Home | History | Annotate | Download | only in cached
      1 #define MINIMAL_STDERR_OUTPUT
      2 
      3 #include "llvm/Analysis/Passes.h"
      4 #include "llvm/Analysis/Verifier.h"
      5 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      6 #include "llvm/ExecutionEngine/JIT.h"
      7 #include "llvm/IR/DataLayout.h"
      8 #include "llvm/IR/DerivedTypes.h"
      9 #include "llvm/IR/IRBuilder.h"
     10 #include "llvm/IR/LLVMContext.h"
     11 #include "llvm/IR/Module.h"
     12 #include "llvm/IRReader/IRReader.h"
     13 #include "llvm/PassManager.h"
     14 #include "llvm/Support/CommandLine.h"
     15 #include "llvm/Support/raw_ostream.h"
     16 #include "llvm/Support/SourceMgr.h"
     17 #include "llvm/Support/TargetSelect.h"
     18 #include "llvm/Transforms/Scalar.h"
     19 #include <cstdio>
     20 #include <map>
     21 #include <string>
     22 #include <vector>
     23 
     24 using namespace llvm;
     25 
     26 //===----------------------------------------------------------------------===//
     27 // Command-line options
     28 //===----------------------------------------------------------------------===//
     29 
     30 namespace {
     31   cl::opt<std::string>
     32   InputIR("input-IR",
     33               cl::desc("Specify the name of an IR file to load for function definitions"),
     34               cl::value_desc("input IR file name"));
     35 } // namespace
     36 
     37 //===----------------------------------------------------------------------===//
     38 // Lexer
     39 //===----------------------------------------------------------------------===//
     40 
     41 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     42 // of these for known things.
     43 enum Token {
     44   tok_eof = -1,
     45 
     46   // commands
     47   tok_def = -2, tok_extern = -3,
     48 
     49   // primary
     50   tok_identifier = -4, tok_number = -5,
     51 
     52   // control
     53   tok_if = -6, tok_then = -7, tok_else = -8,
     54   tok_for = -9, tok_in = -10,
     55 
     56   // operators
     57   tok_binary = -11, tok_unary = -12,
     58 
     59   // var definition
     60   tok_var = -13
     61 };
     62 
     63 static std::string IdentifierStr;  // Filled in if tok_identifier
     64 static double NumVal;              // Filled in if tok_number
     65 
     66 /// gettok - Return the next token from standard input.
     67 static int gettok() {
     68   static int LastChar = ' ';
     69 
     70   // Skip any whitespace.
     71   while (isspace(LastChar))
     72     LastChar = getchar();
     73 
     74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
     75     IdentifierStr = LastChar;
     76     while (isalnum((LastChar = getchar())))
     77       IdentifierStr += LastChar;
     78 
     79     if (IdentifierStr == "def") return tok_def;
     80     if (IdentifierStr == "extern") return tok_extern;
     81     if (IdentifierStr == "if") return tok_if;
     82     if (IdentifierStr == "then") return tok_then;
     83     if (IdentifierStr == "else") return tok_else;
     84     if (IdentifierStr == "for") return tok_for;
     85     if (IdentifierStr == "in") return tok_in;
     86     if (IdentifierStr == "binary") return tok_binary;
     87     if (IdentifierStr == "unary") return tok_unary;
     88     if (IdentifierStr == "var") return tok_var;
     89     return tok_identifier;
     90   }
     91 
     92   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
     93     std::string NumStr;
     94     do {
     95       NumStr += LastChar;
     96       LastChar = getchar();
     97     } while (isdigit(LastChar) || LastChar == '.');
     98 
     99     NumVal = strtod(NumStr.c_str(), 0);
    100     return tok_number;
    101   }
    102 
    103   if (LastChar == '#') {
    104     // Comment until end of line.
    105     do LastChar = getchar();
    106     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
    107 
    108     if (LastChar != EOF)
    109       return gettok();
    110   }
    111 
    112   // Check for end of file.  Don't eat the EOF.
    113   if (LastChar == EOF)
    114     return tok_eof;
    115 
    116   // Otherwise, just return the character as its ascii value.
    117   int ThisChar = LastChar;
    118   LastChar = getchar();
    119   return ThisChar;
    120 }
    121 
    122 //===----------------------------------------------------------------------===//
    123 // Abstract Syntax Tree (aka Parse Tree)
    124 //===----------------------------------------------------------------------===//
    125 
    126 /// ExprAST - Base class for all expression nodes.
    127 class ExprAST {
    128 public:
    129   virtual ~ExprAST() {}
    130   virtual Value *Codegen() = 0;
    131 };
    132 
    133 /// NumberExprAST - Expression class for numeric literals like "1.0".
    134 class NumberExprAST : public ExprAST {
    135   double Val;
    136 public:
    137   NumberExprAST(double val) : Val(val) {}
    138   virtual Value *Codegen();
    139 };
    140 
    141 /// VariableExprAST - Expression class for referencing a variable, like "a".
