1 #define MINIMAL_STDERR_OUTPUT 2 3 #include "llvm/Analysis/Passes.h" 4 #include "llvm/Analysis/Verifier.h" 5 #include "llvm/ExecutionEngine/ExecutionEngine.h" 6 #include "llvm/ExecutionEngine/MCJIT.h" 7 #include "llvm/ExecutionEngine/ObjectCache.h" 8 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 9 #include "llvm/IR/DataLayout.h" 10 #include "llvm/IR/DerivedTypes.h" 11 #include "llvm/IR/IRBuilder.h" 12 #include "llvm/IR/LLVMContext.h" 13 #include "llvm/IR/Module.h" 14 #include "llvm/IRReader/IRReader.h" 15 #include "llvm/PassManager.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/FileSystem.h" 18 #include "llvm/Support/Path.h" 19 #include "llvm/Support/raw_ostream.h" 20 #include "llvm/Support/SourceMgr.h" 21 #include "llvm/Support/TargetSelect.h" 22 #include "llvm/Transforms/Scalar.h" 23 #include <cstdio> 24 #include <map> 25 #include <string> 26 #include <vector> 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // Command-line options 31 //===----------------------------------------------------------------------===// 32 33 cl::opt<std::string> 34 InputIR("input-IR", 35 cl::desc("Specify the name of an IR file to load for function definitions"), 36 cl::value_desc("input IR file name")); 37 38 cl::opt<bool> 39 UseObjectCache("use-object-cache", 40 cl::desc("Enable use of the MCJIT object caching"), 41 cl::init(false)); 42 43 //===----------------------------------------------------------------------===// 44 // Lexer 45 //===----------------------------------------------------------------------===// 46 47 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 48 // of these for known things. 49 enum Token { 50 tok_eof = -1, 51 52 // commands 53 tok_def = -2, tok_extern = -3, 54 55 // primary 56 tok_identifier = -4, tok_number = -5, 57 58 // control 59 tok_if = -6, tok_then = -7, tok_else = -8, 60 tok_for = -9, tok_in = -10, 61 62 // operators 63 tok_binary = -11, tok_unary = -12, 64 65 // var definition 66 tok_var = -13 67 }; 68 69 static std::string IdentifierStr; // Filled in if tok_identifier 70 static double NumVal; // Filled in if tok_number 71 72 /// gettok - Return the next token from standard input. 73 static int gettok() { 74 static int LastChar = ' '; 75 76 // Skip any whitespace. 77 while (isspace(LastChar)) 78 LastChar = getchar(); 79 80 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 81 IdentifierStr = LastChar; 82 while (isalnum((LastChar = getchar()))) 83 IdentifierStr += LastChar; 84 85 if (IdentifierStr == "def") return tok_def; 86 if (IdentifierStr == "extern") return tok_extern; 87 if (IdentifierStr == "if") return tok_if; 88 if (IdentifierStr == "then") return tok_then; 89 if (IdentifierStr == "else") return tok_else; 90 if (IdentifierStr == "for") return tok_for; 91 if (IdentifierStr == "in") return tok_in; 92 if (IdentifierStr == "binary") return tok_binary; 93 if (IdentifierStr == "unary") return tok_unary; 94 if (IdentifierStr == "var") return tok_var; 95 return tok_identifier; 96 } 97 98 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 99 std::string NumStr; 100 do { 101 NumStr += LastChar; 102 LastChar = getchar(); 103 } while (isdigit(LastChar) || LastChar == '.'); 104 105 NumVal = strtod(NumStr.c_str(), 0); 106 return tok_number; 107 } 108 109 if (LastChar == '#') { 110 // Comment until end of line. 111 do LastChar = getchar(); 112 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 113 114 if (LastChar != EOF) 115 return gettok(); 116 } 117 118 // Check for end of file. Don't eat the EOF. 119 if (LastChar == EOF) 120 return tok_eof; 121 122 // Otherwise, just return the character as its ascii value. 123 int ThisChar = LastChar; 124 LastChar = getchar(); 125 return ThisChar; 126 } 127 128 //===----------------------------------------------------------------------===// 129 // Abstract Syntax Tree (aka Parse Tree) 130 //===----------------------------------------------------------------------===// 131 132 /// ExprAST - Base class for all expression nodes. 133 class ExprAST { 134 public: 135 virtual ~ExprAST() {} 136 virtual Value *Codegen() = 0; 137 }; 138 139 /// NumberExprAST - Expression class for numeric literals like "1.0". 140 class NumberExprAST : public ExprAST { 141 double Val; 142 public: 143 NumberExprAST(double val) : Val(val) {} 144 virtual Value *Codegen(); 145 }; 146 147 /// VariableExprAST - Expression class for referencing a variable, like "a". 148 class VariableExprAST : public ExprAST { 149 std::string Name; 150 public: 151 VariableExprAST(const std::string &name) : Name(name) {} 152 const std::string &getName() const { return Name; } 153 virtual Value *Codegen(); 154 }; 155 156 /// UnaryExprAST - Expression class for a unary operator. 157 class UnaryExprAST : public ExprAST { 158 char Opcode; 159 ExprAST *Operand; 160 public: 161 UnaryExprAST(char opcode, ExprAST *operand) 162 : Opcode(opcode), Operand(operand) {} 163 virtual Value *Codegen(); 164 }; 165 166 /// BinaryExprAST - Expression class for a binary operator. 167 class BinaryExprAST : public ExprAST { 168 char Op; 169 ExprAST *LHS, *RHS; 170 public: 171 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 172 : Op(op), LHS(lhs), RHS(rhs) {} 173 virtual Value *Codegen(); 174 }; 175 176 /// CallExprAST - Expression class for function calls. 