`first
   5931 class <t_firstclass>` type. If the val1/val2 are vectors and the
   5932 condition is a scalar, then entire vectors are selected, not individual
   5933 elements.
   5934 
   5935 Semantics:
   5936 """"""""""
   5937 
   5938 If the condition is an i1 and it evaluates to 1, the instruction returns
   5939 the first value argument; otherwise, it returns the second value
   5940 argument.
   5941 
   5942 If the condition is a vector of i1, then the value arguments must be
   5943 vectors of the same size, and the selection is done element by element.
   5944 
   5945 Example:
   5946 """"""""
   5947 
   5948 .. code-block:: llvm
   5949 
   5950       %X = select i1 true, i8 17, i8 42          ; yields i8:17
   5951 
   5952 .. _i_call:
   5953 
   5954 '``call``' Instruction
   5955 ^^^^^^^^^^^^^^^^^^^^^^
   5956 
   5957 Syntax:
   5958 """""""
   5959 
   5960 ::
   5961 
   5962       <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
   5963 
   5964 Overview:
   5965 """""""""
   5966 
   5967 The '``call``' instruction represents a simple function call.
   5968 
   5969 Arguments:
   5970 """"""""""
   5971 
   5972 This instruction requires several arguments:
   5973 
   5974 #. The optional "tail" marker indicates that the callee function does
   5975    not access any allocas or varargs in the caller. Note that calls may
   5976    be marked "tail" even if they do not occur before a
   5977    :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
   5978    function call is eligible for tail call optimization, but `might not
   5979    in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
   5980    The code generator may optimize calls marked "tail" with either 1)
   5981    automatic `sibling call
   5982    optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
   5983    callee have matching signatures, or 2) forced tail call optimization
   5984    when the following extra requirements are met:
   5985 
   5986    -  Caller and callee both have the calling convention ``fastcc``.
   5987    -  The call is in tail position (ret immediately follows call and ret
   5988       uses value of call or is void).
   5989    -  Option ``-tailcallopt`` is enabled, or
   5990       ``llvm::GuaranteedTailCallOpt`` is ``true``.
   5991    -  `Platform specific constraints are
   5992       met. <CodeGenerator.html#tailcallopt>`_
   5993 
   5994 #. The optional "cconv" marker indicates which :ref:`calling
   5995    convention <callingconv>` the call should use. If none is
   5996    specified, the call defaults to using C calling conventions. The
   5997    calling convention of the call must match the calling convention of
   5998    the target function, or else the behavior is undefined.
   5999 #. The optional :ref:`Parameter Attributes <paramattrs>` list for return
   6000    values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
   6001    are valid here.
   6002 #. '``ty``': the type of the call instruction itself which is also the
   6003    type of the return value. Functions that return no value are marked
   6004    ``void``.
   6005 #. '``fnty``': shall be the signature of the pointer to function value
   6006    being invoked. The argument types must match the types implied by
   6007    this signature. This type can be omitted if the function is not
   6008    varargs and if the function type does not return a pointer to a
   6009    function.
   6010 #. '``fnptrval``': An LLVM value containing a pointer to a function to
   6011    be invoked. In most cases, this is a direct function invocation, but
   6012    indirect ``call``'s are just as possible, calling an arbitrary pointer
   6013    to function value.
   6014 #. '``function args``': argument list whose types match the function
   6015    signature argument types and parameter attributes. All arguments must
   6016    be of :ref:`first class <t_firstclass>` type. If the function signature
   6017    indicates the function accepts a variable number of arguments, the
   6018    extra arguments can be specified.
   6019 #. The optional :ref:`function attributes <fnattrs>` list. Only
   6020    '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
   6021    attributes are valid here.
   6022 
   6023 Semantics:
   6024 """"""""""
   6025 
   6026 The '``call``' instruction is used to cause control flow to transfer to
   6027 a specified function, with its incoming arguments bound to the specified
   6028 values. Upon a '``ret``' instruction in the called function, control
   6029 flow continues with the instruction after the function call, and the
   6030 return value of the function is bound to the result argument.
   6031 
   6032 Example:
   6033 """"""""
   6034 
   6035 .. code-block:: llvm
   6036 
   6037       %retval = call i32 @test(i32 %argc)
   6038       call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
   6039       %X = tail call i32 @foo()                                    ; yields i32
   6040       %Y = tail call fastcc i32 @foo()  ; yields i32
   6041       call void %foo(i8 97 signext)
   6042 
   6043       %struct.A = type { i32, i8 }
   6044       %r = call %struct.A @foo()                        ; yields { 32, i8 }
   6045       %gr = extractvalue %struct.A %r, 0                ; yields i32
   6046       %gr1 = extractvalue %struct.A %r, 1               ; yields i8
   6047       %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
   6048       %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
   6049 
   6050 llvm treats calls to some functions with names and arguments that match
   6051 the standard C99 library as being the C99 library functions, and may
   6052 perform optimizations or generate code for them under that assumption.
   6053 This is something we'd like to change in the future to provide better
   6054 support for freestanding environments and non-C-based languages.
   6055 
   6056 .. _i_va_arg:
   6057 
   6058 '``va_arg``' Instruction
   6059 ^^^^^^^^^^^^^^^^^^^^^^^^
   6060 
   6061 Syntax:
   6062 """""""
   6063 
   6064 ::
   6065 
   6066       <resultval> = va_arg <va_list*> <arglist>, <argty>
   6067 
   6068 Overview:
   6069 """""""""
   6070 
   6071 The '``va_arg``' instruction is used to access arguments passed through
   6072 the "variable argument" area of a function call. It is used to implement
   6073 the ``va_arg`` macro in C.
   6074 
   6075 Arguments:
   6076 """"""""""
   6077 
   6078 This instruction takes a ``va_list*`` value and the type of the
   6079 argument. It returns a value of the specified argument type and
   6080 increments the ``va_list`` to point to the next argument. The actual
   6081 type of ``va_list`` is target specific.
   6082 
   6083 Semantics:
   6084 """"""""""
   6085 
   6086 The '``va_arg``' instruction loads an argument of the specified type
   6087 from the specified ``va_list`` and causes the ``va_list`` to point to
   6088 the next argument. For more information, see the variable argument
   6089 handling :ref:`Intrinsic Functions <int_varargs>`.
   6090 
   6091 It is legal for this instruction to be called in a function which does
   6092 not take a variable number of arguments, for example, the ``vfprintf``
   6093 function.
   6094 
   6095 ``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
   6096 function <intrinsics>` because it takes a type as an argument.
   6097 
   6098 Example:
   6099 """"""""
   6100 
   6101 See the :ref:`variable argument processing <int_varargs>` section.
   6102 
   6103 Note that the code generator does not yet fully support va\_arg on many
   6104 targets. Also, it does not currently support va\_arg with aggregate
   6105 types on any target.
   6106 
   6107 .. _i_landingpad:
   6108 
   6109 '``landingpad``' Instruction
   6110 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6111 
   6112 Syntax:
   6113 """""""
   6114 
   6115 ::
   6116 
   6117       <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
   6118       <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
   6119 
   6120       <clause> := catch <type> <value>
   6121       <clause> := filter <array constant type> <array constant>
   6122 
   6123 Overview:
   6124 """""""""
   6125 
   6126 The '``landingpad``' instruction is used by `LLVM's exception handling
   6127 system <ExceptionHandling.html#overview>`_ to specify that a basic block
   6128 is a landing pad --- one where the exception lands, and corresponds to the
   6129 code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
   6130 defines values supplied by the personality function (``pers_fn``) upon
   6131 re-entry to the function. The ``resultval`` has the type ``resultty``.
   6132 
   6133 Arguments:
   6134 """"""""""
   6135 
   6136 This instruction takes a ``pers_fn`` value. This is the personality
   6137 function associated with the unwinding mechanism. The optional
   6138 ``cleanup`` flag indicates that the landing pad block is a cleanup.
   6139 
   6140 A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
   6141 contains the global variable representing the "type" that may be caught
   6142 or filtered respectively. Unlike the ``catch`` clause, the ``filter``
   6143 clause takes an array constant as its argument. Use
   6144 "``[0 x i8**] undef``" for a filter which cannot throw. The
   6145 '``landingpad``' instruction must contain *at least* one ``clause`` or
   6146 the ``cleanup`` flag.
   6147 
   6148 Semantics:
   6149 """"""""""
   6150 
   6151 The '``landingpad``' instruction defines the values which are set by the
   6152 personality function (``pers_fn``) upon re-entry to the function, and
   6153 therefore the "result type" of the ``landingpad`` instruction. As with
   6154 calling conventions, how the personality function results are
   6155 represented in LLVM IR is target specific.
   6156 
   6157 The clauses are applied in order from top to bottom. If two
   6158 ``landingpad`` instructions are merged together through inlining, the
   6159 clauses from the calling function are appended to the list of clauses.
   6160 When the call stack is being unwound due to an exception being thrown,
   6161 the exception is compared against each ``clause`` in turn. If it doesn't
   6162 match any of the clauses, and the ``cleanup`` flag is not set, then
   6163 unwinding continues further up the call stack.
   6164 
   6165 The ``landingpad`` instruction has several restrictions:
   6166 
   6167 -  A landing pad block is a basic block which is the unwind destination
   6168    of an '``invoke``' instruction.
   6169 -  A landing pad block must have a '``landingpad``' instruction as its
   6170    first non-PHI instruction.
   6171 -  There can be only one '``landingpad``' instruction within the landing
   6172    pad block.
   6173 -  A basic block that is not a landing pad block may not include a
   6174    '``landingpad``' instruction.
   6175 -  All '``landingpad``' instructions in a function must have the same
   6176    personality function.
   6177 
   6178 Example:
   6179 """"""""
   6180 
   6181 .. code-block:: llvm
   6182 
   6183       ;; A landing pad which can catch an integer.
   6184       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6185                catch i8** @_ZTIi
   6186       ;; A landing pad that is a cleanup.
   6187       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6188                cleanup
   6189       ;; A landing pad which can catch an integer and can only throw a double.
   6190       %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
   6191                catch i8** @_ZTIi
   6192                filter [1 x i8**] [@_ZTId]
   6193 
   6194 .. _intrinsics:
   6195 
   6196 Intrinsic Functions
   6197 ===================
   6198 
   6199 LLVM supports the notion of an "intrinsic function". These functions
   6200 have well known names and semantics and are required to follow certain
   6201 restrictions. Overall, these intrinsics represent an extension mechanism
   6202 for the LLVM language that does not require changing all of the
   6203 transformations in LLVM when adding to the language (or the bitcode
   6204 reader/writer, the parser, etc...).
   6205 
   6206 Intrinsic function names must all start with an "``llvm.``" prefix. This
   6207 prefix is reserved in LLVM for intrinsic names; thus, function names may
   6208 not begin with this prefix. Intrinsic functions must always be external
   6209 functions: you cannot define the body of intrinsic functions. Intrinsic
   6210 functions may only be used in call or invoke instructions: it is illegal
   6211 to take the address of an intrinsic function. Additionally, because
   6212 intrinsic functions are part of the LLVM language, it is required if any
   6213 are added that they be documented here.