    142 class VariableExprAST : public ExprAST {
    143   std::string Name;
    144 public:
    145   VariableExprAST(const std::string &name) : Name(name) {}
    146   const std::string &getName() const { return Name; }
    147   virtual Value *Codegen();
    148 };
    149 
    150 /// UnaryExprAST - Expression class for a unary operator.
    151 class UnaryExprAST : public ExprAST {
    152   char Opcode;
    153   ExprAST *Operand;
    154 public:
    155   UnaryExprAST(char opcode, ExprAST *operand)
    156     : Opcode(opcode), Operand(operand) {}
    157   virtual Value *Codegen();
    158 };
    159 
    160 /// BinaryExprAST - Expression class for a binary operator.
    161 class BinaryExprAST : public ExprAST {
    162   char Op;
    163   ExprAST *LHS, *RHS;
    164 public:
    165   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    166     : Op(op), LHS(lhs), RHS(rhs) {}
    167   virtual Value *Codegen();
    168 };
    169 
    170 /// CallExprAST - Expression class for function calls.
    171 class CallExprAST : public ExprAST {
    172   std::string Callee;
    173   std::vector<ExprAST*> Args;
    174 public:
    175   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    176     : Callee(callee), Args(args) {}
    177   virtual Value *Codegen();
    178 };
    179 
    180 /// IfExprAST - Expression class for if/then/else.
    181 class IfExprAST : public ExprAST {
    182   ExprAST *Cond, *Then, *Else;
    183 public:
    184   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    185   : Cond(cond), Then(then), Else(_else) {}
    186   virtual Value *Codegen();
    187 };
    188 
    189 /// ForExprAST - Expression class for for/in.
    190 class ForExprAST : public ExprAST {
    191   std::string VarName;
    192   ExprAST *Start, *End, *Step, *Body;
    193 public:
    194   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    195              ExprAST *step, ExprAST *body)
    196     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    197   virtual Value *Codegen();
    198 };
    199 
    200 /// VarExprAST - Expression class for var/in
    201 class VarExprAST : public ExprAST {
    202   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    203   ExprAST *Body;
    204 public:
    205   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    206              ExprAST *body)
    207   : VarNames(varnames), Body(body) {}
    208 
    209   virtual Value *Codegen();
    210 };
    211 
    212 /// PrototypeAST - This class represents the "prototype" for a function,
    213 /// which captures its argument names as well as if it is an operator.
    214 class PrototypeAST {
    215   std::string Name;
    216   std::vector<std::string> Args;
    217   bool isOperator;
    218   unsigned Precedence;  // Precedence if a binary op.
    219 public:
    220   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    221                bool isoperator = false, unsigned prec = 0)
    222   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    223 
    224   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    225   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    226 
    227   char getOperatorName() const {
    228     assert(isUnaryOp() || isBinaryOp());
    229     return Name[Name.size()-1];
    230   }
    231 
    232   unsigned getBinaryPrecedence() const { return Precedence; }
    233 
    234   Function *Codegen();
    235 
    236   void CreateArgumentAllocas(Function *F);
    237 };
    238 
    239 /// FunctionAST - This class represents a function definition itself.
    240 class FunctionAST {
    241   PrototypeAST *Proto;
    242   ExprAST *Body;
    243 public:
    244   FunctionAST(PrototypeAST *proto, ExprAST *body)
    245     : Proto(proto), Body(body) {}
    246 
    247   Function *Codegen();
    248 };
    249 
    250 //===----------------------------------------------------------------------===//
    251 // Parser
    252 //===----------------------------------------------------------------------===//
    253 
    254 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    255 /// token the parser is looking at.  getNextToken reads another token from the
    256 /// lexer and updates CurTok with its results.
    257 static int CurTok;
    258 static int getNextToken() {
    259   return CurTok = gettok();
    260 }
    261 
    262 /// BinopPrecedence - This holds the precedence for each binary operator that is
    263 /// defined.
    264 static std::map<char, int> BinopPrecedence;
    265 
    266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    267 static int GetTokPrecedence() {
    268   if (!isascii(CurTok))
    269     return -1;
    270 
    271   // Make sure it's a declared binop.
    272   int TokPrec = BinopPrecedence[CurTok];
    273   if (TokPrec <= 0) return -1;
    274   return TokPrec;
    275 }
    276 
    277 /// Error* - These are little helper functions for error handling.
    278 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    279 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    280 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    281 
    282 static ExprAST *ParseExpression();
    283 
    284 /// identifierexpr
    285 ///   ::= identifier
    286 ///   ::= identifier '(' expression* ')'
    287 static ExprAST *ParseIdentifierExpr() {
    288   std::string IdName = IdentifierStr;
    289 
    290   getNextToken();  // eat identifier.
    291 
    292   if (CurTok != '(') // Simple variable ref.
    293     return new VariableExprAST(IdName);
    294 
    295   // Call.
