1 #include "llvm/Analysis/Passes.h" 2 #include "llvm/Analysis/Verifier.h" 3 #include "llvm/ExecutionEngine/ExecutionEngine.h" 4 #include "llvm/ExecutionEngine/JIT.h" 5 #include "llvm/IR/DataLayout.h" 6 #include "llvm/IR/DerivedTypes.h" 7 #include "llvm/IR/IRBuilder.h" 8 #include "llvm/IR/LLVMContext.h" 9 #include "llvm/IR/Module.h" 10 #include "llvm/PassManager.h" 11 #include "llvm/Support/TargetSelect.h" 12 #include "llvm/Transforms/Scalar.h" 13 #include <cstdio> 14 #include <map> 15 #include <string> 16 #include <vector> 17 using namespace llvm; 18 19 //===----------------------------------------------------------------------===// 20 // Lexer 21 //===----------------------------------------------------------------------===// 22 23 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 24 // of these for known things. 25 enum Token { 26 tok_eof = -1, 27 28 // commands 29 tok_def = -2, tok_extern = -3, 30 31 // primary 32 tok_identifier = -4, tok_number = -5, 33 34 // control 35 tok_if = -6, tok_then = -7, tok_else = -8, 36 tok_for = -9, tok_in = -10 37 }; 38 39 static std::string IdentifierStr; // Filled in if tok_identifier 40 static double NumVal; // Filled in if tok_number 41 42 /// gettok - Return the next token from standard input. 43 static int gettok() { 44 static int LastChar = ' '; 45 46 // Skip any whitespace. 47 while (isspace(LastChar)) 48 LastChar = getchar(); 49 50 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 51 IdentifierStr = LastChar; 52 while (isalnum((LastChar = getchar()))) 53 IdentifierStr += LastChar; 54 55 if (IdentifierStr == "def") return tok_def; 56 if (IdentifierStr == "extern") return tok_extern; 57 if (IdentifierStr == "if") return tok_if; 58 if (IdentifierStr == "then") return tok_then; 59 if (IdentifierStr == "else") return tok_else; 60 if (IdentifierStr == "for") return tok_for; 61 if (IdentifierStr == "in") return tok_in; 62 return tok_identifier; 63 } 64 65 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 66 std::string NumStr; 67 do { 68 NumStr += LastChar; 69 LastChar = getchar(); 70 } while (isdigit(LastChar) || LastChar == '.'); 71 72 NumVal = strtod(NumStr.c_str(), 0); 73 return tok_number; 74 } 75 76 if (LastChar == '#') { 77 // Comment until end of line. 78 do LastChar = getchar(); 79 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 80 81 if (LastChar != EOF) 82 return gettok(); 83 } 84 85 // Check for end of file. Don't eat the EOF. 86 if (LastChar == EOF) 87 return tok_eof; 88 89 // Otherwise, just return the character as its ascii value. 90 int ThisChar = LastChar; 91 LastChar = getchar(); 92 return ThisChar; 93 } 94 95 //===----------------------------------------------------------------------===// 96 // Abstract Syntax Tree (aka Parse Tree) 97 //===----------------------------------------------------------------------===// 98 99 /// ExprAST - Base class for all expression nodes. 100 class ExprAST { 101 public: 102 virtual ~ExprAST() {} 103 virtual Value *Codegen() = 0; 104 }; 105 106 /// NumberExprAST - Expression class for numeric literals like "1.0". 107 class NumberExprAST : public ExprAST { 108 double Val; 109 public: 110 NumberExprAST(double val) : Val(val) {} 111 virtual Value *Codegen(); 112 }; 113 114 /// VariableExprAST - Expression class for referencing a variable, like "a". 115 class VariableExprAST : public ExprAST { 116 std::string Name; 117 public: 118 VariableExprAST(const std::string &name) : Name(name) {} 119 virtual Value *Codegen(); 120 }; 121 122 /// BinaryExprAST - Expression class for a binary operator. 123 class BinaryExprAST : public ExprAST { 124 char Op; 125 ExprAST *LHS, *RHS; 126 public: 127 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 128 : Op(op), LHS(lhs), RHS(rhs) {} 129 virtual Value *Codegen(); 130 }; 131 132 /// CallExprAST - Expression class for function calls. 