   6214 
   6215 Some intrinsic functions can be overloaded, i.e., the intrinsic
   6216 represents a family of functions that perform the same operation but on
   6217 different data types. Because LLVM can represent over 8 million
   6218 different integer types, overloading is used commonly to allow an
   6219 intrinsic function to operate on any integer type. One or more of the
   6220 argument types or the result type can be overloaded to accept any
   6221 integer type. Argument types may also be defined as exactly matching a
   6222 previous argument's type or the result type. This allows an intrinsic
   6223 function which accepts multiple arguments, but needs all of them to be
   6224 of the same type, to only be overloaded with respect to a single
   6225 argument or the result.
   6226 
   6227 Overloaded intrinsics will have the names of its overloaded argument
   6228 types encoded into its function name, each preceded by a period. Only
   6229 those types which are overloaded result in a name suffix. Arguments
   6230 whose type is matched against another type do not. For example, the
   6231 ``llvm.ctpop`` function can take an integer of any width and returns an
   6232 integer of exactly the same integer width. This leads to a family of
   6233 functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
   6234 ``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
   6235 overloaded, and only one type suffix is required. Because the argument's
   6236 type is matched against the return type, it does not require its own
   6237 name suffix.
   6238 
   6239 To learn how to add an intrinsic function, please see the `Extending
   6240 LLVM Guide <ExtendingLLVM.html>`_.
   6241 
   6242 .. _int_varargs:
   6243 
   6244 Variable Argument Handling Intrinsics
   6245 -------------------------------------
   6246 
   6247 Variable argument support is defined in LLVM with the
   6248 :ref:`va_arg <i_va_arg>` instruction and these three intrinsic
   6249 functions. These functions are related to the similarly named macros
   6250 defined in the ``<stdarg.h>`` header file.
   6251 
   6252 All of these functions operate on arguments that use a target-specific
   6253 value type "``va_list``". The LLVM assembly language reference manual
   6254 does not define what this type is, so all transformations should be
   6255 prepared to handle these functions regardless of the type used.
   6256 
   6257 This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
   6258 variable argument handling intrinsic functions are used.
   6259 
   6260 .. code-block:: llvm
   6261 
   6262     define i32 @test(i32 %X, ...) {
   6263       ; Initialize variable argument processing
   6264       %ap = alloca i8*
   6265       %ap2 = bitcast i8** %ap to i8*
   6266       call void @llvm.va_start(i8* %ap2)
   6267 
   6268       ; Read a single integer argument
   6269       %tmp = va_arg i8** %ap, i32
   6270 
   6271       ; Demonstrate usage of llvm.va_copy and llvm.va_end
   6272       %aq = alloca i8*
   6273       %aq2 = bitcast i8** %aq to i8*
   6274       call void @llvm.va_copy(i8* %aq2, i8* %ap2)
   6275       call void @llvm.va_end(i8* %aq2)
   6276 
   6277       ; Stop processing of arguments.
   6278       call void @llvm.va_end(i8* %ap2)
   6279       ret i32 %tmp
   6280     }
   6281 
   6282     declare void @llvm.va_start(i8*)
   6283     declare void @llvm.va_copy(i8*, i8*)
   6284     declare void @llvm.va_end(i8*)
   6285 
   6286 .. _int_va_start:
   6287 
   6288 '``llvm.va_start``' Intrinsic
   6289 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6290 
   6291 Syntax:
   6292 """""""
   6293 
   6294 ::
   6295 
   6296       declare void %llvm.va_start(i8* <arglist>)
   6297 
   6298 Overview:
   6299 """""""""
   6300 
   6301 The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
   6302 subsequent use by ``va_arg``.
   6303 
   6304 Arguments:
   6305 """"""""""
   6306 
   6307 The argument is a pointer to a ``va_list`` element to initialize.
   6308 
   6309 Semantics:
   6310 """"""""""
   6311 
   6312 The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
   6313 available in C. In a target-dependent way, it initializes the
   6314 ``va_list`` element to which the argument points, so that the next call
   6315 to ``va_arg`` will produce the first variable argument passed to the
   6316 function. Unlike the C ``va_start`` macro, this intrinsic does not need
   6317 to know the last argument of the function as the compiler can figure
   6318 that out.
   6319 
   6320 '``llvm.va_end``' Intrinsic
   6321 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6322 
   6323 Syntax:
   6324 """""""
   6325 
   6326 ::
   6327 
   6328       declare void @llvm.va_end(i8* <arglist>)
   6329 
   6330 Overview:
   6331 """""""""
   6332 
   6333 The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
   6334 initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
   6335 
   6336 Arguments:
   6337 """"""""""
   6338 
   6339 The argument is a pointer to a ``va_list`` to destroy.
   6340 
   6341 Semantics:
   6342 """"""""""
   6343 
   6344 The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
   6345 available in C. In a target-dependent way, it destroys the ``va_list``
   6346 element to which the argument points. Calls to
   6347 :ref:`llvm.va_start <int_va_start>` and
   6348 :ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
   6349 ``llvm.va_end``.
   6350 
   6351 .. _int_va_copy:
   6352 
   6353 '``llvm.va_copy``' Intrinsic
   6354 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6355 
   6356 Syntax:
   6357 """""""
   6358 
   6359 ::
   6360 
   6361       declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
   6362 
   6363 Overview:
   6364 """""""""
   6365 
   6366 The '``llvm.va_copy``' intrinsic copies the current argument position
   6367 from the source argument list to the destination argument list.
   6368 
   6369 Arguments:
   6370 """"""""""
   6371 
   6372 The first argument is a pointer to a ``va_list`` element to initialize.
   6373 The second argument is a pointer to a ``va_list`` element to copy from.
   6374 
   6375 Semantics:
   6376 """"""""""
   6377 
   6378 The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
   6379 available in C. In a target-dependent way, it copies the source
   6380 ``va_list`` element into the destination ``va_list`` element. This
   6381 intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
   6382 arbitrarily complex and require, for example, memory allocation.
   6383 
   6384 Accurate Garbage Collection Intrinsics
   6385 --------------------------------------
   6386 
   6387 LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
   6388 (GC) requires the implementation and generation of these intrinsics.
   6389 These intrinsics allow identification of :ref:`GC roots on the
   6390 stack <int_gcroot>`, as well as garbage collector implementations that
   6391 require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
   6392 Front-ends for type-safe garbage collected languages should generate
   6393 these intrinsics to make use of the LLVM garbage collectors. For more
   6394 details, see `Accurate Garbage Collection with
   6395 LLVM <GarbageCollection.html>`_.
   6396 
   6397 The garbage collection intrinsics only operate on objects in the generic
   6398 address space (address space zero).
   6399 
   6400 .. _int_gcroot:
   6401 
   6402 '``llvm.gcroot``' Intrinsic
   6403 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6404 
   6405 Syntax:
   6406 """""""
   6407 
   6408 ::
   6409 
   6410       declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
   6411 
   6412 Overview:
   6413 """""""""
   6414 
   6415 The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
   6416 the code generator, and allows some metadata to be associated with it.
   6417 
   6418 Arguments:
   6419 """"""""""
   6420 
   6421 The first argument specifies the address of a stack object that contains
   6422 the root pointer. The second pointer (which must be either a constant or
   6423 a global value address) contains the meta-data to be associated with the
   6424 root.
   6425 
   6426 Semantics:
   6427 """"""""""
   6428 
   6429 At runtime, a call to this intrinsic stores a null pointer into the
   6430 "ptrloc" location. At compile-time, the code generator generates
   6431 information to allow the runtime to find the pointer at GC safe points.
   6432 The '``llvm.gcroot``' intrinsic may only be used in a function which
   6433 :ref:`specifies a GC algorithm <gc>`.
   6434 
   6435 .. _int_gcread:
   6436 
   6437 '``llvm.gcread``' Intrinsic
   6438 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6439 
   6440 Syntax:
   6441 """""""
   6442 
   6443 ::
   6444 
   6445       declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
   6446 
   6447 Overview:
   6448 """""""""
   6449 
   6450 The '``llvm.gcread``' intrinsic identifies reads of references from heap
   6451 locations, allowing garbage collector implementations that require read
   6452 barriers.
   6453 
   6454 Arguments:
   6455 """"""""""
   6456 
   6457 The second argument is the address to read from, which should be an
   6458 address allocated from the garbage collector. The first object is a
   6459 pointer to the start of the referenced object, if needed by the language
   6460 runtime (otherwise null).
   6461 
   6462 Semantics:
   6463 """"""""""
   6464 
   6465 The '``llvm.gcread``' intrinsic has the same semantics as a load
   6466 instruction, but may be replaced with substantially more complex code by
   6467 the garbage collector runtime, as needed. The '``llvm.gcread``'
   6468 intrinsic may only be used in a function which :ref:`specifies a GC
   6469 algorithm <gc>`.
   6470 
   6471 .. _int_gcwrite:
   6472 
   6473 '``llvm.gcwrite``' Intrinsic
   6474 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6475 
   6476 Syntax:
   6477 """""""
   6478 
   6479 ::
   6480 
   6481       declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
   6482 
   6483 Overview:
   6484 """""""""
   6485 
   6486 The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
   6487 locations, allowing garbage collector implementations that require write
   6488 barriers (such as generational or reference counting collectors).
   6489 
   6490 Arguments:
   6491 """"""""""
   6492 
   6493 The first argument is the reference to store, the second is the start of
   6494 the object to store it to, and the third is the address of the field of
   6495 Obj to store to. If the runtime does not require a pointer to the
   6496 object, Obj may be null.
   6497 
   6498 Semantics:
   6499 """"""""""
   6500 
   6501 The '``llvm.gcwrite``' intrinsic has the same semantics as a store
   6502 instruction, but may be replaced with substantially more complex code by
   6503 the garbage collector runtime, as needed. The '``llvm.gcwrite``'
   6504 intrinsic may only be used in a function which :ref:`specifies a GC
   6505 algorithm <gc>`.
   6506 
   6507 Code Generator Intrinsics
   6508 -------------------------
   6509 
   6510 These intrinsics are provided by LLVM to expose special features that
   6511 may only be implemented with code generator support.
   6512 
   6513 '``llvm.returnaddress``' Intrinsic
   6514 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6515 
   6516 Syntax:
   6517 """""""
   6518 
   6519 ::
   6520 
   6521       declare i8  *@llvm.returnaddress(i32 <level>)
   6522 
   6523 Overview:
   6524 """""""""
   6525 
   6526 The '``llvm.returnaddress``' intrinsic attempts to compute a
   6527 target-specific value indicating the return address of the current
   6528 function or one of its callers.
   6529 
   6530 Arguments:
   6531 """"""""""
   6532 
   6533 The argument to this intrinsic indicates which function to return the
   6534 address for. Zero indicates the calling function, one indicates its
   6535 caller, etc. The argument is **required** to be a constant integer
   6536 value.
   6537 
   6538 Semantics:
   6539 """"""""""
   6540 
   6541 The '``llvm.returnaddress``' intrinsic either returns a pointer
   6542 indicating the return address of the specified call frame, or zero if it
   6543 cannot be identified. The value returned by this intrinsic is likely to
   6544 be incorrect or 0 for arguments other than zero, so it should only be
   6545 used for debugging purposes.