177 class CallExprAST : public ExprAST { 178 std::string Callee; 179 std::vector<ExprAST*> Args; 180 public: 181 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 182 : Callee(callee), Args(args) {} 183 virtual Value *Codegen(); 184 }; 185 186 /// IfExprAST - Expression class for if/then/else. 187 class IfExprAST : public ExprAST { 188 ExprAST *Cond, *Then, *Else; 189 public: 190 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 191 : Cond(cond), Then(then), Else(_else) {} 192 virtual Value *Codegen(); 193 }; 194 195 /// ForExprAST - Expression class for for/in. 196 class ForExprAST : public ExprAST { 197 std::string VarName; 198 ExprAST *Start, *End, *Step, *Body; 199 public: 200 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 201 ExprAST *step, ExprAST *body) 202 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 203 virtual Value *Codegen(); 204 }; 205 206 /// VarExprAST - Expression class for var/in 207 class VarExprAST : public ExprAST { 208 std::vector<std::pair<std::string, ExprAST*> > VarNames; 209 ExprAST *Body; 210 public: 211 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 212 ExprAST *body) 213 : VarNames(varnames), Body(body) {} 214 215 virtual Value *Codegen(); 216 }; 217 218 /// PrototypeAST - This class represents the "prototype" for a function, 219 /// which captures its argument names as well as if it is an operator. 220 class PrototypeAST { 221 std::string Name; 222 std::vector<std::string> Args; 223 bool isOperator; 224 unsigned Precedence; // Precedence if a binary op. 225 public: 226 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 227 bool isoperator = false, unsigned prec = 0) 228 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 229 230 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 231 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 232 233 char getOperatorName() const { 234 assert(isUnaryOp() || isBinaryOp()); 235 return Name[Name.size()-1]; 236 } 237 238 unsigned getBinaryPrecedence() const { return Precedence; } 239 240 Function *Codegen(); 241 242 void CreateArgumentAllocas(Function *F); 243 }; 244 245 /// FunctionAST - This class represents a function definition itself. 246 class FunctionAST { 247 PrototypeAST *Proto; 248 ExprAST *Body; 249 public: 250 FunctionAST(PrototypeAST *proto, ExprAST *body) 251 : Proto(proto), Body(body) {} 252 253 Function *Codegen(); 254 }; 255 256 //===----------------------------------------------------------------------===// 257 // Parser 258 //===----------------------------------------------------------------------===// 259 260 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 261 /// token the parser is looking at. getNextToken reads another token from the 262 /// lexer and updates CurTok with its results. 263 static int CurTok; 264 static int getNextToken() { 265 return CurTok = gettok(); 266 } 267 268 /// BinopPrecedence - This holds the precedence for each binary operator that is 269 /// defined. 270 static std::map<char, int> BinopPrecedence; 271 272 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 273 static int GetTokPrecedence() { 274 if (!isascii(CurTok)) 275 return -1; 276 277 // Make sure it's a declared binop. 278 int TokPrec = BinopPrecedence[CurTok]; 279 if (TokPrec <= 0) return -1; 280 return TokPrec; 281 } 282 283 /// Error* - These are little helper functions for error handling. 284 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 285 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 286 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 287 288 static ExprAST *ParseExpression(); 289 290 /// identifierexpr 291 /// ::= identifier 292 /// ::= identifier '(' expression* ')' 293 static ExprAST *ParseIdentifierExpr() { 294 std::string IdName = IdentifierStr; 295 296 getNextToken(); // eat identifier. 297 298 if (CurTok != '(') // Simple variable ref. 299 return new VariableExprAST(IdName); 300 301 // Call. 302 getNextToken(); // eat ( 303 std::vector<ExprAST*> Args; 304 if (CurTok != ')') { 305 while (1) { 306 ExprAST *Arg = ParseExpression(); 307 if (!Arg) return 0; 308 Args.push_back(Arg); 309 310 if (CurTok == ')') break; 311 312 if (CurTok != ',') 313 return Error("Expected ')' or ',' in argument list"); 314 getNextToken(); 315 } 316 } 317 318 // Eat the ')'. 319 getNextToken(); 320 321 return new CallExprAST(IdName, Args); 322 } 323 324 /// numberexpr ::= number 325 static ExprAST *ParseNumberExpr() { 326 ExprAST *Result = new NumberExprAST(NumVal); 327 getNextToken(); // consume the number 328 return Result; 329 } 330 331 /// parenexpr ::= '(' expression ')' 332 static ExprAST *ParseParenExpr() { 333 getNextToken(); // eat (. 334 ExprAST *V = ParseExpression(); 335 if (!V) return 0; 336 337 if (CurTok != ')') 338 return Error("expected ')'"); 339 getNextToken(); // eat ). 340 return V; 341 } 342 343 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 344 static ExprAST *ParseIfExpr() { 345 getNextToken(); // eat the if. 346 347 // condition. 348 ExprAST *Cond = ParseExpression(); 349 if (!Cond) return 0; 350 351 if (CurTok != tok_then) 352 return Error("expected then"); 353 getNextToken(); // eat the then 354 355 ExprAST *Then = ParseExpression(); 356 if (Then == 0) return 0; 357 358 if (CurTok != tok_else) 359 return Error("expected else"); 360 361 getNextToken(); 362 363 ExprAST *Else = ParseExpression(); 364 if (!Else) return 0; 365 366 return new IfExprAST(Cond, Then, Else); 367 } 368 369 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 370 static ExprAST *ParseForExpr() { 371 getNextToken(); // eat the for. 372 373 if (CurTok != tok_identifier) 374 return Error("expected identifier after for"); 375 376 std::string IdName = IdentifierStr; 377 getNextToken(); // eat identifier. 378 379 if (CurTok != '=') 380 return Error("expected '=' after for"); 381 getNextToken(); // eat '='. 382 383 384 ExprAST *Start = ParseExpression(); 385 if (Start == 0) return 0; 386 if (CurTok != ',') 387 return Error("expected ',' after for start value"); 388 getNextToken(); 389 390 ExprAST *End = ParseExpression(); 391 if (End == 0) return 0; 392 393 // The step value is optional. 394 ExprAST *Step = 0; 395 if (CurTok == ',') { 396 getNextToken(); 397 Step = ParseExpression(); 398 if (Step == 0) return 0; 399 } 400 401 if (CurTok != tok_in) 402 return Error("expected 'in' after for"); 403 getNextToken(); // eat 'in'. 