133 class CallExprAST : public ExprAST { 134 std::string Callee; 135 std::vector<ExprAST*> Args; 136 public: 137 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 138 : Callee(callee), Args(args) {} 139 virtual Value *Codegen(); 140 }; 141 142 /// IfExprAST - Expression class for if/then/else. 143 class IfExprAST : public ExprAST { 144 ExprAST *Cond, *Then, *Else; 145 public: 146 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 147 : Cond(cond), Then(then), Else(_else) {} 148 virtual Value *Codegen(); 149 }; 150 151 /// ForExprAST - Expression class for for/in. 152 class ForExprAST : public ExprAST { 153 std::string VarName; 154 ExprAST *Start, *End, *Step, *Body; 155 public: 156 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 157 ExprAST *step, ExprAST *body) 158 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 159 virtual Value *Codegen(); 160 }; 161 162 /// PrototypeAST - This class represents the "prototype" for a function, 163 /// which captures its name, and its argument names (thus implicitly the number 164 /// of arguments the function takes). 165 class PrototypeAST { 166 std::string Name; 167 std::vector<std::string> Args; 168 public: 169 PrototypeAST(const std::string &name, const std::vector<std::string> &args) 170 : Name(name), Args(args) {} 171 172 Function *Codegen(); 173 }; 174 175 /// FunctionAST - This class represents a function definition itself. 176 class FunctionAST { 177 PrototypeAST *Proto; 178 ExprAST *Body; 179 public: 180 FunctionAST(PrototypeAST *proto, ExprAST *body) 181 : Proto(proto), Body(body) {} 182 183 Function *Codegen(); 184 }; 185 186 //===----------------------------------------------------------------------===// 187 // Parser 188 //===----------------------------------------------------------------------===// 189 190 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 191 /// token the parser is looking at. getNextToken reads another token from the 192 /// lexer and updates CurTok with its results. 193 static int CurTok; 194 static int getNextToken() { 195 return CurTok = gettok(); 196 } 197 198 /// BinopPrecedence - This holds the precedence for each binary operator that is 199 /// defined. 200 static std::map<char, int> BinopPrecedence; 201 202 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 203 static int GetTokPrecedence() { 204 if (!isascii(CurTok)) 205 return -1; 206 207 // Make sure it's a declared binop. 208 int TokPrec = BinopPrecedence[CurTok]; 209 if (TokPrec <= 0) return -1; 210 return TokPrec; 211 } 212 213 /// Error* - These are little helper functions for error handling. 214 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 215 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 216 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 217 218 static ExprAST *ParseExpression(); 219 220 /// identifierexpr 221 /// ::= identifier 222 /// ::= identifier '(' expression* ')' 223 static ExprAST *ParseIdentifierExpr() { 224 std::string IdName = IdentifierStr; 225 226 getNextToken(); // eat identifier. 227 228 if (CurTok != '(') // Simple variable ref. 229 return new VariableExprAST(IdName); 230 231 // Call. 232 getNextToken(); // eat ( 233 std::vector<ExprAST*> Args; 234 if (CurTok != ')') { 235 while (1) { 236 ExprAST *Arg = ParseExpression(); 237 if (!Arg) return 0; 238 Args.push_back(Arg); 239 240 if (CurTok == ')') break; 241 242 if (CurTok != ',') 243 return Error("Expected ')' or ',' in argument list"); 244 getNextToken(); 245 } 246 } 247 248 // Eat the ')'. 249 getNextToken(); 250 251 return new CallExprAST(IdName, Args); 252 } 253 254 /// numberexpr ::= number 255 static ExprAST *ParseNumberExpr() { 256 ExprAST *Result = new NumberExprAST(NumVal); 257 getNextToken(); // consume the number 258 return Result; 259 } 260 261 /// parenexpr ::= '(' expression ')' 262 static ExprAST *ParseParenExpr() { 263 getNextToken(); // eat (. 264 ExprAST *V = ParseExpression(); 265 if (!V) return 0; 266 267 if (CurTok != ')') 268 return Error("expected ')'"); 269 getNextToken(); // eat ). 270 return V; 271 } 272 273 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 274 static ExprAST *ParseIfExpr() { 275 getNextToken(); // eat the if. 276 277 // condition. 