   6546 
   6547 Note that calling this intrinsic does not prevent function inlining or
   6548 other aggressive transformations, so the value returned may not be that
   6549 of the obvious source-language caller.
   6550 
   6551 '``llvm.frameaddress``' Intrinsic
   6552 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6553 
   6554 Syntax:
   6555 """""""
   6556 
   6557 ::
   6558 
   6559       declare i8* @llvm.frameaddress(i32 <level>)
   6560 
   6561 Overview:
   6562 """""""""
   6563 
   6564 The '``llvm.frameaddress``' intrinsic attempts to return the
   6565 target-specific frame pointer value for the specified stack frame.
   6566 
   6567 Arguments:
   6568 """"""""""
   6569 
   6570 The argument to this intrinsic indicates which function to return the
   6571 frame pointer for. Zero indicates the calling function, one indicates
   6572 its caller, etc. The argument is **required** to be a constant integer
   6573 value.
   6574 
   6575 Semantics:
   6576 """"""""""
   6577 
   6578 The '``llvm.frameaddress``' intrinsic either returns a pointer
   6579 indicating the frame address of the specified call frame, or zero if it
   6580 cannot be identified. The value returned by this intrinsic is likely to
   6581 be incorrect or 0 for arguments other than zero, so it should only be
   6582 used for debugging purposes.
   6583 
   6584 Note that calling this intrinsic does not prevent function inlining or
   6585 other aggressive transformations, so the value returned may not be that
   6586 of the obvious source-language caller.
   6587 
   6588 .. _int_stacksave:
   6589 
   6590 '``llvm.stacksave``' Intrinsic
   6591 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6592 
   6593 Syntax:
   6594 """""""
   6595 
   6596 ::
   6597 
   6598       declare i8* @llvm.stacksave()
   6599 
   6600 Overview:
   6601 """""""""
   6602 
   6603 The '``llvm.stacksave``' intrinsic is used to remember the current state
   6604 of the function stack, for use with
   6605 :ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
   6606 implementing language features like scoped automatic variable sized
   6607 arrays in C99.
   6608 
   6609 Semantics:
   6610 """"""""""
   6611 
   6612 This intrinsic returns a opaque pointer value that can be passed to
   6613 :ref:`llvm.stackrestore <int_stackrestore>`. When an
   6614 ``llvm.stackrestore`` intrinsic is executed with a value saved from
   6615 ``llvm.stacksave``, it effectively restores the state of the stack to
   6616 the state it was in when the ``llvm.stacksave`` intrinsic executed. In
   6617 practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
   6618 were allocated after the ``llvm.stacksave`` was executed.
   6619 
   6620 .. _int_stackrestore:
   6621 
   6622 '``llvm.stackrestore``' Intrinsic
   6623 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6624 
   6625 Syntax:
   6626 """""""
   6627 
   6628 ::
   6629 
   6630       declare void @llvm.stackrestore(i8* %ptr)
   6631 
   6632 Overview:
   6633 """""""""
   6634 
   6635 The '``llvm.stackrestore``' intrinsic is used to restore the state of
   6636 the function stack to the state it was in when the corresponding
   6637 :ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
   6638 useful for implementing language features like scoped automatic variable
   6639 sized arrays in C99.
   6640 
   6641 Semantics:
   6642 """"""""""
   6643 
   6644 See the description for :ref:`llvm.stacksave <int_stacksave>`.
   6645 
   6646 '``llvm.prefetch``' Intrinsic
   6647 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6648 
   6649 Syntax:
   6650 """""""
   6651 
   6652 ::
   6653 
   6654       declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
   6655 
   6656 Overview:
   6657 """""""""
   6658 
   6659 The '``llvm.prefetch``' intrinsic is a hint to the code generator to
   6660 insert a prefetch instruction if supported; otherwise, it is a noop.
   6661 Prefetches have no effect on the behavior of the program but can change
   6662 its performance characteristics.
   6663 
   6664 Arguments:
   6665 """"""""""
   6666 
   6667 ``address`` is the address to be prefetched, ``rw`` is the specifier
   6668 determining if the fetch should be for a read (0) or write (1), and
   6669 ``locality`` is a temporal locality specifier ranging from (0) - no
   6670 locality, to (3) - extremely local keep in cache. The ``cache type``
   6671 specifies whether the prefetch is performed on the data (1) or
   6672 instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
   6673 arguments must be constant integers.
   6674 
   6675 Semantics:
   6676 """"""""""
   6677 
   6678 This intrinsic does not modify the behavior of the program. In
   6679 particular, prefetches cannot trap and do not produce a value. On
   6680 targets that support this intrinsic, the prefetch can provide hints to
   6681 the processor cache for better performance.
   6682 
   6683 '``llvm.pcmarker``' Intrinsic
   6684 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6685 
   6686 Syntax:
   6687 """""""
   6688 
   6689 ::
   6690 
   6691       declare void @llvm.pcmarker(i32 <id>)
   6692 
   6693 Overview:
   6694 """""""""
   6695 
   6696 The '``llvm.pcmarker``' intrinsic is a method to export a Program
   6697 Counter (PC) in a region of code to simulators and other tools. The
   6698 method is target specific, but it is expected that the marker will use
   6699 exported symbols to transmit the PC of the marker. The marker makes no
   6700 guarantees that it will remain with any specific instruction after
   6701 optimizations. It is possible that the presence of a marker will inhibit
   6702 optimizations. The intended use is to be inserted after optimizations to
   6703 allow correlations of simulation runs.
   6704 
   6705 Arguments:
   6706 """"""""""
   6707 
   6708 ``id`` is a numerical id identifying the marker.
   6709 
   6710 Semantics:
   6711 """"""""""
   6712 
   6713 This intrinsic does not modify the behavior of the program. Backends
   6714 that do not support this intrinsic may ignore it.
   6715 
   6716 '``llvm.readcyclecounter``' Intrinsic
   6717 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6718 
   6719 Syntax:
   6720 """""""
   6721 
   6722 ::
   6723 
   6724       declare i64 @llvm.readcyclecounter()
   6725 
   6726 Overview:
   6727 """""""""
   6728 
   6729 The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
   6730 counter register (or similar low latency, high accuracy clocks) on those
   6731 targets that support it. On X86, it should map to RDTSC. On Alpha, it
   6732 should map to RPCC. As the backing counters overflow quickly (on the
   6733 order of 9 seconds on alpha), this should only be used for small
   6734 timings.
   6735 
   6736 Semantics:
   6737 """"""""""
   6738 
   6739 When directly supported, reading the cycle counter should not modify any
   6740 memory. Implementations are allowed to either return a application
   6741 specific value or a system wide value. On backends without support, this
   6742 is lowered to a constant 0.
   6743 
   6744 Note that runtime support may be conditional on the privilege-level code is
   6745 running at and the host platform.
   6746 
   6747 Standard C Library Intrinsics
   6748 -----------------------------
   6749 
   6750 LLVM provides intrinsics for a few important standard C library
   6751 functions. These intrinsics allow source-language front-ends to pass
   6752 information about the alignment of the pointer arguments to the code
   6753 generator, providing opportunity for more efficient code generation.
   6754 
   6755 .. _int_memcpy:
   6756 
   6757 '``llvm.memcpy``' Intrinsic
   6758 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6759 
   6760 Syntax:
   6761 """""""
   6762 
   6763 This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
   6764 integer bit width and for different address spaces. Not all targets
   6765 support all bit widths however.
   6766 
   6767 ::
   6768 
   6769       declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
   6770                                               i32 <len>, i32 <align>, i1 <isvolatile>)
   6771       declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
   6772                                               i64 <len>, i32 <align>, i1 <isvolatile>)
   6773 
   6774 Overview:
   6775 """""""""
   6776 
   6777 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
   6778 source location to the destination location.
   6779 
   6780 Note that, unlike the standard libc function, the ``llvm.memcpy.*``
   6781 intrinsics do not return a value, takes extra alignment/isvolatile
   6782 arguments and the pointers can be in specified address spaces.
   6783 
   6784 Arguments:
   6785 """"""""""
   6786 
   6787 The first argument is a pointer to the destination, the second is a
   6788 pointer to the source. The third argument is an integer argument
   6789 specifying the number of bytes to copy, the fourth argument is the
   6790 alignment of the source and destination locations, and the fifth is a
   6791 boolean indicating a volatile access.
   6792 
   6793 If the call to this intrinsic has an alignment value that is not 0 or 1,
   6794 then the caller guarantees that both the source and destination pointers
   6795 are aligned to that boundary.
   6796 
   6797 If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
   6798 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
   6799 very cleanly specified and it is unwise to depend on it.
   6800 
   6801 Semantics:
   6802 """"""""""
   6803 
   6804 The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
   6805 source location to the destination location, which are not allowed to
   6806 overlap. It copies "len" bytes of memory over. If the argument is known
   6807 to be aligned to some boundary, this can be specified as the fourth
   6808 argument, otherwise it should be set to 0 or 1.
   6809 
   6810 '``llvm.memmove``' Intrinsic
   6811 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6812 
   6813 Syntax:
   6814 """""""
   6815 
   6816 This is an overloaded intrinsic. You can use llvm.memmove on any integer
   6817 bit width and for different address space. Not all targets support all
   6818 bit widths however.
   6819 
   6820 ::
   6821 
   6822       declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
   6823                                                i32 <len>, i32 <align>, i1 <isvolatile>)
   6824       declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
   6825                                                i64 <len>, i32 <align>, i1 <isvolatile>)
   6826 
   6827 Overview:
   6828 """""""""
   6829 
   6830 The '``llvm.memmove.*``' intrinsics move a block of memory from the
   6831 source location to the destination location. It is similar to the
   6832 '``llvm.memcpy``' intrinsic but allows the two memory locations to
   6833 overlap.
   6834 
   6835 Note that, unlike the standard libc function, the ``llvm.memmove.*``
   6836 intrinsics do not return a value, takes extra alignment/isvolatile
   6837 arguments and the pointers can be in specified address spaces.
   6838 
   6839 Arguments:
   6840 """"""""""
   6841 
   6842 The first argument is a pointer to the destination, the second is a
   6843 pointer to the source. The third argument is an integer argument
   6844 specifying the number of bytes to copy, the fourth argument is the
   6845 alignment of the source and destination locations, and the fifth is a
   6846 boolean indicating a volatile access.
   6847 
   6848 If the call to this intrinsic has an alignment value that is not 0 or 1,
   6849 then the caller guarantees that the source and destination pointers are
   6850 aligned to that boundary.
   6851 
   6852 If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
   6853 is a :ref:`volatile operation <volatile>`. The detailed access behavior is
   6854 not very cleanly specified and it is unwise to depend on it.
   6855 
   6856 Semantics:
   6857 """"""""""
   6858 
   6859 The '``llvm.memmove.*``' intrinsics copy a block of memory from the
   6860 source location to the destination location, which may overlap. It
   6861 copies "len" bytes of memory over. If the argument is known to be
   6862 aligned to some boundary, this can be specified as the fourth argument,
   6863 otherwise it should be set to 0 or 1.