404 405 ExprAST *Body = ParseExpression(); 406 if (Body == 0) return 0; 407 408 return new ForExprAST(IdName, Start, End, Step, Body); 409 } 410 411 /// varexpr ::= 'var' identifier ('=' expression)? 412 // (',' identifier ('=' expression)?)* 'in' expression 413 static ExprAST *ParseVarExpr() { 414 getNextToken(); // eat the var. 415 416 std::vector<std::pair<std::string, ExprAST*> > VarNames; 417 418 // At least one variable name is required. 419 if (CurTok != tok_identifier) 420 return Error("expected identifier after var"); 421 422 while (1) { 423 std::string Name = IdentifierStr; 424 getNextToken(); // eat identifier. 425 426 // Read the optional initializer. 427 ExprAST *Init = 0; 428 if (CurTok == '=') { 429 getNextToken(); // eat the '='. 430 431 Init = ParseExpression(); 432 if (Init == 0) return 0; 433 } 434 435 VarNames.push_back(std::make_pair(Name, Init)); 436 437 // End of var list, exit loop. 438 if (CurTok != ',') break; 439 getNextToken(); // eat the ','. 440 441 if (CurTok != tok_identifier) 442 return Error("expected identifier list after var"); 443 } 444 445 // At this point, we have to have 'in'. 446 if (CurTok != tok_in) 447 return Error("expected 'in' keyword after 'var'"); 448 getNextToken(); // eat 'in'. 449 450 ExprAST *Body = ParseExpression(); 451 if (Body == 0) return 0; 452 453 return new VarExprAST(VarNames, Body); 454 } 455 456 /// primary 457 /// ::= identifierexpr 458 /// ::= numberexpr 459 /// ::= parenexpr 460 /// ::= ifexpr 461 /// ::= forexpr 462 /// ::= varexpr 463 static ExprAST *ParsePrimary() { 464 switch (CurTok) { 465 default: return Error("unknown token when expecting an expression"); 466 case tok_identifier: return ParseIdentifierExpr(); 467 case tok_number: return ParseNumberExpr(); 468 case '(': return ParseParenExpr(); 469 case tok_if: return ParseIfExpr(); 470 case tok_for: return ParseForExpr(); 471 case tok_var: return ParseVarExpr(); 472 } 473 } 474 475 /// unary 476 /// ::= primary 477 /// ::= '!' unary 478 static ExprAST *ParseUnary() { 479 // If the current token is not an operator, it must be a primary expr. 480 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 481 return ParsePrimary(); 482 483 // If this is a unary operator, read it. 484 int Opc = CurTok; 485 getNextToken(); 486 if (ExprAST *Operand = ParseUnary()) 487 return new UnaryExprAST(Opc, Operand); 488 return 0; 489 } 490 491 /// binoprhs 492 /// ::= ('+' unary)* 493 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 494 // If this is a binop, find its precedence. 495 while (1) { 496 int TokPrec = GetTokPrecedence(); 497 498 // If this is a binop that binds at least as tightly as the current binop, 499 // consume it, otherwise we are done. 500 if (TokPrec < ExprPrec) 501 return LHS; 502 503 // Okay, we know this is a binop. 504 int BinOp = CurTok; 505 getNextToken(); // eat binop 506 507 // Parse the unary expression after the binary operator. 508 ExprAST *RHS = ParseUnary(); 509 if (!RHS) return 0; 510 511 // If BinOp binds less tightly with RHS than the operator after RHS, let 512 // the pending operator take RHS as its LHS. 513 int NextPrec = GetTokPrecedence(); 514 if (TokPrec < NextPrec) { 515 RHS = ParseBinOpRHS(TokPrec+1, RHS); 516 if (RHS == 0) return 0; 517 } 518 519 // Merge LHS/RHS. 520 LHS = new BinaryExprAST(BinOp, LHS, RHS); 521 } 522 } 523 524 /// expression 525 /// ::= unary binoprhs 526 /// 527 static ExprAST *ParseExpression() { 528 ExprAST *LHS = ParseUnary(); 529 if (!LHS) return 0; 530 531 return ParseBinOpRHS(0, LHS); 532 } 533 534 /// prototype 535 /// ::= id '(' id* ')' 536 /// ::= binary LETTER number? (id, id) 537 /// ::= unary LETTER (id) 538 static PrototypeAST *ParsePrototype() { 539 std::string FnName; 540 541 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 542 unsigned BinaryPrecedence = 30; 543 544 switch (CurTok) { 545 default: 546 return ErrorP("Expected function name in prototype"); 547 case tok_identifier: 548 FnName = IdentifierStr; 549 Kind = 0; 550 getNextToken(); 551 break; 552 case tok_unary: 553 getNextToken(); 554 if (!isascii(CurTok)) 555 return ErrorP("Expected unary operator"); 556 FnName = "unary"; 557 FnName += (char)CurTok; 558 Kind = 1; 559 getNextToken(); 560 break; 561 case tok_binary: 562 getNextToken(); 563 if (!isascii(CurTok)) 564 return ErrorP("Expected binary operator"); 565 FnName = "binary"; 566 FnName += (char)CurTok; 567 Kind = 2; 568 getNextToken(); 569 570 // Read the precedence if present. 571 if (CurTok == tok_number) { 572 if (NumVal < 1 || NumVal > 100) 573 return ErrorP("Invalid precedecnce: must be 1..100"); 574 BinaryPrecedence = (unsigned)NumVal; 575 getNextToken(); 576 } 577 break; 578 } 579 580 if (CurTok != '(') 581 return ErrorP("Expected '(' in prototype"); 582 583 std::vector<std::string> ArgNames; 584 while (getNextToken() == tok_identifier) 585 ArgNames.push_back(IdentifierStr); 586 if (CurTok != ')') 587 return ErrorP("Expected ')' in prototype"); 588 589 // success. 590 getNextToken(); // eat ')'. 591 592 // Verify right number of names for operator. 593 if (Kind && ArgNames.size() != Kind) 594 return ErrorP("Invalid number of operands for operator"); 595 596 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 597 } 598 599 /// definition ::= 'def' prototype expression 600 static FunctionAST *ParseDefinition() { 601 getNextToken(); // eat def. 602 PrototypeAST *Proto = ParsePrototype(); 603 if (Proto == 0) return 0; 604 605 if (ExprAST *E = ParseExpression()) 606 return new FunctionAST(Proto, E); 607 return 0; 608 } 609 610 /// toplevelexpr ::= expression 611 static FunctionAST *ParseTopLevelExpr() { 612 if (ExprAST *E = ParseExpression()) { 613 // Make an anonymous proto. 614 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 615 return new FunctionAST(Proto, E); 616 } 617 return 0; 618 } 619 620 /// external ::= 'extern' prototype 621 static PrototypeAST *ParseExtern() { 622 getNextToken(); // eat extern. 