    296   getNextToken();  // eat (
    297   std::vector<ExprAST*> Args;
    298   if (CurTok != ')') {
    299     while (1) {
    300       ExprAST *Arg = ParseExpression();
    301       if (!Arg) return 0;
    302       Args.push_back(Arg);
    303 
    304       if (CurTok == ')') break;
    305 
    306       if (CurTok != ',')
    307         return Error("Expected ')' or ',' in argument list");
    308       getNextToken();
    309     }
    310   }
    311 
    312   // Eat the ')'.
    313   getNextToken();
    314 
    315   return new CallExprAST(IdName, Args);
    316 }
    317 
    318 /// numberexpr ::= number
    319 static ExprAST *ParseNumberExpr() {
    320   ExprAST *Result = new NumberExprAST(NumVal);
    321   getNextToken(); // consume the number
    322   return Result;
    323 }
    324 
    325 /// parenexpr ::= '(' expression ')'
    326 static ExprAST *ParseParenExpr() {
    327   getNextToken();  // eat (.
    328   ExprAST *V = ParseExpression();
    329   if (!V) return 0;
    330 
    331   if (CurTok != ')')
    332     return Error("expected ')'");
    333   getNextToken();  // eat ).
    334   return V;
    335 }
    336 
    337 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    338 static ExprAST *ParseIfExpr() {
    339   getNextToken();  // eat the if.
    340 
    341   // condition.
    342   ExprAST *Cond = ParseExpression();
    343   if (!Cond) return 0;
    344 
    345   if (CurTok != tok_then)
    346     return Error("expected then");
    347   getNextToken();  // eat the then
    348 
    349   ExprAST *Then = ParseExpression();
    350   if (Then == 0) return 0;
    351 
    352   if (CurTok != tok_else)
    353     return Error("expected else");
    354 
    355   getNextToken();
    356 
    357   ExprAST *Else = ParseExpression();
    358   if (!Else) return 0;
    359 
    360   return new IfExprAST(Cond, Then, Else);
    361 }
    362 
    363 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    364 static ExprAST *ParseForExpr() {
    365   getNextToken();  // eat the for.
    366 
    367   if (CurTok != tok_identifier)
    368     return Error("expected identifier after for");
    369 
    370   std::string IdName = IdentifierStr;
    371   getNextToken();  // eat identifier.
    372 
    373   if (CurTok != '=')
    374     return Error("expected '=' after for");
    375   getNextToken();  // eat '='.
    376 
    377 
    378   ExprAST *Start = ParseExpression();
    379   if (Start == 0) return 0;
    380   if (CurTok != ',')
    381     return Error("expected ',' after for start value");
    382   getNextToken();
    383 
    384   ExprAST *End = ParseExpression();
    385   if (End == 0) return 0;
    386 
    387   // The step value is optional.
    388   ExprAST *Step = 0;
    389   if (CurTok == ',') {
    390     getNextToken();
    391     Step = ParseExpression();
    392     if (Step == 0) return 0;
    393   }
    394 
    395   if (CurTok != tok_in)
    396     return Error("expected 'in' after for");
    397   getNextToken();  // eat 'in'.
    398 
    399   ExprAST *Body = ParseExpression();
    400   if (Body == 0) return 0;
    401 
    402   return new ForExprAST(IdName, Start, End, Step, Body);
    403 }
    404 
    405 /// varexpr ::= 'var' identifier ('=' expression)?
    406 //                    (',' identifier ('=' expression)?)* 'in' expression
    407 static ExprAST *ParseVarExpr() {
    408   getNextToken();  // eat the var.
    409 
    410   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    411 
    412   // At least one variable name is required.
    413   if (CurTok != tok_identifier)
    414     return Error("expected identifier after var");
    415 
    416   while (1) {
    417     std::string Name = IdentifierStr;
    418     getNextToken();  // eat identifier.
    419 
    420     // Read the optional initializer.
    421     ExprAST *Init = 0;
    422     if (CurTok == '=') {
    423       getNextToken(); // eat the '='.
    424 
    425       Init = ParseExpression();
    426       if (Init == 0) return 0;
    427     }
    428 
    429     VarNames.push_back(std::make_pair(Name, Init));
    430 
    431     // End of var list, exit loop.
    432     if (CurTok != ',') break;
    433     getNextToken(); // eat the ','.
    434 
    435     if (CurTok != tok_identifier)
    436       return Error("expected identifier list after var");
    437   }
    438 
    439   // At this point, we have to have 'in'.
    440   if (CurTok != tok_in)
    441     return Error("expected 'in' keyword after 'var'");
    442   getNextToken();  // eat 'in'.
    443 
    444   ExprAST *Body = ParseExpression();
    445   if (Body == 0) return 0;
    446 
    447   return new VarExprAST(VarNames, Body);
    448 }
    449 
    450 /// primary
    451 ///   ::= identifierexpr
    452 ///   ::= numberexpr
    453 ///   ::= parenexpr
    454 ///   ::= ifexpr
    455 ///   ::= forexpr
    456 ///   ::= varexpr
    457 static ExprAST *ParsePrimary() {
    458   switch (CurTok) {
    459   default: return Error("unknown token when expecting an expression");
    460   case tok_identifier: return ParseIdentifierExpr();
    461   case tok_number:     return ParseNumberExpr();
    462   case '(':            return ParseParenExpr();
    463   case tok_if:         return ParseIfExpr();
    464   case tok_for:        return ParseForExpr();
    465   case tok_var:        return ParseVarExpr();
    466   }
    467 }
    468 
    469 /// unary
    470 ///   ::= primary
    471 ///   ::= '!' unary
    472 static ExprAST *ParseUnary() {
    473   // If the current token is not an operator, it must be a primary expr.