   6864 
   6865 '``llvm.memset.*``' Intrinsics
   6866 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6867 
   6868 Syntax:
   6869 """""""
   6870 
   6871 This is an overloaded intrinsic. You can use llvm.memset on any integer
   6872 bit width and for different address spaces. However, not all targets
   6873 support all bit widths.
   6874 
   6875 ::
   6876 
   6877       declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
   6878                                          i32 <len>, i32 <align>, i1 <isvolatile>)
   6879       declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
   6880                                          i64 <len>, i32 <align>, i1 <isvolatile>)
   6881 
   6882 Overview:
   6883 """""""""
   6884 
   6885 The '``llvm.memset.*``' intrinsics fill a block of memory with a
   6886 particular byte value.
   6887 
   6888 Note that, unlike the standard libc function, the ``llvm.memset``
   6889 intrinsic does not return a value and takes extra alignment/volatile
   6890 arguments. Also, the destination can be in an arbitrary address space.
   6891 
   6892 Arguments:
   6893 """"""""""
   6894 
   6895 The first argument is a pointer to the destination to fill, the second
   6896 is the byte value with which to fill it, the third argument is an
   6897 integer argument specifying the number of bytes to fill, and the fourth
   6898 argument is the known alignment of the destination location.
   6899 
   6900 If the call to this intrinsic has an alignment value that is not 0 or 1,
   6901 then the caller guarantees that the destination pointer is aligned to
   6902 that boundary.
   6903 
   6904 If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
   6905 a :ref:`volatile operation <volatile>`. The detailed access behavior is not
   6906 very cleanly specified and it is unwise to depend on it.
   6907 
   6908 Semantics:
   6909 """"""""""
   6910 
   6911 The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
   6912 at the destination location. If the argument is known to be aligned to
   6913 some boundary, this can be specified as the fourth argument, otherwise
   6914 it should be set to 0 or 1.
   6915 
   6916 '``llvm.sqrt.*``' Intrinsic
   6917 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6918 
   6919 Syntax:
   6920 """""""
   6921 
   6922 This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
   6923 floating point or vector of floating point type. Not all targets support
   6924 all types however.
   6925 
   6926 ::
   6927 
   6928       declare float     @llvm.sqrt.f32(float %Val)
   6929       declare double    @llvm.sqrt.f64(double %Val)
   6930       declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
   6931       declare fp128     @llvm.sqrt.f128(fp128 %Val)
   6932       declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
   6933 
   6934 Overview:
   6935 """""""""
   6936 
   6937 The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
   6938 returning the same value as the libm '``sqrt``' functions would. Unlike
   6939 ``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
   6940 negative numbers other than -0.0 (which allows for better optimization,
   6941 because there is no need to worry about errno being set).
   6942 ``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
   6943 
   6944 Arguments:
   6945 """"""""""
   6946 
   6947 The argument and return value are floating point numbers of the same
   6948 type.
   6949 
   6950 Semantics:
   6951 """"""""""
   6952 
   6953 This function returns the sqrt of the specified operand if it is a
   6954 nonnegative floating point number.
   6955 
   6956 '``llvm.powi.*``' Intrinsic
   6957 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   6958 
   6959 Syntax:
   6960 """""""
   6961 
   6962 This is an overloaded intrinsic. You can use ``llvm.powi`` on any
   6963 floating point or vector of floating point type. Not all targets support
   6964 all types however.
   6965 
   6966 ::
   6967 
   6968       declare float     @llvm.powi.f32(float  %Val, i32 %power)
   6969       declare double    @llvm.powi.f64(double %Val, i32 %power)
   6970       declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
   6971       declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
   6972       declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
   6973 
   6974 Overview:
   6975 """""""""
   6976 
   6977 The '``llvm.powi.*``' intrinsics return the first operand raised to the
   6978 specified (positive or negative) power. The order of evaluation of
   6979 multiplications is not defined. When a vector of floating point type is
   6980 used, the second argument remains a scalar integer value.
   6981 
   6982 Arguments:
   6983 """"""""""
   6984 
   6985 The second argument is an integer power, and the first is a value to
   6986 raise to that power.
   6987 
   6988 Semantics:
   6989 """"""""""
   6990 
   6991 This function returns the first value raised to the second power with an
   6992 unspecified sequence of rounding operations.
   6993 
   6994 '``llvm.sin.*``' Intrinsic
   6995 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   6996 
   6997 Syntax:
   6998 """""""
   6999 
   7000 This is an overloaded intrinsic. You can use ``llvm.sin`` on any
   7001 floating point or vector of floating point type. Not all targets support
   7002 all types however.
   7003 
   7004 ::
   7005 
   7006       declare float     @llvm.sin.f32(float  %Val)
   7007       declare double    @llvm.sin.f64(double %Val)
   7008       declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
   7009       declare fp128     @llvm.sin.f128(fp128 %Val)
   7010       declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
   7011 
   7012 Overview:
   7013 """""""""
   7014 
   7015 The '``llvm.sin.*``' intrinsics return the sine of the operand.
   7016 
   7017 Arguments:
   7018 """"""""""
   7019 
   7020 The argument and return value are floating point numbers of the same
   7021 type.
   7022 
   7023 Semantics:
   7024 """"""""""
   7025 
   7026 This function returns the sine of the specified operand, returning the
   7027 same values as the libm ``sin`` functions would, and handles error
   7028 conditions in the same way.
   7029 
   7030 '``llvm.cos.*``' Intrinsic
   7031 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   7032 
   7033 Syntax:
   7034 """""""
   7035 
   7036 This is an overloaded intrinsic. You can use ``llvm.cos`` on any
   7037 floating point or vector of floating point type. Not all targets support
   7038 all types however.
   7039 
   7040 ::
   7041 
   7042       declare float     @llvm.cos.f32(float  %Val)
   7043       declare double    @llvm.cos.f64(double %Val)
   7044       declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
   7045       declare fp128     @llvm.cos.f128(fp128 %Val)
   7046       declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
   7047 
   7048 Overview:
   7049 """""""""
   7050 
   7051 The '``llvm.cos.*``' intrinsics return the cosine of the operand.
   7052 
   7053 Arguments:
   7054 """"""""""
   7055 
   7056 The argument and return value are floating point numbers of the same
   7057 type.
   7058 
   7059 Semantics:
   7060 """"""""""
   7061 
   7062 This function returns the cosine of the specified operand, returning the
   7063 same values as the libm ``cos`` functions would, and handles error
   7064 conditions in the same way.
   7065 
   7066 '``llvm.pow.*``' Intrinsic
   7067 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   7068 
   7069 Syntax:
   7070 """""""
   7071 
   7072 This is an overloaded intrinsic. You can use ``llvm.pow`` on any
   7073 floating point or vector of floating point type. Not all targets support
   7074 all types however.
   7075 
   7076 ::
   7077 
   7078       declare float     @llvm.pow.f32(float  %Val, float %Power)
   7079       declare double    @llvm.pow.f64(double %Val, double %Power)
   7080       declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
   7081       declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
   7082       declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
   7083 
   7084 Overview:
   7085 """""""""
   7086 
   7087 The '``llvm.pow.*``' intrinsics return the first operand raised to the
   7088 specified (positive or negative) power.
   7089 
   7090 Arguments:
   7091 """"""""""
   7092 
   7093 The second argument is a floating point power, and the first is a value
   7094 to raise to that power.
   7095 
   7096 Semantics:
   7097 """"""""""
   7098 
   7099 This function returns the first value raised to the second power,
   7100 returning the same values as the libm ``pow`` functions would, and
   7101 handles error conditions in the same way.
   7102 
   7103 '``llvm.exp.*``' Intrinsic
   7104 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   7105 
   7106 Syntax:
   7107 """""""
   7108 
   7109 This is an overloaded intrinsic. You can use ``llvm.exp`` on any
   7110 floating point or vector of floating point type. Not all targets support
   7111 all types however.
   7112 
   7113 ::
   7114 
   7115       declare float     @llvm.exp.f32(float  %Val)
   7116       declare double    @llvm.exp.f64(double %Val)
   7117       declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
   7118       declare fp128     @llvm.exp.f128(fp128 %Val)
   7119       declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
   7120 
   7121 Overview:
   7122 """""""""
   7123 
   7124 The '``llvm.exp.*``' intrinsics perform the exp function.
   7125 
   7126 Arguments:
   7127 """"""""""
   7128 
   7129 The argument and return value are floating point numbers of the same
   7130 type.
   7131 
   7132 Semantics:
   7133 """"""""""
   7134 
   7135 This function returns the same values as the libm ``exp`` functions
   7136 would, and handles error conditions in the same way.
   7137 
   7138 '``llvm.exp2.*``' Intrinsic
   7139 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7140 
   7141 Syntax:
   7142 """""""
   7143 
   7144 This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
   7145 floating point or vector of floating point type. Not all targets support
   7146 all types however.
   7147 
   7148 ::
   7149 
   7150       declare float     @llvm.exp2.f32(float  %Val)
   7151       declare double    @llvm.exp2.f64(double %Val)
   7152       declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
   7153       declare fp128     @llvm.exp2.f128(fp128 %Val)
   7154       declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
   7155 
   7156 Overview:
   7157 """""""""
   7158 
   7159 The '``llvm.exp2.*``' intrinsics perform the exp2 function.
   7160 
   7161 Arguments:
   7162 """"""""""
   7163 
   7164 The argument and return value are floating point numbers of the same
   7165 type.
   7166 
   7167 Semantics:
   7168 """"""""""
   7169 
   7170 This function returns the same values as the libm ``exp2`` functions
   7171 would, and handles error conditions in the same way.
   7172 
   7173 '``llvm.log.*``' Intrinsic
   7174 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   7175 
   7176 Syntax:
   7177 """""""
   7178 
   7179 This is an overloaded intrinsic. You can use ``llvm.log`` on any
   7180 floating point or vector of floating point type. Not all targets support
   7181 all types however.
   7182 
   7183 ::
   7184 
   7185       declare float     @llvm.log.f32(float  %Val)
   7186       declare double    @llvm.log.f64(double %Val)
   7187       declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
   7188       declare fp128     @llvm.log.f128(fp128 %Val)
   7189       declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
   7190 
   7191 Overview:
   7192 """""""""
   7193 
   7194 The '``llvm.log.*``' intrinsics perform the log function.
   7195 
   7196 Arguments:
   7197 """"""""""
   7198 
   7199 The argument and return value are floating point numbers of the same
   7200 type.
   7201 
   7202 Semantics:
   7203 """"""""""
   7204 
   7205 This function returns the same values as the libm ``log`` functions
   7206 would, and handles error conditions in the same way.
   7207 
   7208 '``llvm.log10.*``' Intrinsic
   7209 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7210 
   7211 Syntax:
   7212 """""""
   7213 
   7214 This is an overloaded intrinsic. You can use ``llvm.log10`` on any
   7215 floating point or vector of floating point type. Not all targets support
   7216 all types however.