623 return ParsePrototype(); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Quick and dirty hack 628 //===----------------------------------------------------------------------===// 629 630 // FIXME: Obviously we can do better than this 631 std::string GenerateUniqueName(const char *root) 632 { 633 static int i = 0; 634 char s[16]; 635 sprintf(s, "%s%d", root, i++); 636 std::string S = s; 637 return S; 638 } 639 640 std::string MakeLegalFunctionName(std::string Name) 641 { 642 std::string NewName; 643 if (!Name.length()) 644 return GenerateUniqueName("anon_func_"); 645 646 // Start with what we have 647 NewName = Name; 648 649 // Look for a numberic first character 650 if (NewName.find_first_of("0123456789") == 0) { 651 NewName.insert(0, 1, 'n'); 652 } 653 654 // Replace illegal characters with their ASCII equivalent 655 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 656 size_t pos; 657 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { 658 char old_c = NewName.at(pos); 659 char new_str[16]; 660 sprintf(new_str, "%d", (int)old_c); 661 NewName = NewName.replace(pos, 1, new_str); 662 } 663 664 return NewName; 665 } 666 667 //===----------------------------------------------------------------------===// 668 // MCJIT object cache class 669 //===----------------------------------------------------------------------===// 670 671 class MCJITObjectCache : public ObjectCache { 672 public: 673 MCJITObjectCache() { 674 // Set IR cache directory 675 sys::fs::current_path(CacheDir); 676 sys::path::append(CacheDir, "toy_object_cache"); 677 } 678 679 virtual ~MCJITObjectCache() { 680 } 681 682 virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) { 683 // Get the ModuleID 684 const std::string ModuleID = M->getModuleIdentifier(); 685 686 // If we've flagged this as an IR file, cache it 687 if (0 == ModuleID.compare(0, 3, "IR:")) { 688 std::string IRFileName = ModuleID.substr(3); 689 SmallString<128>IRCacheFile = CacheDir; 690 sys::path::append(IRCacheFile, IRFileName); 691 if (!sys::fs::exists(CacheDir.str()) && sys::fs::create_directory(CacheDir.str())) { 692 fprintf(stderr, "Unable to create cache directory\n"); 693 return; 694 } 695 std::string ErrStr; 696 raw_fd_ostream IRObjectFile(IRCacheFile.c_str(), ErrStr, raw_fd_ostream::F_Binary); 697 IRObjectFile << Obj->getBuffer(); 698 } 699 } 700 701 // MCJIT will call this function before compiling any module 702 // MCJIT takes ownership of both the MemoryBuffer object and the memory 703 // to which it refers. 704 virtual MemoryBuffer* getObject(const Module* M) { 705 // Get the ModuleID 706 const std::string ModuleID = M->getModuleIdentifier(); 707 708 // If we've flagged this as an IR file, cache it 709 if (0 == ModuleID.compare(0, 3, "IR:")) { 710 std::string IRFileName = ModuleID.substr(3); 711 SmallString<128> IRCacheFile = CacheDir; 712 sys::path::append(IRCacheFile, IRFileName); 713 if (!sys::fs::exists(IRCacheFile.str())) { 714 // This file isn't in our cache 715 return NULL; 716 } 717 OwningPtr<MemoryBuffer> IRObjectBuffer; 718 MemoryBuffer::getFile(IRCacheFile.c_str(), IRObjectBuffer, -1, false); 719 // MCJIT will want to write into this buffer, and we don't want that 720 // because the file has probably just been mmapped. Instead we make 721 // a copy. The filed-based buffer will be released when it goes 722 // out of scope. 723 return MemoryBuffer::getMemBufferCopy(IRObjectBuffer->getBuffer()); 724 } 725 726 return NULL; 727 } 728 729 private: 730 SmallString<128> CacheDir; 731 }; 732 733 //===----------------------------------------------------------------------===// 734 // MCJIT helper class 735 //===----------------------------------------------------------------------===// 736 737 class MCJITHelper 738 { 739 public: 740 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {} 741 ~MCJITHelper(); 742 743 Function *getFunction(const std::string FnName); 744 Module *getModuleForNewFunction(); 745 void *getPointerToFunction(Function* F); 746 void *getPointerToNamedFunction(const std::string &Name); 747 ExecutionEngine *compileModule(Module *M); 748 void closeCurrentModule(); 749 void addModule(Module *M); 750 void dump(); 751 752 private: 753 typedef std::vector<Module*> ModuleVector; 754 755 LLVMContext &Context; 756 Module *OpenModule; 757 ModuleVector Modules; 758 std::map<Module *, ExecutionEngine *> EngineMap; 759 MCJITObjectCache OurObjectCache; 760 }; 761 762 class HelpingMemoryManager : public SectionMemoryManager 763 { 764 HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION; 765 void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION; 766 767 public: 768 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} 769 virtual ~HelpingMemoryManager() {} 770 771 /// This method returns the address of the specified function. 772 /// Our implementation will attempt to find functions in other 773 /// modules associated with the MCJITHelper to cross link functions 774 /// from one generated module to another. 775 /// 776 /// If \p AbortOnFailure is false and no function with the given name is 777 /// found, this function returns a null pointer. Otherwise, it prints a 778 /// message to stderr and aborts. 779 virtual void *getPointerToNamedFunction(const std::string &Name, 780 bool AbortOnFailure = true); 781 private: 782 MCJITHelper *MasterHelper; 783 }; 784 785 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, 786 bool AbortOnFailure) 787 { 788 // Try the standard symbol resolution first, but ask it not to abort. 789 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false); 790 if (pfn) 791 return pfn; 792 793 pfn = MasterHelper->getPointerToNamedFunction(Name); 794 if (!pfn && AbortOnFailure) 795 report_fatal_error("Program used external function '" + Name + 796 "' which could not be resolved!"); 797 return pfn; 798 } 799 800 MCJITHelper::~MCJITHelper() 801 { 802 // Walk the vector of modules. 