    474   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    475     return ParsePrimary();
    476 
    477   // If this is a unary operator, read it.
    478   int Opc = CurTok;
    479   getNextToken();
    480   if (ExprAST *Operand = ParseUnary())
    481     return new UnaryExprAST(Opc, Operand);
    482   return 0;
    483 }
    484 
    485 /// binoprhs
    486 ///   ::= ('+' unary)*
    487 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    488   // If this is a binop, find its precedence.
    489   while (1) {
    490     int TokPrec = GetTokPrecedence();
    491 
    492     // If this is a binop that binds at least as tightly as the current binop,
    493     // consume it, otherwise we are done.
    494     if (TokPrec < ExprPrec)
    495       return LHS;
    496 
    497     // Okay, we know this is a binop.
    498     int BinOp = CurTok;
    499     getNextToken();  // eat binop
    500 
    501     // Parse the unary expression after the binary operator.
    502     ExprAST *RHS = ParseUnary();
    503     if (!RHS) return 0;
    504 
    505     // If BinOp binds less tightly with RHS than the operator after RHS, let
    506     // the pending operator take RHS as its LHS.
    507     int NextPrec = GetTokPrecedence();
    508     if (TokPrec < NextPrec) {
    509       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    510       if (RHS == 0) return 0;
    511     }
    512 
    513     // Merge LHS/RHS.
    514     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    515   }
    516 }
    517 
    518 /// expression
    519 ///   ::= unary binoprhs
    520 ///
    521 static ExprAST *ParseExpression() {
    522   ExprAST *LHS = ParseUnary();
    523   if (!LHS) return 0;
    524 
    525   return ParseBinOpRHS(0, LHS);
    526 }
    527 
    528 /// prototype
    529 ///   ::= id '(' id* ')'
    530 ///   ::= binary LETTER number? (id, id)
    531 ///   ::= unary LETTER (id)
    532 static PrototypeAST *ParsePrototype() {
    533   std::string FnName;
    534 
    535   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    536   unsigned BinaryPrecedence = 30;
    537 
    538   switch (CurTok) {
    539   default:
    540     return ErrorP("Expected function name in prototype");
    541   case tok_identifier:
    542     FnName = IdentifierStr;
    543     Kind = 0;
    544     getNextToken();
    545     break;
    546   case tok_unary:
    547     getNextToken();
    548     if (!isascii(CurTok))
    549       return ErrorP("Expected unary operator");
    550     FnName = "unary";
    551     FnName += (char)CurTok;
    552     Kind = 1;
    553     getNextToken();
    554     break;
    555   case tok_binary:
    556     getNextToken();
    557     if (!isascii(CurTok))
    558       return ErrorP("Expected binary operator");
    559     FnName = "binary";
    560     FnName += (char)CurTok;
    561     Kind = 2;
    562     getNextToken();
    563 
    564     // Read the precedence if present.
    565     if (CurTok == tok_number) {
    566       if (NumVal < 1 || NumVal > 100)
    567         return ErrorP("Invalid precedecnce: must be 1..100");
    568       BinaryPrecedence = (unsigned)NumVal;
    569       getNextToken();
    570     }
    571     break;
    572   }
    573 
    574   if (CurTok != '(')
    575     return ErrorP("Expected '(' in prototype");
    576 
    577   std::vector<std::string> ArgNames;
    578   while (getNextToken() == tok_identifier)
    579     ArgNames.push_back(IdentifierStr);
    580   if (CurTok != ')')
    581     return ErrorP("Expected ')' in prototype");
    582 
    583   // success.
    584   getNextToken();  // eat ')'.
    585 
    586   // Verify right number of names for operator.
    587   if (Kind && ArgNames.size() != Kind)
    588     return ErrorP("Invalid number of operands for operator");
    589 
    590   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    591 }
    592 
    593 /// definition ::= 'def' prototype expression
    594 static FunctionAST *ParseDefinition() {
    595   getNextToken();  // eat def.
    596   PrototypeAST *Proto = ParsePrototype();
    597   if (Proto == 0) return 0;
    598 
    599   if (ExprAST *E = ParseExpression())
    600     return new FunctionAST(Proto, E);
    601   return 0;
    602 }
    603 
    604 /// toplevelexpr ::= expression
    605 static FunctionAST *ParseTopLevelExpr() {
    606   if (ExprAST *E = ParseExpression()) {
    607     // Make an anonymous proto.