   7217 
   7218 ::
   7219 
   7220       declare float     @llvm.log10.f32(float  %Val)
   7221       declare double    @llvm.log10.f64(double %Val)
   7222       declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
   7223       declare fp128     @llvm.log10.f128(fp128 %Val)
   7224       declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
   7225 
   7226 Overview:
   7227 """""""""
   7228 
   7229 The '``llvm.log10.*``' intrinsics perform the log10 function.
   7230 
   7231 Arguments:
   7232 """"""""""
   7233 
   7234 The argument and return value are floating point numbers of the same
   7235 type.
   7236 
   7237 Semantics:
   7238 """"""""""
   7239 
   7240 This function returns the same values as the libm ``log10`` functions
   7241 would, and handles error conditions in the same way.
   7242 
   7243 '``llvm.log2.*``' Intrinsic
   7244 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7245 
   7246 Syntax:
   7247 """""""
   7248 
   7249 This is an overloaded intrinsic. You can use ``llvm.log2`` on any
   7250 floating point or vector of floating point type. Not all targets support
   7251 all types however.
   7252 
   7253 ::
   7254 
   7255       declare float     @llvm.log2.f32(float  %Val)
   7256       declare double    @llvm.log2.f64(double %Val)
   7257       declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
   7258       declare fp128     @llvm.log2.f128(fp128 %Val)
   7259       declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
   7260 
   7261 Overview:
   7262 """""""""
   7263 
   7264 The '``llvm.log2.*``' intrinsics perform the log2 function.
   7265 
   7266 Arguments:
   7267 """"""""""
   7268 
   7269 The argument and return value are floating point numbers of the same
   7270 type.
   7271 
   7272 Semantics:
   7273 """"""""""
   7274 
   7275 This function returns the same values as the libm ``log2`` functions
   7276 would, and handles error conditions in the same way.
   7277 
   7278 '``llvm.fma.*``' Intrinsic
   7279 ^^^^^^^^^^^^^^^^^^^^^^^^^^
   7280 
   7281 Syntax:
   7282 """""""
   7283 
   7284 This is an overloaded intrinsic. You can use ``llvm.fma`` on any
   7285 floating point or vector of floating point type. Not all targets support
   7286 all types however.
   7287 
   7288 ::
   7289 
   7290       declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
   7291       declare double    @llvm.fma.f64(double %a, double %b, double %c)
   7292       declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
   7293       declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
   7294       declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
   7295 
   7296 Overview:
   7297 """""""""
   7298 
   7299 The '``llvm.fma.*``' intrinsics perform the fused multiply-add
   7300 operation.
   7301 
   7302 Arguments:
   7303 """"""""""
   7304 
   7305 The argument and return value are floating point numbers of the same
   7306 type.
   7307 
   7308 Semantics:
   7309 """"""""""
   7310 
   7311 This function returns the same values as the libm ``fma`` functions
   7312 would.
   7313 
   7314 '``llvm.fabs.*``' Intrinsic
   7315 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7316 
   7317 Syntax:
   7318 """""""
   7319 
   7320 This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
   7321 floating point or vector of floating point type. Not all targets support
   7322 all types however.
   7323 
   7324 ::
   7325 
   7326       declare float     @llvm.fabs.f32(float  %Val)
   7327       declare double    @llvm.fabs.f64(double %Val)
   7328       declare x86_fp80  @llvm.fabs.f80(x86_fp80  %Val)
   7329       declare fp128     @llvm.fabs.f128(fp128 %Val)
   7330       declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128  %Val)
   7331 
   7332 Overview:
   7333 """""""""
   7334 
   7335 The '``llvm.fabs.*``' intrinsics return the absolute value of the
   7336 operand.
   7337 
   7338 Arguments:
   7339 """"""""""
   7340 
   7341 The argument and return value are floating point numbers of the same
   7342 type.
   7343 
   7344 Semantics:
   7345 """"""""""
   7346 
   7347 This function returns the same values as the libm ``fabs`` functions
   7348 would, and handles error conditions in the same way.
   7349 
   7350 '``llvm.floor.*``' Intrinsic
   7351 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7352 
   7353 Syntax:
   7354 """""""
   7355 
   7356 This is an overloaded intrinsic. You can use ``llvm.floor`` on any
   7357 floating point or vector of floating point type. Not all targets support
   7358 all types however.
   7359 
   7360 ::
   7361 
   7362       declare float     @llvm.floor.f32(float  %Val)
   7363       declare double    @llvm.floor.f64(double %Val)
   7364       declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
   7365       declare fp128     @llvm.floor.f128(fp128 %Val)
   7366       declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
   7367 
   7368 Overview:
   7369 """""""""
   7370 
   7371 The '``llvm.floor.*``' intrinsics return the floor of the operand.
   7372 
   7373 Arguments:
   7374 """"""""""
   7375 
   7376 The argument and return value are floating point numbers of the same
   7377 type.
   7378 
   7379 Semantics:
   7380 """"""""""
   7381 
   7382 This function returns the same values as the libm ``floor`` functions
   7383 would, and handles error conditions in the same way.
   7384 
   7385 '``llvm.ceil.*``' Intrinsic
   7386 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7387 
   7388 Syntax:
   7389 """""""
   7390 
   7391 This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
   7392 floating point or vector of floating point type. Not all targets support
   7393 all types however.
   7394 
   7395 ::
   7396 
   7397       declare float     @llvm.ceil.f32(float  %Val)
   7398       declare double    @llvm.ceil.f64(double %Val)
   7399       declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
   7400       declare fp128     @llvm.ceil.f128(fp128 %Val)
   7401       declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
   7402 
   7403 Overview:
   7404 """""""""
   7405 
   7406 The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
   7407 
   7408 Arguments:
   7409 """"""""""
   7410 
   7411 The argument and return value are floating point numbers of the same
   7412 type.
   7413 
   7414 Semantics:
   7415 """"""""""
   7416 
   7417 This function returns the same values as the libm ``ceil`` functions
   7418 would, and handles error conditions in the same way.
   7419 
   7420 '``llvm.trunc.*``' Intrinsic
   7421 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7422 
   7423 Syntax:
   7424 """""""
   7425 
   7426 This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
   7427 floating point or vector of floating point type. Not all targets support
   7428 all types however.
   7429 
   7430 ::
   7431 
   7432       declare float     @llvm.trunc.f32(float  %Val)
   7433       declare double    @llvm.trunc.f64(double %Val)
   7434       declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
   7435       declare fp128     @llvm.trunc.f128(fp128 %Val)
   7436       declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
   7437 
   7438 Overview:
   7439 """""""""
   7440 
   7441 The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
   7442 nearest integer not larger in magnitude than the operand.
   7443 
   7444 Arguments:
   7445 """"""""""
   7446 
   7447 The argument and return value are floating point numbers of the same
   7448 type.
   7449 
   7450 Semantics:
   7451 """"""""""
   7452 
   7453 This function returns the same values as the libm ``trunc`` functions
   7454 would, and handles error conditions in the same way.
   7455 
   7456 '``llvm.rint.*``' Intrinsic
   7457 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7458 
   7459 Syntax:
   7460 """""""
   7461 
   7462 This is an overloaded intrinsic. You can use ``llvm.rint`` on any
   7463 floating point or vector of floating point type. Not all targets support
   7464 all types however.
   7465 
   7466 ::
   7467 
   7468       declare float     @llvm.rint.f32(float  %Val)
   7469       declare double    @llvm.rint.f64(double %Val)
   7470       declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
   7471       declare fp128     @llvm.rint.f128(fp128 %Val)
   7472       declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
   7473 
   7474 Overview:
   7475 """""""""
   7476 
   7477 The '``llvm.rint.*``' intrinsics returns the operand rounded to the
   7478 nearest integer. It may raise an inexact floating-point exception if the
   7479 operand isn't an integer.
   7480 
   7481 Arguments:
   7482 """"""""""
   7483 
   7484 The argument and return value are floating point numbers of the same
   7485 type.
   7486 
   7487 Semantics:
   7488 """"""""""
   7489 
   7490 This function returns the same values as the libm ``rint`` functions
   7491 would, and handles error conditions in the same way.
   7492 
   7493 '``llvm.nearbyint.*``' Intrinsic
   7494 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7495 
   7496 Syntax:
   7497 """""""
   7498 
   7499 This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
   7500 floating point or vector of floating point type. Not all targets support
   7501 all types however.
   7502 
   7503 ::
   7504 
   7505       declare float     @llvm.nearbyint.f32(float  %Val)
   7506       declare double    @llvm.nearbyint.f64(double %Val)
   7507       declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
   7508       declare fp128     @llvm.nearbyint.f128(fp128 %Val)
   7509       declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
   7510 
   7511 Overview:
   7512 """""""""
   7513 
   7514 The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
   7515 nearest integer.
   7516 
   7517 Arguments:
   7518 """"""""""
   7519 
   7520 The argument and return value are floating point numbers of the same
   7521 type.
   7522 
   7523 Semantics:
   7524 """"""""""
   7525 
   7526 This function returns the same values as the libm ``nearbyint``
   7527 functions would, and handles error conditions in the same way.
   7528 
   7529 Bit Manipulation Intrinsics
   7530 ---------------------------
   7531 
   7532 LLVM provides intrinsics for a few important bit manipulation
   7533 operations. These allow efficient code generation for some algorithms.
   7534 
   7535 '``llvm.bswap.*``' Intrinsics
   7536 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7537 
   7538 Syntax:
   7539 """""""
   7540 
   7541 This is an overloaded intrinsic function. You can use bswap on any
   7542 integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
   7543 
   7544 ::
   7545 
   7546       declare i16 @llvm.bswap.i16(i16 <id>)
   7547       declare i32 @llvm.bswap.i32(i32 <id>)
   7548       declare i64 @llvm.bswap.i64(i64 <id>)
   7549 
   7550 Overview:
   7551 """""""""
   7552 
   7553 The '``llvm.bswap``' family of intrinsics is used to byte swap integer
   7554 values with an even number of bytes (positive multiple of 16 bits).
   7555 These are useful for performing operations on data that is not in the
   7556 target's native byte order.
   7557 
   7558 Semantics:
   7559 """"""""""
   7560 
   7561 The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
   7562 and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
   7563 intrinsic returns an i32 value that has the four bytes of the input i32
   7564 swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
   7565 returned i32 will have its bytes in 3, 2, 1, 0 order. The
   7566 ``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
   7567 concept to additional even-byte lengths (6 bytes, 8 bytes and more,
   7568 respectively).
   7569 
   7570 '``llvm.ctpop.*``' Intrinsic
   7571 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7572 
   7573 Syntax:
   7574 """""""
   7575 
   7576 This is an overloaded intrinsic. You can use llvm.ctpop on any integer
   7577 bit width, or on any vector with integer elements. Not all targets
   7578 support all bit widths or vector types, however.