803 ModuleVector::iterator it, end; 804 for (it = Modules.begin(), end = Modules.end(); 805 it != end; ++it) { 806 // See if we have an execution engine for this module. 807 std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it); 808 // If we have an EE, the EE owns the module so just delete the EE. 809 if (mapIt != EngineMap.end()) { 810 delete mapIt->second; 811 } else { 812 // Otherwise, we still own the module. Delete it now. 813 delete *it; 814 } 815 } 816 } 817 818 Function *MCJITHelper::getFunction(const std::string FnName) { 819 ModuleVector::iterator begin = Modules.begin(); 820 ModuleVector::iterator end = Modules.end(); 821 ModuleVector::iterator it; 822 for (it = begin; it != end; ++it) { 823 Function *F = (*it)->getFunction(FnName); 824 if (F) { 825 if (*it == OpenModule) 826 return F; 827 828 assert(OpenModule != NULL); 829 830 // This function is in a module that has already been JITed. 831 // We need to generate a new prototype for external linkage. 832 Function *PF = OpenModule->getFunction(FnName); 833 if (PF && !PF->empty()) { 834 ErrorF("redefinition of function across modules"); 835 return 0; 836 } 837 838 // If we don't have a prototype yet, create one. 839 if (!PF) 840 PF = Function::Create(F->getFunctionType(), 841 Function::ExternalLinkage, 842 FnName, 843 OpenModule); 844 return PF; 845 } 846 } 847 return NULL; 848 } 849 850 Module *MCJITHelper::getModuleForNewFunction() { 851 // If we have a Module that hasn't been JITed, use that. 852 if (OpenModule) 853 return OpenModule; 854 855 // Otherwise create a new Module. 856 std::string ModName = GenerateUniqueName("mcjit_module_"); 857 Module *M = new Module(ModName, Context); 858 Modules.push_back(M); 859 OpenModule = M; 860 return M; 861 } 862 863 void *MCJITHelper::getPointerToFunction(Function* F) { 864 // Look for this function in an existing module 865 ModuleVector::iterator begin = Modules.begin(); 866 ModuleVector::iterator end = Modules.end(); 867 ModuleVector::iterator it; 868 std::string FnName = F->getName(); 869 for (it = begin; it != end; ++it) { 870 Function *MF = (*it)->getFunction(FnName); 871 if (MF == F) { 872 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 873 if (eeIt != EngineMap.end()) { 874 void *P = eeIt->second->getPointerToFunction(F); 875 if (P) 876 return P; 877 } else { 878 ExecutionEngine *EE = compileModule(*it); 879 void *P = EE->getPointerToFunction(F); 880 if (P) 881 return P; 882 } 883 } 884 } 885 return NULL; 886 } 887 888 void MCJITHelper::closeCurrentModule() { 889 OpenModule = NULL; 890 } 891 892 ExecutionEngine *MCJITHelper::compileModule(Module *M) { 893 if (M == OpenModule) 894 closeCurrentModule(); 895 896 std::string ErrStr; 897 ExecutionEngine *NewEngine = EngineBuilder(M) 898 .setErrorStr(&ErrStr) 899 .setUseMCJIT(true) 900 .setMCJITMemoryManager(new HelpingMemoryManager(this)) 901 .create(); 902 if (!NewEngine) { 903 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 904 exit(1); 905 } 906 907 if (UseObjectCache) 908 NewEngine->setObjectCache(&OurObjectCache); 909 910 // Get the ModuleID so we can identify IR input files 911 const std::string ModuleID = M->getModuleIdentifier(); 912 913 // If we've flagged this as an IR file, it doesn't need function passes run. 914 if (0 != ModuleID.compare(0, 3, "IR:")) { 915 // Create a function pass manager for this engine 916 FunctionPassManager *FPM = new FunctionPassManager(M); 917 918 // Set up the optimizer pipeline. Start with registering info about how the 919 // target lays out data structures. 920 FPM->add(new DataLayout(*NewEngine->getDataLayout())); 921 // Provide basic AliasAnalysis support for GVN. 922 FPM->add(createBasicAliasAnalysisPass()); 923 // Promote allocas to registers. 924 FPM->add(createPromoteMemoryToRegisterPass()); 925 // Do simple "peephole" optimizations and bit-twiddling optzns. 926 FPM->add(createInstructionCombiningPass()); 927 // Reassociate expressions. 928 FPM->add(createReassociatePass()); 929 // Eliminate Common SubExpressions. 930 FPM->add(createGVNPass()); 931 // Simplify the control flow graph (deleting unreachable blocks, etc). 932 FPM->add(createCFGSimplificationPass()); 933 FPM->doInitialization(); 934 935 // For each function in the module 936 Module::iterator it; 937 Module::iterator end = M->end(); 938 for (it = M->begin(); it != end; ++it) { 939 // Run the FPM on this function 940 FPM->run(*it); 941 } 942 943 // We don't need this anymore 944 delete FPM; 945 } 946 947 // Store this engine 948 EngineMap[M] = NewEngine; 949 NewEngine->finalizeObject(); 950 951 return NewEngine; 952 } 953 954 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) 955 { 956 // Look for the functions in our modules, compiling only as necessary 957 ModuleVector::iterator begin = Modules.begin(); 958 ModuleVector::iterator end = Modules.end(); 959 ModuleVector::iterator it; 960 for (it = begin; it != end; ++it) { 961 Function *F = (*it)->getFunction(Name); 962 if (F && !F->empty()) { 963 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 964 if (eeIt != EngineMap.end()) { 965 void *P = eeIt->second->getPointerToFunction(F); 966 if (P) 967 return P; 968 } else { 969 ExecutionEngine *EE = compileModule(*it); 970 void *P = EE->getPointerToFunction(F); 971 if (P) 972 return P; 973 } 974 } 975 } 976 return NULL; 977 } 978 979 void MCJITHelper::addModule(Module* M) { 980 Modules.push_back(M); 981 } 982 983 void MCJITHelper::dump() 984 { 985 ModuleVector::iterator begin = Modules.begin(); 986 ModuleVector::iterator end = Modules.end(); 987 ModuleVector::iterator it; 988 for (it = begin; it != end; ++it) 989 (*it)->dump(); 990 } 991 992 //===----------------------------------------------------------------------===// 