    608     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    609     return new FunctionAST(Proto, E);
    610   }
    611   return 0;
    612 }
    613 
    614 /// external ::= 'extern' prototype
    615 static PrototypeAST *ParseExtern() {
    616   getNextToken();  // eat extern.
    617   return ParsePrototype();
    618 }
    619 
    620 //===----------------------------------------------------------------------===//
    621 // Code Generation
    622 //===----------------------------------------------------------------------===//
    623 
    624 static Module *TheModule;
    625 static FunctionPassManager *TheFPM;
    626 static IRBuilder<> Builder(getGlobalContext());
    627 static std::map<std::string, AllocaInst*> NamedValues;
    628 
    629 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    630 
    631 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
    632 /// the function.  This is used for mutable variables etc.
    633 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
    634                                           const std::string &VarName) {
    635   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
    636                  TheFunction->getEntryBlock().begin());
    637   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
    638                            VarName.c_str());
    639 }
    640 
    641 Value *NumberExprAST::Codegen() {
    642   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    643 }
    644 
    645 Value *VariableExprAST::Codegen() {
    646   // Look this variable up in the function.
    647   Value *V = NamedValues[Name];
    648   if (V == 0) return ErrorV("Unknown variable name");
    649 
    650   // Load the value.
    651   return Builder.CreateLoad(V, Name.c_str());
    652 }
    653 
    654 Value *UnaryExprAST::Codegen() {
    655   Value *OperandV = Operand->Codegen();
    656   if (OperandV == 0) return 0;
    657 #ifdef USE_MCJIT
    658   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
    659 #else
    660   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
    661 #endif
    662   if (F == 0)
    663     return ErrorV("Unknown unary operator");
    664 
    665   return Builder.CreateCall(F, OperandV, "unop");
    666 }
    667 
    668 Value *BinaryExprAST::Codegen() {
    669   // Special case '=' because we don't want to emit the LHS as an expression.
    670   if (Op == '=') {
    671     // Assignment requires the LHS to be an identifier.
    672     // For now, I'm building without RTTI because LLVM builds that way by
    673     // default and so we need to build that way to use the command line supprt.
    674     // If you build LLVM with RTTI this can be changed back to a dynamic_cast.
    675     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
    676     if (!LHSE)
    677       return ErrorV("destination of '=' must be a variable");
    678     // Codegen the RHS.
    679     Value *Val = RHS->Codegen();
    680     if (Val == 0) return 0;
    681 
    682     // Look up the name.
    683     Value *Variable = NamedValues[LHSE->getName()];
    684     if (Variable == 0) return ErrorV("Unknown variable name");
    685 
    686     Builder.CreateStore(Val, Variable);
    687     return Val;
    688   }
    689 
    690   Value *L = LHS->Codegen();
    691   Value *R = RHS->Codegen();
    692   if (L == 0 || R == 0) return 0;
    693 
    694   switch (Op) {
    695   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    696   case '-': return Builder.CreateFSub(L, R, "subtmp");
    697   case '*': return Builder.CreateFMul(L, R, "multmp");
    698   case '/': return Builder.CreateFDiv(L, R, "divtmp");
    699   case '<':
    700     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    701     // Convert bool 0/1 to double 0.0 or 1.0
    702     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    703                                 "booltmp");
    704   default: break;
    705   }
    706 
    707   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
    708   // a call to it.
    709   Function *F = TheModule->getFunction(std::string("binary")+Op);
    710   assert(F && "binary operator not found!");
    711 
    712   Value *Ops[] = { L, R };
    713   return Builder.CreateCall(F, Ops, "binop");
    714 }
    715 
    716 Value *CallExprAST::Codegen() {
    717   // Look up the name in the global module table.
    718   Function *CalleeF = TheModule->getFunction(Callee);
    719   if (CalleeF == 0) {
    720     char error_str[64];
    721     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
    722     return ErrorV(error_str);
    723   }
    724 
    725   // If argument mismatch error.
    726   if (CalleeF->arg_size() != Args.size())
    727     return ErrorV("Incorrect # arguments passed");
    728 
    729   std::vector<Value*> ArgsV;
    730   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    731     ArgsV.push_back(Args[i]->Codegen());
    732     if (ArgsV.back() == 0) return 0;
    733   }
    734 
    735   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    736 }
    737 
    738 Value *IfExprAST::Codegen() {
    739   Value *CondV = Cond->Codegen();
    740   if (CondV == 0) return 0;
    741 
    742   // Convert condition to a bool by comparing equal to 0.0.
    743   CondV = Builder.CreateFCmpONE(CondV,
    744                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    745                                 "ifcond");
    746 
    747   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    748 
    749   // Create blocks for the then and else cases.  Insert the 'then' block at the
    750   // end of the function.
    751   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
    752   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
    753   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
    754 
    755   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    756 
    757   // Emit then value.
    758   Builder.SetInsertPoint(ThenBB);
    759 
    760   Value *ThenV = Then->Codegen();
    761   if (ThenV == 0) return 0;
    762 
    763   Builder.CreateBr(MergeBB);
    764   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    765   ThenBB = Builder.GetInsertBlock();
    766 
    767   // Emit else block.