   7579 
   7580 ::
   7581 
   7582       declare i8 @llvm.ctpop.i8(i8  <src>)
   7583       declare i16 @llvm.ctpop.i16(i16 <src>)
   7584       declare i32 @llvm.ctpop.i32(i32 <src>)
   7585       declare i64 @llvm.ctpop.i64(i64 <src>)
   7586       declare i256 @llvm.ctpop.i256(i256 <src>)
   7587       declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
   7588 
   7589 Overview:
   7590 """""""""
   7591 
   7592 The '``llvm.ctpop``' family of intrinsics counts the number of bits set
   7593 in a value.
   7594 
   7595 Arguments:
   7596 """"""""""
   7597 
   7598 The only argument is the value to be counted. The argument may be of any
   7599 integer type, or a vector with integer elements. The return type must
   7600 match the argument type.
   7601 
   7602 Semantics:
   7603 """"""""""
   7604 
   7605 The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
   7606 each element of a vector.
   7607 
   7608 '``llvm.ctlz.*``' Intrinsic
   7609 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7610 
   7611 Syntax:
   7612 """""""
   7613 
   7614 This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
   7615 integer bit width, or any vector whose elements are integers. Not all
   7616 targets support all bit widths or vector types, however.
   7617 
   7618 ::
   7619 
   7620       declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
   7621       declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
   7622       declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
   7623       declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
   7624       declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
   7625       declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
   7626 
   7627 Overview:
   7628 """""""""
   7629 
   7630 The '``llvm.ctlz``' family of intrinsic functions counts the number of
   7631 leading zeros in a variable.
   7632 
   7633 Arguments:
   7634 """"""""""
   7635 
   7636 The first argument is the value to be counted. This argument may be of
   7637 any integer type, or a vectory with integer element type. The return
   7638 type must match the first argument type.
   7639 
   7640 The second argument must be a constant and is a flag to indicate whether
   7641 the intrinsic should ensure that a zero as the first argument produces a
   7642 defined result. Historically some architectures did not provide a
   7643 defined result for zero values as efficiently, and many algorithms are
   7644 now predicated on avoiding zero-value inputs.
   7645 
   7646 Semantics:
   7647 """"""""""
   7648 
   7649 The '``llvm.ctlz``' intrinsic counts the leading (most significant)
   7650 zeros in a variable, or within each element of the vector. If
   7651 ``src == 0`` then the result is the size in bits of the type of ``src``
   7652 if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
   7653 ``llvm.ctlz(i32 2) = 30``.
   7654 
   7655 '``llvm.cttz.*``' Intrinsic
   7656 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7657 
   7658 Syntax:
   7659 """""""
   7660 
   7661 This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
   7662 integer bit width, or any vector of integer elements. Not all targets
   7663 support all bit widths or vector types, however.
   7664 
   7665 ::
   7666 
   7667       declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
   7668       declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
   7669       declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
   7670       declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
   7671       declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
   7672       declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
   7673 
   7674 Overview:
   7675 """""""""
   7676 
   7677 The '``llvm.cttz``' family of intrinsic functions counts the number of
   7678 trailing zeros.
   7679 
   7680 Arguments:
   7681 """"""""""
   7682 
   7683 The first argument is the value to be counted. This argument may be of
   7684 any integer type, or a vectory with integer element type. The return
   7685 type must match the first argument type.
   7686 
   7687 The second argument must be a constant and is a flag to indicate whether
   7688 the intrinsic should ensure that a zero as the first argument produces a
   7689 defined result. Historically some architectures did not provide a
   7690 defined result for zero values as efficiently, and many algorithms are
   7691 now predicated on avoiding zero-value inputs.
   7692 
   7693 Semantics:
   7694 """"""""""
   7695 
   7696 The '``llvm.cttz``' intrinsic counts the trailing (least significant)
   7697 zeros in a variable, or within each element of a vector. If ``src == 0``
   7698 then the result is the size in bits of the type of ``src`` if
   7699 ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
   7700 ``llvm.cttz(2) = 1``.
   7701 
   7702 Arithmetic with Overflow Intrinsics
   7703 -----------------------------------
   7704 
   7705 LLVM provides intrinsics for some arithmetic with overflow operations.
   7706 
   7707 '``llvm.sadd.with.overflow.*``' Intrinsics
   7708 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7709 
   7710 Syntax:
   7711 """""""
   7712 
   7713 This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
   7714 on any integer bit width.
   7715 
   7716 ::
   7717 
   7718       declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
   7719       declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7720       declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
   7721 
   7722 Overview:
   7723 """""""""
   7724 
   7725 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
   7726 a signed addition of the two arguments, and indicate whether an overflow
   7727 occurred during the signed summation.
   7728 
   7729 Arguments:
   7730 """"""""""
   7731 
   7732 The arguments (%a and %b) and the first element of the result structure
   7733 may be of integer types of any bit width, but they must have the same
   7734 bit width. The second element of the result structure must be of type
   7735 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   7736 addition.
   7737 
   7738 Semantics:
   7739 """"""""""
   7740 
   7741 The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
   7742 a signed addition of the two variables. They return a structure --- the
   7743 first element of which is the signed summation, and the second element
   7744 of which is a bit specifying if the signed summation resulted in an
   7745 overflow.
   7746 
   7747 Examples:
   7748 """""""""
   7749 
   7750 .. code-block:: llvm
   7751 
   7752       %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
   7753       %sum = extractvalue {i32, i1} %res, 0
   7754       %obit = extractvalue {i32, i1} %res, 1
   7755       br i1 %obit, label %overflow, label %normal
   7756 
   7757 '``llvm.uadd.with.overflow.*``' Intrinsics
   7758 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7759 
   7760 Syntax:
   7761 """""""
   7762 
   7763 This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
   7764 on any integer bit width.
   7765 
   7766 ::
   7767 
   7768       declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
   7769       declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7770       declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
   7771 
   7772 Overview:
   7773 """""""""
   7774 
   7775 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
   7776 an unsigned addition of the two arguments, and indicate whether a carry
   7777 occurred during the unsigned summation.
   7778 
   7779 Arguments:
   7780 """"""""""
   7781 
   7782 The arguments (%a and %b) and the first element of the result structure
   7783 may be of integer types of any bit width, but they must have the same
   7784 bit width. The second element of the result structure must be of type
   7785 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   7786 addition.
   7787 
   7788 Semantics:
   7789 """"""""""
   7790 
   7791 The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
   7792 an unsigned addition of the two arguments. They return a structure --- the
   7793 first element of which is the sum, and the second element of which is a
   7794 bit specifying if the unsigned summation resulted in a carry.
   7795 
   7796 Examples:
   7797 """""""""
   7798 
   7799 .. code-block:: llvm
   7800 
   7801       %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
   7802       %sum = extractvalue {i32, i1} %res, 0
   7803       %obit = extractvalue {i32, i1} %res, 1
   7804       br i1 %obit, label %carry, label %normal
   7805 
   7806 '``llvm.ssub.with.overflow.*``' Intrinsics
   7807 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7808 
   7809 Syntax:
   7810 """""""
   7811 
   7812 This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
   7813 on any integer bit width.
   7814 
   7815 ::
   7816 
   7817       declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
   7818       declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7819       declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
   7820 
   7821 Overview:
   7822 """""""""
   7823 
   7824 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
   7825 a signed subtraction of the two arguments, and indicate whether an
   7826 overflow occurred during the signed subtraction.
   7827 
   7828 Arguments:
   7829 """"""""""
   7830 
   7831 The arguments (%a and %b) and the first element of the result structure
   7832 may be of integer types of any bit width, but they must have the same
   7833 bit width. The second element of the result structure must be of type
   7834 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   7835 subtraction.
   7836 
   7837 Semantics:
   7838 """"""""""
   7839 
   7840 The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
   7841 a signed subtraction of the two arguments. They return a structure --- the
   7842 first element of which is the subtraction, and the second element of
   7843 which is a bit specifying if the signed subtraction resulted in an
   7844 overflow.
   7845 
   7846 Examples:
   7847 """""""""
   7848 
   7849 .. code-block:: llvm
   7850 
   7851       %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
   7852       %sum = extractvalue {i32, i1} %res, 0
   7853       %obit = extractvalue {i32, i1} %res, 1
   7854       br i1 %obit, label %overflow, label %normal
   7855 
   7856 '``llvm.usub.with.overflow.*``' Intrinsics
   7857 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7858 
   7859 Syntax:
   7860 """""""
   7861 
   7862 This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
   7863 on any integer bit width.
   7864 
   7865 ::
   7866 
   7867       declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
   7868       declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7869       declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
   7870 
   7871 Overview:
   7872 """""""""
   7873 
   7874 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
   7875 an unsigned subtraction of the two arguments, and indicate whether an
   7876 overflow occurred during the unsigned subtraction.
   7877 
   7878 Arguments:
   7879 """"""""""
   7880 
   7881 The arguments (%a and %b) and the first element of the result structure
   7882 may be of integer types of any bit width, but they must have the same
   7883 bit width. The second element of the result structure must be of type
   7884 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   7885 subtraction.
   7886 
   7887 Semantics:
   7888 """"""""""
   7889 
   7890 The '``llvm.usub.with.overflow``' family of intrinsic functions perform
   7891 an unsigned subtraction of the two arguments. They return a structure ---
   7892 the first element of which is the subtraction, and the second element of
   7893 which is a bit specifying if the unsigned subtraction resulted in an
   7894 overflow.
   7895 
   7896 Examples:
   7897 """""""""
   7898 
   7899 .. code-block:: llvm
   7900 
   7901       %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
   7902       %sum = extractvalue {i32, i1} %res, 0
   7903       %obit = extractvalue {i32, i1} %res, 1
   7904       br i1 %obit, label %overflow, label %normal
   7905 
   7906 '``llvm.smul.with.overflow.*``' Intrinsics
   7907 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7908 
   7909 Syntax:
   7910 """""""
   7911 
   7912 This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
   7913 on any integer bit width.
   7914 
   7915 ::
   7916 
   7917       declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
   7918       declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7919       declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
   7920 
   7921 Overview:
   7922 """""""""
   7923 
   7924 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
   7925 a signed multiplication of the two arguments, and indicate whether an
   7926 overflow occurred during the signed multiplication.
   7927 
   7928 Arguments:
   7929 """"""""""
   7930 
   7931 The arguments (%a and %b) and the first element of the result structure
   7932 may be of integer types of any bit width, but they must have the same
   7933 bit width. The second element of the result structure must be of type
   7934 ``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
   7935 multiplication.
   7936 
   7937 Semantics:
   7938 """"""""""
   7939 
   7940 The '``llvm.smul.with.overflow``' family of intrinsic functions perform
   7941 a signed multiplication of the two arguments. They return a structure ---
   7942 the first element of which is the multiplication, and the second element
   7943 of which is a bit specifying if the signed multiplication resulted in an
   7944 overflow.
   7945 
   7946 Examples:
   7947 """""""""
   7948 
   7949 .. code-block:: llvm
   7950 
   7951       %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
   7952       %sum = extractvalue {i32, i1} %res, 0
   7953       %obit = extractvalue {i32, i1} %res, 1
   7954       br i1 %obit, label %overflow, label %normal
   7955 
   7956 '``llvm.umul.with.overflow.*``' Intrinsics
   7957 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   7958 
   7959 Syntax:
   7960 """""""
   7961 
   7962 This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
   7963 on any integer bit width.