993 // Code Generation 994 //===----------------------------------------------------------------------===// 995 996 static MCJITHelper *TheHelper; 997 static IRBuilder<> Builder(getGlobalContext()); 998 static std::map<std::string, AllocaInst*> NamedValues; 999 1000 Value *ErrorV(const char *Str) { Error(Str); return 0; } 1001 1002 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 1003 /// the function. This is used for mutable variables etc. 1004 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 1005 const std::string &VarName) { 1006 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 1007 TheFunction->getEntryBlock().begin()); 1008 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, 1009 VarName.c_str()); 1010 } 1011 1012 Value *NumberExprAST::Codegen() { 1013 return ConstantFP::get(getGlobalContext(), APFloat(Val)); 1014 } 1015 1016 Value *VariableExprAST::Codegen() { 1017 // Look this variable up in the function. 1018 Value *V = NamedValues[Name]; 1019 char ErrStr[256]; 1020 sprintf(ErrStr, "Unknown variable name %s", Name.c_str()); 1021 if (V == 0) return ErrorV(ErrStr); 1022 1023 // Load the value. 1024 return Builder.CreateLoad(V, Name.c_str()); 1025 } 1026 1027 Value *UnaryExprAST::Codegen() { 1028 Value *OperandV = Operand->Codegen(); 1029 if (OperandV == 0) return 0; 1030 1031 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 1032 if (F == 0) 1033 return ErrorV("Unknown unary operator"); 1034 1035 return Builder.CreateCall(F, OperandV, "unop"); 1036 } 1037 1038 Value *BinaryExprAST::Codegen() { 1039 // Special case '=' because we don't want to emit the LHS as an expression. 1040 if (Op == '=') { 1041 // Assignment requires the LHS to be an identifier. 1042 VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS); 1043 if (!LHSE) 1044 return ErrorV("destination of '=' must be a variable"); 1045 // Codegen the RHS. 1046 Value *Val = RHS->Codegen(); 1047 if (Val == 0) return 0; 1048 1049 // Look up the name. 1050 Value *Variable = NamedValues[LHSE->getName()]; 1051 if (Variable == 0) return ErrorV("Unknown variable name"); 1052 1053 Builder.CreateStore(Val, Variable); 1054 return Val; 1055 } 1056 1057 Value *L = LHS->Codegen(); 1058 Value *R = RHS->Codegen(); 1059 if (L == 0 || R == 0) return 0; 1060 1061 switch (Op) { 1062 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 1063 case '-': return Builder.CreateFSub(L, R, "subtmp"); 1064 case '*': return Builder.CreateFMul(L, R, "multmp"); 1065 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 1066 case '<': 1067 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 1068 // Convert bool 0/1 to double 0.0 or 1.0 1069 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), 1070 "booltmp"); 1071 default: break; 1072 } 1073 1074 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 1075 // a call to it. 1076 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); 1077 assert(F && "binary operator not found!"); 1078 1079 Value *Ops[] = { L, R }; 1080 return Builder.CreateCall(F, Ops, "binop"); 1081 } 1082 1083 Value *CallExprAST::Codegen() { 1084 // Look up the name in the global module table. 1085 Function *CalleeF = TheHelper->getFunction(Callee); 1086 if (CalleeF == 0) 1087 return ErrorV("Unknown function referenced"); 1088 1089 // If argument mismatch error. 1090 if (CalleeF->arg_size() != Args.size()) 1091 return ErrorV("Incorrect # arguments passed"); 1092 1093 std::vector<Value*> ArgsV; 1094 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 1095 ArgsV.push_back(Args[i]->Codegen()); 1096 if (ArgsV.back() == 0) return 0; 1097 } 1098 1099 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 1100 } 1101 1102 Value *IfExprAST::Codegen() { 1103 Value *CondV = Cond->Codegen(); 1104 if (CondV == 0) return 0; 1105 1106 // Convert condition to a bool by comparing equal to 0.0. 1107 CondV = Builder.CreateFCmpONE(CondV, 1108 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 1109 "ifcond"); 1110 1111 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1112 1113 // Create blocks for the then and else cases. Insert the 'then' block at the 1114 // end of the function. 1115 BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); 1116 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); 1117 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); 1118 1119 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 1120 1121 // Emit then value. 1122 Builder.SetInsertPoint(ThenBB); 1123 1124 Value *ThenV = Then->Codegen(); 1125 if (ThenV == 0) return 0; 1126 1127 Builder.CreateBr(MergeBB); 1128 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 1129 ThenBB = Builder.GetInsertBlock(); 1130 1131 // Emit else block. 1132 TheFunction->getBasicBlockList().push_back(ElseBB); 1133 Builder.SetInsertPoint(ElseBB); 1134 1135 Value *ElseV = Else->Codegen(); 1136 if (ElseV == 0) return 0; 1137 1138 Builder.CreateBr(MergeBB); 1139 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 1140 ElseBB = Builder.GetInsertBlock(); 1141 1142 // Emit merge block. 1143 TheFunction->getBasicBlockList().push_back(MergeBB); 1144 Builder.SetInsertPoint(MergeBB); 1145 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, 1146 "iftmp"); 1147 1148 PN->addIncoming(ThenV, ThenBB); 1149 PN->addIncoming(ElseV, ElseBB); 1150 return PN; 1151 } 1152 1153 Value *ForExprAST::Codegen() { 1154 // Output this as: 1155 // var = alloca double 1156 // ... 1157 // start = startexpr 1158 // store start -> var 1159 // goto loop 1160 // loop: 1161 // ... 1162 // bodyexpr 1163 // ... 1164 // loopend: 1165 // step = stepexpr 1166 // endcond = endexpr 1167 // 1168 // curvar = load var 1169 // nextvar = curvar + step 1170 // store nextvar -> var 1171 // br endcond, loop, endloop 1172 // outloop: 1173 1174 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1175 1176 // Create an alloca for the variable in the entry block. 