278 ExprAST *Cond = ParseExpression(); 279 if (!Cond) return 0; 280 281 if (CurTok != tok_then) 282 return Error("expected then"); 283 getNextToken(); // eat the then 284 285 ExprAST *Then = ParseExpression(); 286 if (Then == 0) return 0; 287 288 if (CurTok != tok_else) 289 return Error("expected else"); 290 291 getNextToken(); 292 293 ExprAST *Else = ParseExpression(); 294 if (!Else) return 0; 295 296 return new IfExprAST(Cond, Then, Else); 297 } 298 299 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 300 static ExprAST *ParseForExpr() { 301 getNextToken(); // eat the for. 302 303 if (CurTok != tok_identifier) 304 return Error("expected identifier after for"); 305 306 std::string IdName = IdentifierStr; 307 getNextToken(); // eat identifier. 308 309 if (CurTok != '=') 310 return Error("expected '=' after for"); 311 getNextToken(); // eat '='. 312 313 314 ExprAST *Start = ParseExpression(); 315 if (Start == 0) return 0; 316 if (CurTok != ',') 317 return Error("expected ',' after for start value"); 318 getNextToken(); 319 320 ExprAST *End = ParseExpression(); 321 if (End == 0) return 0; 322 323 // The step value is optional. 324 ExprAST *Step = 0; 325 if (CurTok == ',') { 326 getNextToken(); 327 Step = ParseExpression(); 328 if (Step == 0) return 0; 329 } 330 331 if (CurTok != tok_in) 332 return Error("expected 'in' after for"); 333 getNextToken(); // eat 'in'. 334 335 ExprAST *Body = ParseExpression(); 336 if (Body == 0) return 0; 337 338 return new ForExprAST(IdName, Start, End, Step, Body); 339 } 340 341 /// primary 342 /// ::= identifierexpr 343 /// ::= numberexpr 344 /// ::= parenexpr 345 /// ::= ifexpr 346 /// ::= forexpr 347 static ExprAST *ParsePrimary() { 348 switch (CurTok) { 349 default: return Error("unknown token when expecting an expression"); 350 case tok_identifier: return ParseIdentifierExpr(); 351 case tok_number: return ParseNumberExpr(); 352 case '(': return ParseParenExpr(); 353 case tok_if: return ParseIfExpr(); 354 case tok_for: return ParseForExpr(); 355 } 356 } 357 358 /// binoprhs 359 /// ::= ('+' primary)* 360 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 361 // If this is a binop, find its precedence. 362 while (1) { 363 int TokPrec = GetTokPrecedence(); 364 365 // If this is a binop that binds at least as tightly as the current binop, 366 // consume it, otherwise we are done. 367 if (TokPrec < ExprPrec) 368 return LHS; 369 370 // Okay, we know this is a binop. 371 int BinOp = CurTok; 372 getNextToken(); // eat binop 373 374 // Parse the primary expression after the binary operator. 375 ExprAST *RHS = ParsePrimary(); 376 if (!RHS) return 0; 377 378 // If BinOp binds less tightly with RHS than the operator after RHS, let 379 // the pending operator take RHS as its LHS. 380 int NextPrec = GetTokPrecedence(); 381 if (TokPrec < NextPrec) { 382 RHS = ParseBinOpRHS(TokPrec+1, RHS); 383 if (RHS == 0) return 0; 384 } 385 386 // Merge LHS/RHS. 387 LHS = new BinaryExprAST(BinOp, LHS, RHS); 388 } 389 } 390 391 /// expression 392 /// ::= primary binoprhs 393 /// 394 static ExprAST *ParseExpression() { 395 ExprAST *LHS = ParsePrimary(); 396 if (!LHS) return 0; 397 398 return ParseBinOpRHS(0, LHS); 399 } 400 401 /// prototype 402 /// ::= id '(' id* ')' 403 static PrototypeAST *ParsePrototype() { 404 if (CurTok != tok_identifier) 405 return ErrorP("Expected function name in prototype"); 406 407 std::string FnName = IdentifierStr; 408 getNextToken(); 409 410 if (CurTok != '(') 411 return ErrorP("Expected '(' in prototype"); 412 413 std::vector<std::string> ArgNames; 414 while (getNextToken() == tok_identifier) 415 ArgNames.push_back(IdentifierStr); 416 if (CurTok != ')') 417 return ErrorP("Expected ')' in prototype"); 418 419 // success. 420 getNextToken(); // eat ')'. 421 422 return new PrototypeAST(FnName, ArgNames); 423 } 424 425 /// definition ::= 'def' prototype expression 426 static FunctionAST *ParseDefinition() { 427 getNextToken(); // eat def. 428 PrototypeAST *Proto = ParsePrototype(); 429 if (Proto == 0) return 0; 430 431 if (ExprAST *E = ParseExpression()) 432 return new FunctionAST(Proto, E); 433 return 0; 434 } 435 436 /// toplevelexpr ::= expression 437 static FunctionAST *ParseTopLevelExpr() { 438 if (ExprAST *E = ParseExpression()) { 439 // Make an anonymous proto. 440 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 441 return new FunctionAST(Proto, E); 442 } 443 return 0; 444 } 445 446 /// external ::= 'extern' prototype 447 static PrototypeAST *ParseExtern() { 448 getNextToken(); // eat extern. 