   7964 
   7965 ::
   7966 
   7967       declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
   7968       declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   7969       declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
   7970 
   7971 Overview:
   7972 """""""""
   7973 
   7974 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
   7975 a unsigned multiplication of the two arguments, and indicate whether an
   7976 overflow occurred during the unsigned multiplication.
   7977 
   7978 Arguments:
   7979 """"""""""
   7980 
   7981 The arguments (%a and %b) and the first element of the result structure
   7982 may be of integer types of any bit width, but they must have the same
   7983 bit width. The second element of the result structure must be of type
   7984 ``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
   7985 multiplication.
   7986 
   7987 Semantics:
   7988 """"""""""
   7989 
   7990 The '``llvm.umul.with.overflow``' family of intrinsic functions perform
   7991 an unsigned multiplication of the two arguments. They return a structure ---
   7992 the first element of which is the multiplication, and the second
   7993 element of which is a bit specifying if the unsigned multiplication
   7994 resulted in an overflow.
   7995 
   7996 Examples:
   7997 """""""""
   7998 
   7999 .. code-block:: llvm
   8000 
   8001       %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
   8002       %sum = extractvalue {i32, i1} %res, 0
   8003       %obit = extractvalue {i32, i1} %res, 1
   8004       br i1 %obit, label %overflow, label %normal
   8005 
   8006 Specialised Arithmetic Intrinsics
   8007 ---------------------------------
   8008 
   8009 '``llvm.fmuladd.*``' Intrinsic
   8010 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8011 
   8012 Syntax:
   8013 """""""
   8014 
   8015 ::
   8016 
   8017       declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
   8018       declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
   8019 
   8020 Overview:
   8021 """""""""
   8022 
   8023 The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
   8024 expressions that can be fused if the code generator determines that (a) the
   8025 target instruction set has support for a fused operation, and (b) that the
   8026 fused operation is more efficient than the equivalent, separate pair of mul
   8027 and add instructions.
   8028 
   8029 Arguments:
   8030 """"""""""
   8031 
   8032 The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
   8033 multiplicands, a and b, and an addend c.
   8034 
   8035 Semantics:
   8036 """"""""""
   8037 
   8038 The expression:
   8039 
   8040 ::
   8041 
   8042       %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
   8043 
   8044 is equivalent to the expression a \* b + c, except that rounding will
   8045 not be performed between the multiplication and addition steps if the
   8046 code generator fuses the operations. Fusion is not guaranteed, even if
   8047 the target platform supports it. If a fused multiply-add is required the
   8048 corresponding llvm.fma.\* intrinsic function should be used instead.
   8049 
   8050 Examples:
   8051 """""""""
   8052 
   8053 .. code-block:: llvm
   8054 
   8055       %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
   8056 
   8057 Half Precision Floating Point Intrinsics
   8058 ----------------------------------------
   8059 
   8060 For most target platforms, half precision floating point is a
   8061 storage-only format. This means that it is a dense encoding (in memory)
   8062 but does not support computation in the format.
   8063 
   8064 This means that code must first load the half-precision floating point
   8065 value as an i16, then convert it to float with
   8066 :ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
   8067 then be performed on the float value (including extending to double
   8068 etc). To store the value back to memory, it is first converted to float
   8069 if needed, then converted to i16 with
   8070 :ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
   8071 i16 value.
   8072 
   8073 .. _int_convert_to_fp16:
   8074 
   8075 '``llvm.convert.to.fp16``' Intrinsic
   8076 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8077 
   8078 Syntax:
   8079 """""""
   8080 
   8081 ::
   8082 
   8083       declare i16 @llvm.convert.to.fp16(f32 %a)
   8084 
   8085 Overview:
   8086 """""""""
   8087 
   8088 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
   8089 from single precision floating point format to half precision floating
   8090 point format.
   8091 
   8092 Arguments:
   8093 """"""""""
   8094 
   8095 The intrinsic function contains single argument - the value to be
   8096 converted.
   8097 
   8098 Semantics:
   8099 """"""""""
   8100 
   8101 The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
   8102 from single precision floating point format to half precision floating
   8103 point format. The return value is an ``i16`` which contains the
   8104 converted number.
   8105 
   8106 Examples:
   8107 """""""""
   8108 
   8109 .. code-block:: llvm
   8110 
   8111       %res = call i16 @llvm.convert.to.fp16(f32 %a)
   8112       store i16 %res, i16* @x, align 2
   8113 
   8114 .. _int_convert_from_fp16:
   8115 
   8116 '``llvm.convert.from.fp16``' Intrinsic
   8117 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8118 
   8119 Syntax:
   8120 """""""
   8121 
   8122 ::
   8123 
   8124       declare f32 @llvm.convert.from.fp16(i16 %a)
   8125 
   8126 Overview:
   8127 """""""""
   8128 
   8129 The '``llvm.convert.from.fp16``' intrinsic function performs a
   8130 conversion from half precision floating point format to single precision
   8131 floating point format.
   8132 
   8133 Arguments:
   8134 """"""""""
   8135 
   8136 The intrinsic function contains single argument - the value to be
   8137 converted.
   8138 
   8139 Semantics:
   8140 """"""""""
   8141 
   8142 The '``llvm.convert.from.fp16``' intrinsic function performs a
   8143 conversion from half single precision floating point format to single
   8144 precision floating point format. The input half-float value is
   8145 represented by an ``i16`` value.
   8146 
   8147 Examples:
   8148 """""""""
   8149 
   8150 .. code-block:: llvm
   8151 
   8152       %a = load i16* @x, align 2
   8153       %res = call f32 @llvm.convert.from.fp16(i16 %a)
   8154 
   8155 Debugger Intrinsics
   8156 -------------------
   8157 
   8158 The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
   8159 prefix), are described in the `LLVM Source Level
   8160 Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
   8161 document.
   8162 
   8163 Exception Handling Intrinsics
   8164 -----------------------------
   8165 
   8166 The LLVM exception handling intrinsics (which all start with
   8167 ``llvm.eh.`` prefix), are described in the `LLVM Exception
   8168 Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
   8169 
   8170 .. _int_trampoline:
   8171 
   8172 Trampoline Intrinsics
   8173 ---------------------
   8174 
   8175 These intrinsics make it possible to excise one parameter, marked with
   8176 the :ref:`nest <nest>` attribute, from a function. The result is a
   8177 callable function pointer lacking the nest parameter - the caller does
   8178 not need to provide a value for it. Instead, the value to use is stored
   8179 in advance in a "trampoline", a block of memory usually allocated on the
   8180 stack, which also contains code to splice the nest value into the
   8181 argument list. This is used to implement the GCC nested function address
   8182 extension.
   8183 
   8184 For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
   8185 then the resulting function pointer has signature ``i32 (i32, i32)*``.
   8186 It can be created as follows:
   8187 
   8188 .. code-block:: llvm
   8189 
   8190       %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   8191       %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   8192       call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
   8193       %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
   8194       %fp = bitcast i8* %p to i32 (i32, i32)*
   8195 
   8196 The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
   8197 ``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
   8198 
   8199 .. _int_it:
   8200 
   8201 '``llvm.init.trampoline``' Intrinsic
   8202 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8203 
   8204 Syntax:
   8205 """""""
   8206 
   8207 ::
   8208 
   8209       declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
   8210 
   8211 Overview:
   8212 """""""""
   8213 
   8214 This fills the memory pointed to by ``tramp`` with executable code,
   8215 turning it into a trampoline.
   8216 
   8217 Arguments:
   8218 """"""""""
   8219 
   8220 The ``llvm.init.trampoline`` intrinsic takes three arguments, all
   8221 pointers. The ``tramp`` argument must point to a sufficiently large and
   8222 sufficiently aligned block of memory; this memory is written to by the
   8223 intrinsic. Note that the size and the alignment are target-specific -
   8224 LLVM currently provides no portable way of determining them, so a
   8225 front-end that generates this intrinsic needs to have some
   8226 target-specific knowledge. The ``func`` argument must hold a function
   8227 bitcast to an ``i8*``.
   8228 
   8229 Semantics:
   8230 """"""""""
   8231 
   8232 The block of memory pointed to by ``tramp`` is filled with target
   8233 dependent code, turning it into a function. Then ``tramp`` needs to be
   8234 passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
   8235 be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
   8236 function's signature is the same as that of ``func`` with any arguments
   8237 marked with the ``nest`` attribute removed. At most one such ``nest``
   8238 argument is allowed, and it must be of pointer type. Calling the new
   8239 function is equivalent to calling ``func`` with the same argument list,
   8240 but with ``nval`` used for the missing ``nest`` argument. If, after
   8241 calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
   8242 modified, then the effect of any later call to the returned function
   8243 pointer is undefined.
   8244 
   8245 .. _int_at:
   8246 
   8247 '``llvm.adjust.trampoline``' Intrinsic
   8248 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8249 
   8250 Syntax:
   8251 """""""
   8252 
   8253 ::
   8254 
   8255       declare i8* @llvm.adjust.trampoline(i8* <tramp>)
   8256 
   8257 Overview:
   8258 """""""""
   8259 
   8260 This performs any required machine-specific adjustment to the address of
   8261 a trampoline (passed as ``tramp``).
   8262 
   8263 Arguments:
   8264 """"""""""
   8265 
   8266 ``tramp`` must point to a block of memory which already has trampoline
   8267 code filled in by a previous call to
   8268 :ref:`llvm.init.trampoline <int_it>`.
   8269 
   8270 Semantics:
   8271 """"""""""
   8272 
   8273 On some architectures the address of the code to be executed needs to be
   8274 different to the address where the trampoline is actually stored. This
   8275 intrinsic returns the executable address corresponding to ``tramp``
   8276 after performing the required machine specific adjustments. The pointer
   8277 returned can then be :ref:`bitcast and executed <int_trampoline>`.
   8278 
   8279 Memory Use Markers
   8280 ------------------
   8281 
   8282 This class of intrinsics exists to information about the lifetime of
   8283 memory objects and ranges where variables are immutable.
   8284 
   8285 '``llvm.lifetime.start``' Intrinsic
   8286 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8287 
   8288 Syntax:
   8289 """""""
   8290 
   8291 ::
   8292 
   8293       declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
   8294 
   8295 Overview:
   8296 """""""""
   8297 
   8298 The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
   8299 object's lifetime.
   8300 
   8301 Arguments:
   8302 """"""""""
   8303 
   8304 The first argument is a constant integer representing the size of the
   8305 object, or -1 if it is variable sized. The second argument is a pointer
   8306 to the object.
   8307 
   8308 Semantics:
   8309 """"""""""
   8310 
   8311 This intrinsic indicates that before this point in the code, the value
   8312 of the memory pointed to by ``ptr`` is dead. This means that it is known
   8313 to never be used and has an undefined value. A load from the pointer
   8314 that precedes this intrinsic can be replaced with ``'undef'``.