1177 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1178 1179 // Emit the start code first, without 'variable' in scope. 1180 Value *StartVal = Start->Codegen(); 1181 if (StartVal == 0) return 0; 1182 1183 // Store the value into the alloca. 1184 Builder.CreateStore(StartVal, Alloca); 1185 1186 // Make the new basic block for the loop header, inserting after current 1187 // block. 1188 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); 1189 1190 // Insert an explicit fall through from the current block to the LoopBB. 1191 Builder.CreateBr(LoopBB); 1192 1193 // Start insertion in LoopBB. 1194 Builder.SetInsertPoint(LoopBB); 1195 1196 // Within the loop, the variable is defined equal to the PHI node. If it 1197 // shadows an existing variable, we have to restore it, so save it now. 1198 AllocaInst *OldVal = NamedValues[VarName]; 1199 NamedValues[VarName] = Alloca; 1200 1201 // Emit the body of the loop. This, like any other expr, can change the 1202 // current BB. Note that we ignore the value computed by the body, but don't 1203 // allow an error. 1204 if (Body->Codegen() == 0) 1205 return 0; 1206 1207 // Emit the step value. 1208 Value *StepVal; 1209 if (Step) { 1210 StepVal = Step->Codegen(); 1211 if (StepVal == 0) return 0; 1212 } else { 1213 // If not specified, use 1.0. 1214 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); 1215 } 1216 1217 // Compute the end condition. 1218 Value *EndCond = End->Codegen(); 1219 if (EndCond == 0) return EndCond; 1220 1221 // Reload, increment, and restore the alloca. This handles the case where 1222 // the body of the loop mutates the variable. 1223 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 1224 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 1225 Builder.CreateStore(NextVar, Alloca); 1226 1227 // Convert condition to a bool by comparing equal to 0.0. 1228 EndCond = Builder.CreateFCmpONE(EndCond, 1229 ConstantFP::get(getGlobalContext(), APFloat(0.0)), 1230 "loopcond"); 1231 1232 // Create the "after loop" block and insert it. 1233 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); 1234 1235 // Insert the conditional branch into the end of LoopEndBB. 1236 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 1237 1238 // Any new code will be inserted in AfterBB. 1239 Builder.SetInsertPoint(AfterBB); 1240 1241 // Restore the unshadowed variable. 1242 if (OldVal) 1243 NamedValues[VarName] = OldVal; 1244 else 1245 NamedValues.erase(VarName); 1246 1247 1248 // for expr always returns 0.0. 1249 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); 1250 } 1251 1252 Value *VarExprAST::Codegen() { 1253 std::vector<AllocaInst *> OldBindings; 1254 1255 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1256 1257 // Register all variables and emit their initializer. 1258 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 1259 const std::string &VarName = VarNames[i].first; 1260 ExprAST *Init = VarNames[i].second; 1261 1262 // Emit the initializer before adding the variable to scope, this prevents 1263 // the initializer from referencing the variable itself, and permits stuff 1264 // like this: 1265 // var a = 1 in 1266 // var a = a in ... # refers to outer 'a'. 1267 Value *InitVal; 1268 if (Init) { 1269 InitVal = Init->Codegen(); 1270 if (InitVal == 0) return 0; 1271 } else { // If not specified, use 0.0. 1272 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); 1273 } 1274 1275 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1276 Builder.CreateStore(InitVal, Alloca); 1277 1278 // Remember the old variable binding so that we can restore the binding when 1279 // we unrecurse. 1280 OldBindings.push_back(NamedValues[VarName]); 1281 1282 // Remember this binding. 1283 NamedValues[VarName] = Alloca; 1284 } 1285 1286 // Codegen the body, now that all vars are in scope. 1287 Value *BodyVal = Body->Codegen(); 1288 if (BodyVal == 0) return 0; 1289 1290 // Pop all our variables from scope. 1291 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1292 NamedValues[VarNames[i].first] = OldBindings[i]; 1293 1294 // Return the body computation. 1295 return BodyVal; 1296 } 1297 1298 Function *PrototypeAST::Codegen() { 1299 // Make the function type: double(double,double) etc. 1300 std::vector<Type*> Doubles(Args.size(), 1301 Type::getDoubleTy(getGlobalContext())); 1302 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), 1303 Doubles, false); 1304 1305 std::string FnName = MakeLegalFunctionName(Name); 1306 1307 Module* M = TheHelper->getModuleForNewFunction(); 1308 1309 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); 1310 1311 // If F conflicted, there was already something named 'FnName'. If it has a 1312 // body, don't allow redefinition or reextern. 1313 if (F->getName() != FnName) { 1314 // Delete the one we just made and get the existing one. 1315 F->eraseFromParent(); 1316 F = M->getFunction(Name); 1317 1318 // If F already has a body, reject this. 1319 if (!F->empty()) { 1320 ErrorF("redefinition of function"); 1321 return 0; 1322 } 1323 1324 // If F took a different number of args, reject. 1325 if (F->arg_size() != Args.size()) { 1326 ErrorF("redefinition of function with different # args"); 1327 return 0; 1328 } 1329 } 1330 1331 // Set names for all arguments. 1332 unsigned Idx = 0; 1333 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 1334 ++AI, ++Idx) 1335 AI->setName(Args[Idx]); 1336 1337 return F; 1338 } 1339 1340 /// CreateArgumentAllocas - Create an alloca for each argument and register the 1341 /// argument in the symbol table so that references to it will succeed. 1342 void PrototypeAST::CreateArgumentAllocas(Function *F) { 1343 Function::arg_iterator AI = F->arg_begin(); 1344 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 1345 // Create an alloca for this variable. 