449 return ParsePrototype(); 450 } 451 452 //===----------------------------------------------------------------------===// 453 // Code Generation 454 //===----------------------------------------------------------------------===// 455 456 static Module *TheModule; 457 static IRBuilder<> Builder(getGlobalContext()); 458 static std::map<std::string, Value*> NamedValues; 459 static FunctionPassManager *TheFPM; 460 461 Value *ErrorV(const char *Str) { Error(Str); return 0; } 462 463 Value *NumberExprAST::Codegen() { 464 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 465 } 466 467 Value *VariableExprAST::Codegen() { 468 // Look this variable up in the function. 469 Value *V = NamedValues[Name]; 470 return V ? V : ErrorV("Unknown variable name"); 471 } 472 473 Value *BinaryExprAST::Codegen() { 474 Value *L = LHS->Codegen(); 475 Value *R = RHS->Codegen(); 476 if (L == 0 || R == 0) return 0; 477 478 switch (Op) { 479 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 480 case '-': return Builder.CreateFSub(L, R, "subtmp"); 481 case '*': return Builder.CreateFMul(L, R, "multmp"); 482 case '<': 483 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 484 // Convert bool 0/1 to double 0.0 or 1.0 485 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 486 "booltmp"); 487 default: return ErrorV("invalid binary operator"); 488 } 489 } 490 491 Value *CallExprAST::Codegen() { 492 // Look up the name in the global module table. 493 Function *CalleeF = TheModule->getFunction(Callee); 494 if (CalleeF == 0) 495 return ErrorV("Unknown function referenced"); 496 497 // If argument mismatch error. 498 if (CalleeF->arg_size() != Args.size()) 499 return ErrorV("Incorrect # arguments passed"); 500 501 std::vector<Value*> ArgsV; 502 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 503 ArgsV.push_back(Args[i]->Codegen()); 504 if (ArgsV.back() == 0) return 0; 505 } 506 507 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 508 } 509 510 Value *IfExprAST::Codegen() { 511 Value *CondV = Cond->Codegen(); 512 if (CondV == 0) return 0; 513 514 // Convert condition to a bool by comparing equal to 0.0. 515 CondV = Builder.CreateFCmpONE(CondV, 516 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 517 "ifcond"); 518 519 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 520 521 // Create blocks for the then and else cases. Insert the 'then' block at the 522 // end of the function. 523 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 524 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 525 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 526 527 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 528 529 // Emit then value. 530 Builder.SetInsertPoint(ThenBB); 531 532 Value *ThenV = Then->Codegen(); 533 if (ThenV == 0) return 0; 534 535 Builder.CreateBr(MergeBB); 536 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 537 ThenBB = Builder.GetInsertBlock(); 538 539 // Emit else block. 540 TheFunction->getBasicBlockList().push_back(ElseBB); 541 Builder.SetInsertPoint(ElseBB); 542 543 Value *ElseV = Else->Codegen(); 544 if (ElseV == 0) return 0; 545 546 Builder.CreateBr(MergeBB); 547 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 548 ElseBB = Builder.GetInsertBlock(); 549 550 // Emit merge block. 551 TheFunction->getBasicBlockList().push_back(MergeBB); 552 Builder.SetInsertPoint(MergeBB); 553 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 554 "iftmp"); 555 556 PN->addIncoming(ThenV, ThenBB); 557 PN->addIncoming(ElseV, ElseBB); 558 return PN; 559 } 560 561 Value *ForExprAST::Codegen() { 562 // Output this as: 563 // ... 564 // start = startexpr 565 // goto loop 566 // loop: 567 // variable = phi [start, loopheader], [nextvariable, loopend] 568 // ... 569 // bodyexpr 570 // ... 571 // loopend: 572 // step = stepexpr 573 // nextvariable = variable + step 574 // endcond = endexpr 575 // br endcond, loop, endloop 576 // outloop: 577 578 // Emit the start code first, without 'variable' in scope. 579 Value *StartVal = Start->Codegen(); 580 if (StartVal == 0) return 0; 581 582 // Make the new basic block for the loop header, inserting after current 583 // block. 