    768   TheFunction->getBasicBlockList().push_back(ElseBB);
    769   Builder.SetInsertPoint(ElseBB);
    770 
    771   Value *ElseV = Else->Codegen();
    772   if (ElseV == 0) return 0;
    773 
    774   Builder.CreateBr(MergeBB);
    775   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    776   ElseBB = Builder.GetInsertBlock();
    777 
    778   // Emit merge block.
    779   TheFunction->getBasicBlockList().push_back(MergeBB);
    780   Builder.SetInsertPoint(MergeBB);
    781   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
    782                                   "iftmp");
    783 
    784   PN->addIncoming(ThenV, ThenBB);
    785   PN->addIncoming(ElseV, ElseBB);
    786   return PN;
    787 }
    788 
    789 Value *ForExprAST::Codegen() {
    790   // Output this as:
    791   //   var = alloca double
    792   //   ...
    793   //   start = startexpr
    794   //   store start -> var
    795   //   goto loop
    796   // loop:
    797   //   ...
    798   //   bodyexpr
    799   //   ...
    800   // loopend:
    801   //   step = stepexpr
    802   //   endcond = endexpr
    803   //
    804   //   curvar = load var
    805   //   nextvar = curvar + step
    806   //   store nextvar -> var
    807   //   br endcond, loop, endloop
    808   // outloop:
    809 
    810   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    811 
    812   // Create an alloca for the variable in the entry block.
    813   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    814 
    815   // Emit the start code first, without 'variable' in scope.
    816   Value *StartVal = Start->Codegen();
    817   if (StartVal == 0) return 0;
    818 
    819   // Store the value into the alloca.
    820   Builder.CreateStore(StartVal, Alloca);
    821 
    822   // Make the new basic block for the loop header, inserting after current
    823   // block.
    824   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
    825 
    826   // Insert an explicit fall through from the current block to the LoopBB.
    827   Builder.CreateBr(LoopBB);
    828 
    829   // Start insertion in LoopBB.
    830   Builder.SetInsertPoint(LoopBB);
    831 
    832   // Within the loop, the variable is defined equal to the PHI node.  If it
    833   // shadows an existing variable, we have to restore it, so save it now.
    834   AllocaInst *OldVal = NamedValues[VarName];
    835   NamedValues[VarName] = Alloca;
    836 
    837   // Emit the body of the loop.  This, like any other expr, can change the
    838   // current BB.  Note that we ignore the value computed by the body, but don't
    839   // allow an error.
    840   if (Body->Codegen() == 0)
    841     return 0;
    842 
    843   // Emit the step value.
    844   Value *StepVal;
    845   if (Step) {
    846     StepVal = Step->Codegen();
    847     if (StepVal == 0) return 0;
    848   } else {
    849     // If not specified, use 1.0.
    850     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
    851   }
    852 
    853   // Compute the end condition.
    854   Value *EndCond = End->Codegen();
    855   if (EndCond == 0) return EndCond;
    856 
    857   // Reload, increment, and restore the alloca.  This handles the case where
    858   // the body of the loop mutates the variable.
    859   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
    860   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
    861   Builder.CreateStore(NextVar, Alloca);
    862 
    863   // Convert condition to a bool by comparing equal to 0.0.
    864   EndCond = Builder.CreateFCmpONE(EndCond,
    865                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    866                                   "loopcond");
    867 
    868   // Create the "after loop" block and insert it.
    869   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
    870 
    871   // Insert the conditional branch into the end of LoopEndBB.
    872   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
    873 
    874   // Any new code will be inserted in AfterBB.
    875   Builder.SetInsertPoint(AfterBB);
    876 
    877   // Restore the unshadowed variable.
    878   if (OldVal)
    879     NamedValues[VarName] = OldVal;
    880   else
    881     NamedValues.erase(VarName);
    882 
    883 
    884   // for expr always returns 0.0.
    885   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
    886 }
    887 
    888 Value *VarExprAST::Codegen() {
    889   std::vector<AllocaInst *> OldBindings;
    890 
    891   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    892 
    893   // Register all variables and emit their initializer.
    894   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
    895     const std::string &VarName = VarNames[i].first;
    896     ExprAST *Init = VarNames[i].second;
    897 
    898     // Emit the initializer before adding the variable to scope, this prevents
    899     // the initializer from referencing the variable itself, and permits stuff
    900     // like this:
    901     //  var a = 1 in
    902     //    var a = a in ...   # refers to outer 'a'.
    903     Value *InitVal;
    904     if (Init) {
    905       InitVal = Init->Codegen();
    906       if (InitVal == 0) return 0;
    907     } else { // If not specified, use 0.0.
    908       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
    909     }
    910 
    911     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    912     Builder.CreateStore(InitVal, Alloca);
    913 
    914     // Remember the old variable binding so that we can restore the binding when
    915     // we unrecurse.
    916     OldBindings.push_back(NamedValues[VarName]);
    917 
    918     // Remember this binding.