1346 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 1347 1348 // Store the initial value into the alloca. 1349 Builder.CreateStore(AI, Alloca); 1350 1351 // Add arguments to variable symbol table. 1352 NamedValues[Args[Idx]] = Alloca; 1353 } 1354 } 1355 1356 Function *FunctionAST::Codegen() { 1357 NamedValues.clear(); 1358 1359 Function *TheFunction = Proto->Codegen(); 1360 if (TheFunction == 0) 1361 return 0; 1362 1363 // If this is an operator, install it. 1364 if (Proto->isBinaryOp()) 1365 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 1366 1367 // Create a new basic block to start insertion into. 1368 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); 1369 Builder.SetInsertPoint(BB); 1370 1371 // Add all arguments to the symbol table and create their allocas. 1372 Proto->CreateArgumentAllocas(TheFunction); 1373 1374 if (Value *RetVal = Body->Codegen()) { 1375 // Finish off the function. 1376 Builder.CreateRet(RetVal); 1377 1378 // Validate the generated code, checking for consistency. 1379 verifyFunction(*TheFunction); 1380 1381 return TheFunction; 1382 } 1383 1384 // Error reading body, remove function. 1385 TheFunction->eraseFromParent(); 1386 1387 if (Proto->isBinaryOp()) 1388 BinopPrecedence.erase(Proto->getOperatorName()); 1389 return 0; 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // Top-Level parsing and JIT Driver 1394 //===----------------------------------------------------------------------===// 1395 1396 static void HandleDefinition() { 1397 if (FunctionAST *F = ParseDefinition()) { 1398 TheHelper->closeCurrentModule(); 1399 if (Function *LF = F->Codegen()) { 1400 #ifndef MINIMAL_STDERR_OUTPUT 1401 fprintf(stderr, "Read function definition:"); 1402 LF->dump(); 1403 #endif 1404 } 1405 } else { 1406 // Skip token for error recovery. 1407 getNextToken(); 1408 } 1409 } 1410 1411 static void HandleExtern() { 1412 if (PrototypeAST *P = ParseExtern()) { 1413 if (Function *F = P->Codegen()) { 1414 #ifndef MINIMAL_STDERR_OUTPUT 1415 fprintf(stderr, "Read extern: "); 1416 F->dump(); 1417 #endif 1418 } 1419 } else { 1420 // Skip token for error recovery. 1421 getNextToken(); 1422 } 1423 } 1424 1425 static void HandleTopLevelExpression() { 1426 // Evaluate a top-level expression into an anonymous function. 1427 if (FunctionAST *F = ParseTopLevelExpr()) { 1428 if (Function *LF = F->Codegen()) { 1429 // JIT the function, returning a function pointer. 1430 void *FPtr = TheHelper->getPointerToFunction(LF); 1431 1432 // Cast it to the right type (takes no arguments, returns a double) so we 1433 // can call it as a native function. 1434 double (*FP)() = (double (*)())(intptr_t)FPtr; 1435 #ifdef MINIMAL_STDERR_OUTPUT 1436 FP(); 1437 #else 1438 fprintf(stderr, "Evaluated to %f\n", FP()); 1439 #endif 1440 } 1441 } else { 1442 // Skip token for error recovery. 1443 getNextToken(); 1444 } 1445 } 1446 1447 /// top ::= definition | external | expression | ';' 1448 static void MainLoop() { 1449 while (1) { 1450 #ifndef MINIMAL_STDERR_OUTPUT 1451 fprintf(stderr, "ready> "); 1452 #endif 1453 switch (CurTok) { 1454 case tok_eof: return; 1455 case ';': getNextToken(); break; // ignore top-level semicolons. 1456 case tok_def: HandleDefinition(); break; 1457 case tok_extern: HandleExtern(); break; 1458 default: HandleTopLevelExpression(); break; 1459 } 1460 } 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // "Library" functions that can be "extern'd" from user code. 1465 //===----------------------------------------------------------------------===// 1466 1467 /// putchard - putchar that takes a double and returns 0. 1468 extern "C" 1469 double putchard(double X) { 1470 putchar((char)X); 1471 return 0; 1472 } 1473 1474 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1475 extern "C" 1476 double printd(double X) { 1477 printf("%f", X); 1478 return 0; 1479 } 1480 1481 extern "C" 1482 double printlf() { 1483 printf("\n"); 1484 return 0; 1485 } 1486 1487 //===----------------------------------------------------------------------===// 1488 // Command line input file handler 1489 //===----------------------------------------------------------------------===// 1490 1491 Module* parseInputIR(std::string InputFile) { 1492 SMDiagnostic Err; 1493 Module *M = ParseIRFile(InputFile, Err, getGlobalContext()); 1494 if (!M) { 1495 Err.print("IR parsing failed: ", errs()); 1496 return NULL; 1497 } 1498 1499 char ModID[256]; 1500 sprintf(ModID, "IR:%s", InputFile.c_str()); 1501 M->setModuleIdentifier(ModID); 1502 1503 TheHelper->addModule(M); 1504 return M; 1505 } 1506 1507 //===----------------------------------------------------------------------===// 1508 // Main driver code. 1509 //===----------------------------------------------------------------------===// 1510 1511 int main(int argc, char **argv) { 1512 InitializeNativeTarget(); 1513 InitializeNativeTargetAsmPrinter(); 1514 InitializeNativeTargetAsmParser(); 1515 LLVMContext &Context = getGlobalContext(); 1516 1517 cl::ParseCommandLineOptions(argc, argv, 1518 "Kaleidoscope example program\n"); 1519 1520 // Install standard binary operators. 1521 // 1 is lowest precedence. 1522 BinopPrecedence['='] = 2; 1523 BinopPrecedence['<'] = 10; 1524 BinopPrecedence['+'] = 20; 1525 BinopPrecedence['-'] = 20; 1526 BinopPrecedence['/'] = 40; 1527 BinopPrecedence['*'] = 40; // highest. 1528 1529 // Prime the first token. 1530 #ifndef MINIMAL_STDERR_OUTPUT 1531 fprintf(stderr, "ready> "); 1532 #endif 1533 getNextToken(); 1534 1535 // Make the helper, which holds all the code. 1536 TheHelper = new MCJITHelper(Context); 1537 1538 if (!InputIR.empty()) { 1539 parseInputIR(InputIR); 1540 } 1541 1542 // Run the main "interpreter loop" now. 1543 MainLoop(); 1544 1545 #ifndef MINIMAL_STDERR_OUTPUT 1546 // Print out all of the generated code. 1547 TheHelper->dump(); 1548 #endif 1549 1550 return 0; 1551 } 1552