   8315 
   8316 '``llvm.lifetime.end``' Intrinsic
   8317 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8318 
   8319 Syntax:
   8320 """""""
   8321 
   8322 ::
   8323 
   8324       declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
   8325 
   8326 Overview:
   8327 """""""""
   8328 
   8329 The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
   8330 object's lifetime.
   8331 
   8332 Arguments:
   8333 """"""""""
   8334 
   8335 The first argument is a constant integer representing the size of the
   8336 object, or -1 if it is variable sized. The second argument is a pointer
   8337 to the object.
   8338 
   8339 Semantics:
   8340 """"""""""
   8341 
   8342 This intrinsic indicates that after this point in the code, the value of
   8343 the memory pointed to by ``ptr`` is dead. This means that it is known to
   8344 never be used and has an undefined value. Any stores into the memory
   8345 object following this intrinsic may be removed as dead.
   8346 
   8347 '``llvm.invariant.start``' Intrinsic
   8348 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8349 
   8350 Syntax:
   8351 """""""
   8352 
   8353 ::
   8354 
   8355       declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
   8356 
   8357 Overview:
   8358 """""""""
   8359 
   8360 The '``llvm.invariant.start``' intrinsic specifies that the contents of
   8361 a memory object will not change.
   8362 
   8363 Arguments:
   8364 """"""""""
   8365 
   8366 The first argument is a constant integer representing the size of the
   8367 object, or -1 if it is variable sized. The second argument is a pointer
   8368 to the object.
   8369 
   8370 Semantics:
   8371 """"""""""
   8372 
   8373 This intrinsic indicates that until an ``llvm.invariant.end`` that uses
   8374 the return value, the referenced memory location is constant and
   8375 unchanging.
   8376 
   8377 '``llvm.invariant.end``' Intrinsic
   8378 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8379 
   8380 Syntax:
   8381 """""""
   8382 
   8383 ::
   8384 
   8385       declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
   8386 
   8387 Overview:
   8388 """""""""
   8389 
   8390 The '``llvm.invariant.end``' intrinsic specifies that the contents of a
   8391 memory object are mutable.
   8392 
   8393 Arguments:
   8394 """"""""""
   8395 
   8396 The first argument is the matching ``llvm.invariant.start`` intrinsic.
   8397 The second argument is a constant integer representing the size of the
   8398 object, or -1 if it is variable sized and the third argument is a
   8399 pointer to the object.
   8400 
   8401 Semantics:
   8402 """"""""""
   8403 
   8404 This intrinsic indicates that the memory is mutable again.
   8405 
   8406 General Intrinsics
   8407 ------------------
   8408 
   8409 This class of intrinsics is designed to be generic and has no specific
   8410 purpose.
   8411 
   8412 '``llvm.var.annotation``' Intrinsic
   8413 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8414 
   8415 Syntax:
   8416 """""""
   8417 
   8418 ::
   8419 
   8420       declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
   8421 
   8422 Overview:
   8423 """""""""
   8424 
   8425 The '``llvm.var.annotation``' intrinsic.
   8426 
   8427 Arguments:
   8428 """"""""""
   8429 
   8430 The first argument is a pointer to a value, the second is a pointer to a
   8431 global string, the third is a pointer to a global string which is the
   8432 source file name, and the last argument is the line number.
   8433 
   8434 Semantics:
   8435 """"""""""
   8436 
   8437 This intrinsic allows annotation of local variables with arbitrary
   8438 strings. This can be useful for special purpose optimizations that want
   8439 to look for these annotations. These have no other defined use; they are
   8440 ignored by code generation and optimization.
   8441 
   8442 '``llvm.ptr.annotation.*``' Intrinsic
   8443 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8444 
   8445 Syntax:
   8446 """""""
   8447 
   8448 This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
   8449 pointer to an integer of any width. *NOTE* you must specify an address space for
   8450 the pointer. The identifier for the default address space is the integer
   8451 '``0``'.
   8452 
   8453 ::
   8454 
   8455       declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
   8456       declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
   8457       declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
   8458       declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
   8459       declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
   8460 
   8461 Overview:
   8462 """""""""
   8463 
   8464 The '``llvm.ptr.annotation``' intrinsic.
   8465 
   8466 Arguments:
   8467 """"""""""
   8468 
   8469 The first argument is a pointer to an integer value of arbitrary bitwidth
   8470 (result of some expression), the second is a pointer to a global string, the
   8471 third is a pointer to a global string which is the source file name, and the
   8472 last argument is the line number. It returns the value of the first argument.
   8473 
   8474 Semantics:
   8475 """"""""""
   8476 
   8477 This intrinsic allows annotation of a pointer to an integer with arbitrary
   8478 strings. This can be useful for special purpose optimizations that want to look
   8479 for these annotations. These have no other defined use; they are ignored by code
   8480 generation and optimization.
   8481 
   8482 '``llvm.annotation.*``' Intrinsic
   8483 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8484 
   8485 Syntax:
   8486 """""""
   8487 
   8488 This is an overloaded intrinsic. You can use '``llvm.annotation``' on
   8489 any integer bit width.
   8490 
   8491 ::
   8492 
   8493       declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
   8494       declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
   8495       declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
   8496       declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
   8497       declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
   8498 
   8499 Overview:
   8500 """""""""
   8501 
   8502 The '``llvm.annotation``' intrinsic.
   8503 
   8504 Arguments:
   8505 """"""""""
   8506 
   8507 The first argument is an integer value (result of some expression), the
   8508 second is a pointer to a global string, the third is a pointer to a
   8509 global string which is the source file name, and the last argument is
   8510 the line number. It returns the value of the first argument.
   8511 
   8512 Semantics:
   8513 """"""""""
   8514 
   8515 This intrinsic allows annotations to be put on arbitrary expressions
   8516 with arbitrary strings. This can be useful for special purpose
   8517 optimizations that want to look for these annotations. These have no
   8518 other defined use; they are ignored by code generation and optimization.
   8519 
   8520 '``llvm.trap``' Intrinsic
   8521 ^^^^^^^^^^^^^^^^^^^^^^^^^
   8522 
   8523 Syntax:
   8524 """""""
   8525 
   8526 ::
   8527 
   8528       declare void @llvm.trap() noreturn nounwind
   8529 
   8530 Overview:
   8531 """""""""
   8532 
   8533 The '``llvm.trap``' intrinsic.
   8534 
   8535 Arguments:
   8536 """"""""""
   8537 
   8538 None.
   8539 
   8540 Semantics:
   8541 """"""""""
   8542 
   8543 This intrinsic is lowered to the target dependent trap instruction. If
   8544 the target does not have a trap instruction, this intrinsic will be
   8545 lowered to a call of the ``abort()`` function.
   8546 
   8547 '``llvm.debugtrap``' Intrinsic
   8548 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8549 
   8550 Syntax:
   8551 """""""
   8552 
   8553 ::
   8554 
   8555       declare void @llvm.debugtrap() nounwind
   8556 
   8557 Overview:
   8558 """""""""
   8559 
   8560 The '``llvm.debugtrap``' intrinsic.
   8561 
   8562 Arguments:
   8563 """"""""""
   8564 
   8565 None.
   8566 
   8567 Semantics:
   8568 """"""""""
   8569 
   8570 This intrinsic is lowered to code which is intended to cause an
   8571 execution trap with the intention of requesting the attention of a
   8572 debugger.
   8573 
   8574 '``llvm.stackprotector``' Intrinsic
   8575 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8576 
   8577 Syntax:
   8578 """""""
   8579 
   8580 ::
   8581 
   8582       declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
   8583 
   8584 Overview:
   8585 """""""""
   8586 
   8587 The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
   8588 onto the stack at ``slot``. The stack slot is adjusted to ensure that it
   8589 is placed on the stack before local variables.
   8590 
   8591 Arguments:
   8592 """"""""""
   8593 
   8594 The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
   8595 The first argument is the value loaded from the stack guard
   8596 ``@__stack_chk_guard``. The second variable is an ``alloca`` that has
   8597 enough space to hold the value of the guard.
   8598 
   8599 Semantics:
   8600 """"""""""
   8601 
   8602 This intrinsic causes the prologue/epilogue inserter to force the
   8603 position of the ``AllocaInst`` stack slot to be before local variables
   8604 on the stack. This is to ensure that if a local variable on the stack is
   8605 overwritten, it will destroy the value of the guard. When the function
   8606 exits, the guard on the stack is checked against the original guard. If
   8607 they are different, then the program aborts by calling the
   8608 ``__stack_chk_fail()`` function.
   8609 
   8610 '``llvm.objectsize``' Intrinsic
   8611 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8612 
   8613 Syntax:
   8614 """""""
   8615 
   8616 ::
   8617 
   8618       declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
   8619       declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
   8620 
   8621 Overview:
   8622 """""""""
   8623 
   8624 The ``llvm.objectsize`` intrinsic is designed to provide information to
   8625 the optimizers to determine at compile time whether a) an operation
   8626 (like memcpy) will overflow a buffer that corresponds to an object, or
   8627 b) that a runtime check for overflow isn't necessary. An object in this
   8628 context means an allocation of a specific class, structure, array, or
   8629 other object.
   8630 
   8631 Arguments:
   8632 """"""""""
   8633 
   8634 The ``llvm.objectsize`` intrinsic takes two arguments. The first
   8635 argument is a pointer to or into the ``object``. The second argument is
   8636 a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
   8637 or -1 (if false) when the object size is unknown. The second argument
   8638 only accepts constants.
   8639 
   8640 Semantics:
   8641 """"""""""
   8642 
   8643 The ``llvm.objectsize`` intrinsic is lowered to a constant representing
   8644 the size of the object concerned. If the size cannot be determined at
   8645 compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
   8646 on the ``min`` argument).
   8647 
   8648 '``llvm.expect``' Intrinsic
   8649 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8650 
   8651 Syntax:
   8652 """""""
   8653 
   8654 ::
   8655 
   8656       declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
   8657       declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
   8658 
   8659 Overview:
   8660 """""""""
   8661 
   8662 The ``llvm.expect`` intrinsic provides information about expected (the
   8663 most probable) value of ``val``, which can be used by optimizers.
   8664 
   8665 Arguments:
   8666 """"""""""
   8667 
   8668 The ``llvm.expect`` intrinsic takes two arguments. The first argument is
   8669 a value. The second argument is an expected value, this needs to be a
   8670 constant value, variables are not allowed.
   8671 
   8672 Semantics:
   8673 """"""""""
   8674 
   8675 This intrinsic is lowered to the ``val``.
   8676 
   8677 '``llvm.donothing``' Intrinsic
   8678 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   8679 
   8680 Syntax:
   8681 """""""
   8682 
   8683 ::
   8684 
   8685       declare void @llvm.donothing() nounwind readnone
   8686 
   8687 Overview:
   8688 """""""""
   8689 
   8690 The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
   8691 only intrinsic that can be called with an invoke instruction.
   8692 
   8693 Arguments:
   8694 """"""""""
   8695 
   8696 None.
   8697 
   8698 Semantics:
   8699 """"""""""
   8700 
   8701 This intrinsic does nothing, and it's removed by optimizers and ignored
   8702 by codegen.
   8703