    919     NamedValues[VarName] = Alloca;
    920   }
    921 
    922   // Codegen the body, now that all vars are in scope.
    923   Value *BodyVal = Body->Codegen();
    924   if (BodyVal == 0) return 0;
    925 
    926   // Pop all our variables from scope.
    927   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
    928     NamedValues[VarNames[i].first] = OldBindings[i];
    929 
    930   // Return the body computation.
    931   return BodyVal;
    932 }
    933 
    934 Function *PrototypeAST::Codegen() {
    935   // Make the function type:  double(double,double) etc.
    936   std::vector<Type*> Doubles(Args.size(),
    937                              Type::getDoubleTy(getGlobalContext()));
    938   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
    939                                        Doubles, false);
    940 
    941   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    942   // If F conflicted, there was already something named 'Name'.  If it has a
    943   // body, don't allow redefinition or reextern.
    944   if (F->getName() != Name) {
    945     // Delete the one we just made and get the existing one.
    946     F->eraseFromParent();
    947     F = TheModule->getFunction(Name);
    948     // If F already has a body, reject this.
    949     if (!F->empty()) {
    950       ErrorF("redefinition of function");
    951       return 0;
    952     }
    953     // If F took a different number of args, reject.
    954     if (F->arg_size() != Args.size()) {
    955       ErrorF("redefinition of function with different # args");
    956       return 0;
    957     }
    958   }
    959 
    960   // Set names for all arguments.
    961   unsigned Idx = 0;
    962   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
    963        ++AI, ++Idx)
    964     AI->setName(Args[Idx]);
    965 
    966   return F;
    967 }
    968 
    969 /// CreateArgumentAllocas - Create an alloca for each argument and register the
    970 /// argument in the symbol table so that references to it will succeed.
    971 void PrototypeAST::CreateArgumentAllocas(Function *F) {
    972   Function::arg_iterator AI = F->arg_begin();
    973   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
    974     // Create an alloca for this variable.
    975     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
    976 
    977     // Store the initial value into the alloca.
    978     Builder.CreateStore(AI, Alloca);
    979 
    980     // Add arguments to variable symbol table.
    981     NamedValues[Args[Idx]] = Alloca;
    982   }
    983 }
    984 
    985 Function *FunctionAST::Codegen() {
    986   NamedValues.clear();
    987 
    988   Function *TheFunction = Proto->Codegen();
    989   if (TheFunction == 0)
    990     return 0;
    991 
    992   // If this is an operator, install it.
    993   if (Proto->isBinaryOp())
    994     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
    995 
    996   // Create a new basic block to start insertion into.
    997   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
    998   Builder.SetInsertPoint(BB);
    999 
   1000   // Add all arguments to the symbol table and create their allocas.
   1001   Proto->CreateArgumentAllocas(TheFunction);
   1002 
   1003   if (Value *RetVal = Body->Codegen()) {
   1004     // Finish off the function.
   1005     Builder.CreateRet(RetVal);
   1006 
   1007     // Validate the generated code, checking for consistency.
   1008     verifyFunction(*TheFunction);
   1009 
   1010     // Optimize the function.
   1011     TheFPM->run(*TheFunction);
   1012 
   1013     return TheFunction;
   1014   }
   1015 
   1016   // Error reading body, remove function.
   1017   TheFunction->eraseFromParent();
   1018 
   1019   if (Proto->isBinaryOp())
   1020     BinopPrecedence.erase(Proto->getOperatorName());
   1021   return 0;
   1022 }
   1023 
   1024 //===----------------------------------------------------------------------===//
   1025 // Top-Level parsing and JIT Driver
   1026 //===----------------------------------------------------------------------===//
   1027 
   1028 static ExecutionEngine *TheExecutionEngine;
   1029 
   1030 static void HandleDefinition() {
   1031   if (FunctionAST *F = ParseDefinition()) {
   1032     if (Function *LF = F->Codegen()) {
   1033 #ifndef MINIMAL_STDERR_OUTPUT
   1034       fprintf(stderr, "Read function definition:");
   1035       LF->dump();
   1036 #endif
   1037     }
   1038   } else {
   1039     // Skip token for error recovery.
   1040     getNextToken();
   1041   }
   1042 }
   1043 
   1044 static void HandleExtern() {
   1045   if (PrototypeAST *P = ParseExtern()) {
   1046     if (Function *F = P->Codegen()) {
   1047 #ifndef MINIMAL_STDERR_OUTPUT
   1048       fprintf(stderr, "Read extern: ");
   1049       F->dump();
   1050 #endif
   1051     }
   1052   } else {
   1053     // Skip token for error recovery.
   1054     getNextToken();
   1055   }
   1056 }
   1057 
   1058 static void HandleTopLevelExpression() {
   1059   // Evaluate a top-level expression into an anonymous function.
   1060   if (FunctionAST *F = ParseTopLevelExpr()) {
   1061     if (Function *LF = F->Codegen()) {
   1062       // JIT the function, returning a function pointer.
   1063       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
   1064       // Cast it to the right type (takes no arguments, returns a double) so we
   1065       // can call it as a native function.