584 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 585 BasicBlock *PreheaderBB = Builder.GetInsertBlock(); 586 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 587 588 // Insert an explicit fall through from the current block to the LoopBB. 589 Builder.CreateBr(LoopBB); 590 591 // Start insertion in LoopBB. 592 Builder.SetInsertPoint(LoopBB); 593 594 // Start the PHI node with an entry for Start. 595 PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, VarName.c_str()); 596 Variable->addIncoming(StartVal, PreheaderBB); 597 598 // Within the loop, the variable is defined equal to the PHI node. If it 599 // shadows an existing variable, we have to restore it, so save it now. 600 Value *OldVal = NamedValues[VarName]; 601 NamedValues[VarName] = Variable; 602 603 // Emit the body of the loop. This, like any other expr, can change the 604 // current BB. Note that we ignore the value computed by the body, but don't 605 // allow an error. 606 if (Body->Codegen() == 0) 607 return 0; 608 609 // Emit the step value. 610 Value *StepVal; 611 if (Step) { 612 StepVal = Step->Codegen(); 613 if (StepVal == 0) return 0; 614 } else { 615 // If not specified, use 1.0. 616 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 617 } 618 619 Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar"); 620 621 // Compute the end condition. 622 Value *EndCond = End->Codegen(); 623 if (EndCond == 0) return EndCond; 624 625 // Convert condition to a bool by comparing equal to 0.0. 626 EndCond = Builder.CreateFCmpONE(EndCond, 627 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 628 "loopcond"); 629 630 // Create the "after loop" block and insert it. 631 BasicBlock *LoopEndBB = Builder.GetInsertBlock(); 632 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 633 634 // Insert the conditional branch into the end of LoopEndBB. 635 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 636 637 // Any new code will be inserted in AfterBB. 638 Builder.SetInsertPoint(AfterBB); 639 640 // Add a new entry to the PHI node for the backedge. 641 Variable->addIncoming(NextVar, LoopEndBB); 642 643 // Restore the unshadowed variable. 644 if (OldVal) 645 NamedValues[VarName] = OldVal; 646 else 647 NamedValues.erase(VarName); 648 649 650 // for expr always returns 0.0. 651 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 652 } 653 654 Function *PrototypeAST::Codegen() { 655 // Make the function type: double(double,double) etc. 656 std::vector<Type*> Doubles(Args.size(), 657 Type::getDoubleTy(getGlobalContext())); 658 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 659 Doubles, false); 660 661 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 662 663 // If F conflicted, there was already something named 'Name'. If it has a 664 // body, don't allow redefinition or reextern. 665 if (F->getName() != Name) { 666 // Delete the one we just made and get the existing one. 667 F->eraseFromParent(); 668 F = TheModule->getFunction(Name); 669 670 // If F already has a body, reject this. 671 if (!F->empty()) { 672 ErrorF("redefinition of function"); 673 return 0; 674 } 675 676 // If F took a different number of args, reject. 677 if (F->arg_size() != Args.size()) { 678 ErrorF("redefinition of function with different # args"); 679 return 0; 680 } 681 } 682 683 // Set names for all arguments. 684 unsigned Idx = 0; 685 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 686 ++AI, ++Idx) { 687 AI->setName(Args[Idx]); 688 689 // Add arguments to variable symbol table. 690 NamedValues[Args[Idx]] = AI; 691 } 692 693 return F; 694 } 695 696 Function *FunctionAST::Codegen() { 697 NamedValues.clear(); 698 699 Function *TheFunction = Proto->Codegen(); 700 if (TheFunction == 0) 701 return 0; 702 703 // Create a new basic block to start insertion into. 704 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 705 Builder.SetInsertPoint(BB); 706 707 if (Value *RetVal = Body->Codegen()) { 708 // Finish off the function. 709 Builder.CreateRet(RetVal); 710 711 // Validate the generated code, checking for consistency. 712 verifyFunction(*TheFunction); 713 714 // Optimize the function. 715 TheFPM->run(*TheFunction); 716 717 return TheFunction; 718 } 719 720 // Error reading body, remove function. 