   1066       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1067 #ifdef MINIMAL_STDERR_OUTPUT
   1068       FP();
   1069 #else
   1070       fprintf(stderr, "Evaluated to %f\n", FP());
   1071 #endif
   1072     }
   1073   } else {
   1074     // Skip token for error recovery.
   1075     getNextToken();
   1076   }
   1077 }
   1078 
   1079 /// top ::= definition | external | expression | ';'
   1080 static void MainLoop() {
   1081   while (1) {
   1082 #ifndef MINIMAL_STDERR_OUTPUT
   1083     fprintf(stderr, "ready> ");
   1084 #endif
   1085     switch (CurTok) {
   1086     case tok_eof:    return;
   1087     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1088     case tok_def:    HandleDefinition(); break;
   1089     case tok_extern: HandleExtern(); break;
   1090     default:         HandleTopLevelExpression(); break;
   1091     }
   1092   }
   1093 }
   1094 
   1095 //===----------------------------------------------------------------------===//
   1096 // "Library" functions that can be "extern'd" from user code.
   1097 //===----------------------------------------------------------------------===//
   1098 
   1099 /// putchard - putchar that takes a double and returns 0.
   1100 extern "C"
   1101 double putchard(double X) {
   1102   putchar((char)X);
   1103   return 0;
   1104 }
   1105 
   1106 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1107 extern "C"
   1108 double printd(double X) {
   1109   printf("%f", X);
   1110   return 0;
   1111 }
   1112 
   1113 extern "C"
   1114 double printlf() {
   1115   printf("\n");
   1116   return 0;
   1117 }
   1118 
   1119 //===----------------------------------------------------------------------===//
   1120 // Command line input file handlers
   1121 //===----------------------------------------------------------------------===//
   1122 
   1123 Module* parseInputIR(std::string InputFile) {
   1124   SMDiagnostic Err;
   1125   Module *M = ParseIRFile(InputFile, Err, getGlobalContext());
   1126   if (!M) {
   1127     Err.print("IR parsing failed: ", errs());
   1128     return NULL;
   1129   }
   1130 
   1131   return M;
   1132 }
   1133 
   1134 //===----------------------------------------------------------------------===//
   1135 // Main driver code.
   1136 //===----------------------------------------------------------------------===//
   1137 
   1138 int main(int argc, char **argv) {
   1139   InitializeNativeTarget();
   1140   LLVMContext &Context = getGlobalContext();
   1141 
   1142   cl::ParseCommandLineOptions(argc, argv,
   1143                               "Kaleidoscope example program\n");
   1144 
   1145   // Install standard binary operators.
   1146   // 1 is lowest precedence.
   1147   BinopPrecedence['='] = 2;
   1148   BinopPrecedence['<'] = 10;
   1149   BinopPrecedence['+'] = 20;
   1150   BinopPrecedence['-'] = 20;
   1151   BinopPrecedence['/'] = 40;
   1152   BinopPrecedence['*'] = 40;  // highest.
   1153 
   1154   // Make the module, which holds all the code.
   1155   if (!InputIR.empty()) {
   1156     TheModule = parseInputIR(InputIR);
   1157   } else {
   1158     TheModule = new Module("my cool jit", Context);
   1159   }
   1160 
   1161   // Create the JIT.  This takes ownership of the module.
   1162   std::string ErrStr;
   1163   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
   1164   if (!TheExecutionEngine) {
   1165     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1166     exit(1);
   1167   }
   1168 
   1169   FunctionPassManager OurFPM(TheModule);
   1170 
   1171   // Set up the optimizer pipeline.  Start with registering info about how the
   1172   // target lays out data structures.
   1173   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
   1174   // Provide basic AliasAnalysis support for GVN.
   1175   OurFPM.add(createBasicAliasAnalysisPass());
   1176   // Promote allocas to registers.
   1177   OurFPM.add(createPromoteMemoryToRegisterPass());
   1178   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1179   OurFPM.add(createInstructionCombiningPass());
   1180   // Reassociate expressions.
   1181   OurFPM.add(createReassociatePass());
   1182   // Eliminate Common SubExpressions.
   1183   OurFPM.add(createGVNPass());
   1184   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1185   OurFPM.add(createCFGSimplificationPass());
   1186 
   1187   OurFPM.doInitialization();
   1188 
   1189   // Set the global so the code gen can use this.
   1190   TheFPM = &OurFPM;
   1191 
   1192   // Prime the first token.
   1193 #ifndef MINIMAL_STDERR_OUTPUT
   1194   fprintf(stderr, "ready> ");
   1195 #endif
   1196   getNextToken();
   1197 
   1198   // Run the main "interpreter loop" now.
   1199   MainLoop();
   1200 
   1201   // Print out all of the generated code.
   1202   TheFPM = 0;
   1203 #if !defined(MINIMAL_STDERR_OUTPUT) || defined(DUMP_FINAL_MODULE)
   1204   TheModule->dump();
   1205 #endif
   1206   return 0;
   1207 }
   1208