721 TheFunction->eraseFromParent(); 722 return 0; 723 } 724 725 //===----------------------------------------------------------------------===// 726 // Top-Level parsing and JIT Driver 727 //===----------------------------------------------------------------------===// 728 729 static ExecutionEngine *TheExecutionEngine; 730 731 static void HandleDefinition() { 732 if (FunctionAST *F = ParseDefinition()) { 733 if (Function *LF = F->Codegen()) { 734 fprintf(stderr, "Read function definition:"); 735 LF->dump(); 736 } 737 } else { 738 // Skip token for error recovery. 739 getNextToken(); 740 } 741 } 742 743 static void HandleExtern() { 744 if (PrototypeAST *P = ParseExtern()) { 745 if (Function *F = P->Codegen()) { 746 fprintf(stderr, "Read extern: "); 747 F->dump(); 748 } 749 } else { 750 // Skip token for error recovery. 751 getNextToken(); 752 } 753 } 754 755 static void HandleTopLevelExpression() { 756 // Evaluate a top-level expression into an anonymous function. 757 if (FunctionAST *F = ParseTopLevelExpr()) { 758 if (Function *LF = F->Codegen()) { 759 // JIT the function, returning a function pointer. 760 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 761 762 // Cast it to the right type (takes no arguments, returns a double) so we 763 // can call it as a native function. 764 double (*FP)() = (double (*)())(intptr_t)FPtr; 765 fprintf(stderr, "Evaluated to %f\n", FP()); 766 } 767 } else { 768 // Skip token for error recovery. 769 getNextToken(); 770 } 771 } 772 773 /// top ::= definition | external | expression | ';' 774 static void MainLoop() { 775 while (1) { 776 fprintf(stderr, "ready> "); 777 switch (CurTok) { 778 case tok_eof: return; 779 case ';': getNextToken(); break; // ignore top-level semicolons. 780 case tok_def: HandleDefinition(); break; 781 case tok_extern: HandleExtern(); break; 782 default: HandleTopLevelExpression(); break; 783 } 784 } 785 } 786 787 //===----------------------------------------------------------------------===// 788 // "Library" functions that can be "extern'd" from user code. 789 //===----------------------------------------------------------------------===// 790 791 /// putchard - putchar that takes a double and returns 0. 792 extern "C" 793 double putchard(double X) { 794 putchar((char)X); 795 return 0; 796 } 797 798 //===----------------------------------------------------------------------===// 799 // Main driver code. 800 //===----------------------------------------------------------------------===// 801 802 int main() { 803 InitializeNativeTarget(); 804 LLVMContext &Context = getGlobalContext(); 805 806 // Install standard binary operators. 807 // 1 is lowest precedence. 808 BinopPrecedence['<'] = 10; 809 BinopPrecedence['+'] = 20; 810 BinopPrecedence['-'] = 20; 811 BinopPrecedence['*'] = 40; // highest. 812 813 // Prime the first token. 814 fprintf(stderr, "ready> "); 815 getNextToken(); 816 817 // Make the module, which holds all the code. 818 TheModule = new Module("my cool jit", Context); 819 820 // Create the JIT. This takes ownership of the module. 821 std::string ErrStr; 822 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 823 if (!TheExecutionEngine) { 824 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 825 exit(1); 826 } 827 828 FunctionPassManager OurFPM(TheModule); 829 830 // Set up the optimizer pipeline. Start with registering info about how the 831 // target lays out data structures. 832 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); 833 // Provide basic AliasAnalysis support for GVN. 834 OurFPM.add(createBasicAliasAnalysisPass()); 835 // Do simple "peephole" optimizations and bit-twiddling optzns. 836 OurFPM.add(createInstructionCombiningPass()); 837 // Reassociate expressions. 838 OurFPM.add(createReassociatePass()); 839 // Eliminate Common SubExpressions. 840 OurFPM.add(createGVNPass()); 841 // Simplify the control flow graph (deleting unreachable blocks, etc). 842 OurFPM.add(createCFGSimplificationPass()); 843 844 OurFPM.doInitialization(); 845 846 // Set the global so the code gen can use this. 847 TheFPM = &OurFPM; 848 849 // Run the main "interpreter loop" now. 850 MainLoop(); 851 852 TheFPM = 0; 853 854 // Print out all of the generated code. 855 TheModule->dump(); 856 857 return 0; 858 } 859