Home | History | Annotate | Download | only in initial
      1 #include "llvm/Analysis/Passes.h"
      2 #include "llvm/Analysis/Verifier.h"
      3 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      4 #include "llvm/ExecutionEngine/MCJIT.h"
      5 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
      6 #include "llvm/IR/DataLayout.h"
      7 #include "llvm/IR/DerivedTypes.h"
      8 #include "llvm/IR/IRBuilder.h"
      9 #include "llvm/IR/LLVMContext.h"
     10 #include "llvm/IR/Module.h"
     11 #include "llvm/PassManager.h"
     12 #include "llvm/Support/TargetSelect.h"
     13 #include "llvm/Transforms/Scalar.h"
     14 #include <cstdio>
     15 #include <map>
     16 #include <string>
     17 #include <vector>
     18 using namespace llvm;
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Lexer
     22 //===----------------------------------------------------------------------===//
     23 
     24 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     25 // of these for known things.
     26 enum Token {
     27   tok_eof = -1,
     28 
     29   // commands
     30   tok_def = -2, tok_extern = -3,
     31 
     32   // primary
     33   tok_identifier = -4, tok_number = -5,
     34 
     35   // control
     36   tok_if = -6, tok_then = -7, tok_else = -8,
     37   tok_for = -9, tok_in = -10,
     38 
     39   // operators
     40   tok_binary = -11, tok_unary = -12,
     41 
     42   // var definition
     43   tok_var = -13
     44 };
     45 
     46 static std::string IdentifierStr;  // Filled in if tok_identifier
     47 static double NumVal;              // Filled in if tok_number
     48 
     49 /// gettok - Return the next token from standard input.
     50 static int gettok() {
     51   static int LastChar = ' ';
     52 
     53   // Skip any whitespace.
     54   while (isspace(LastChar))
     55     LastChar = getchar();
     56 
     57   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
     58     IdentifierStr = LastChar;
     59     while (isalnum((LastChar = getchar())))
     60       IdentifierStr += LastChar;
     61 
     62     if (IdentifierStr == "def") return tok_def;
     63     if (IdentifierStr == "extern") return tok_extern;
     64     if (IdentifierStr == "if") return tok_if;
     65     if (IdentifierStr == "then") return tok_then;
     66     if (IdentifierStr == "else") return tok_else;
     67     if (IdentifierStr == "for") return tok_for;
     68     if (IdentifierStr == "in") return tok_in;
     69     if (IdentifierStr == "binary") return tok_binary;
     70     if (IdentifierStr == "unary") return tok_unary;
     71     if (IdentifierStr == "var") return tok_var;
     72     return tok_identifier;
     73   }
     74 
     75   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
     76     std::string NumStr;
     77     do {
     78       NumStr += LastChar;
     79       LastChar = getchar();
     80     } while (isdigit(LastChar) || LastChar == '.');
     81 
     82     NumVal = strtod(NumStr.c_str(), 0);
     83     return tok_number;
     84   }
     85 
     86   if (LastChar == '#') {
     87     // Comment until end of line.
     88     do LastChar = getchar();
     89     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
     90 
     91     if (LastChar != EOF)
     92       return gettok();
     93   }
     94 
     95   // Check for end of file.  Don't eat the EOF.
     96   if (LastChar == EOF)
     97     return tok_eof;
     98 
     99   // Otherwise, just return the character as its ascii value.
    100   int ThisChar = LastChar;
    101   LastChar = getchar();
    102   return ThisChar;
    103 }
    104 
    105 //===----------------------------------------------------------------------===//
    106 // Abstract Syntax Tree (aka Parse Tree)
    107 //===----------------------------------------------------------------------===//
    108 
    109 /// ExprAST - Base class for all expression nodes.
    110 class ExprAST {
    111 public:
    112   virtual ~ExprAST() {}
    113   virtual Value *Codegen() = 0;
    114 };
    115 
    116 /// NumberExprAST - Expression class for numeric literals like "1.0".
    117 class NumberExprAST : public ExprAST {
    118   double Val;
    119 public:
    120   NumberExprAST(double val) : Val(val) {}
    121   virtual Value *Codegen();
    122 };
    123 
    124 /// VariableExprAST - Expression class for referencing a variable, like "a".
    125 class VariableExprAST : public ExprAST {
    126   std::string Name;
    127 public:
    128   VariableExprAST(const std::string &name) : Name(name) {}
    129   const std::string &getName() const { return Name; }
    130   virtual Value *Codegen();
    131 };
    132 
    133 /// UnaryExprAST - Expression class for a unary operator.
    134 class UnaryExprAST : public ExprAST {
    135   char Opcode;
    136   ExprAST *Operand;
    137 public:
    138   UnaryExprAST(char opcode, ExprAST *operand)
    139     : Opcode(opcode), Operand(operand) {}
    140   virtual Value *Codegen();
    141 };
    142 
    143 /// BinaryExprAST - Expression class for a binary operator.
    144 class BinaryExprAST : public ExprAST {
    145   char Op;
    146   ExprAST *LHS, *RHS;
    147 public:
    148   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    149     : Op(op), LHS(lhs), RHS(rhs) {}
    150   virtual Value *Codegen();
    151 };
    152 
    153 /// CallExprAST - Expression class for function calls.
    154 class CallExprAST : public ExprAST {
    155   std::string Callee;
    156   std::vector<ExprAST*> Args;
    157 public:
    158   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    159     : Callee(callee), Args(args) {}
    160   virtual Value *Codegen();
    161 };
    162 
    163 /// IfExprAST - Expression class for if/then/else.
    164 class IfExprAST : public ExprAST {
    165   ExprAST *Cond, *Then, *Else;
    166 public:
    167   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    168   : Cond(cond), Then(then), Else(_else) {}
    169   virtual Value *Codegen();
    170 };
    171 
    172 /// ForExprAST - Expression class for for/in.
    173 class ForExprAST : public ExprAST {
    174   std::string VarName;
    175   ExprAST *Start, *End, *Step, *Body;
    176 public:
    177   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    178              ExprAST *step, ExprAST *body)
    179     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    180   virtual Value *Codegen();
    181 };
    182 
    183 /// VarExprAST - Expression class for var/in
    184 class VarExprAST : public ExprAST {
    185   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    186   ExprAST *Body;
    187 public:
    188   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    189              ExprAST *body)
    190   : VarNames(varnames), Body(body) {}
    191 
    192   virtual Value *Codegen();
    193 };
    194 
    195 /// PrototypeAST - This class represents the "prototype" for a function,
    196 /// which captures its argument names as well as if it is an operator.
    197 class PrototypeAST {
    198   std::string Name;
    199   std::vector<std::string> Args;
    200   bool isOperator;
    201   unsigned Precedence;  // Precedence if a binary op.
    202 public:
    203   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    204                bool isoperator = false, unsigned prec = 0)
    205   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    206 
    207   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    208   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    209 
    210   char getOperatorName() const {
    211     assert(isUnaryOp() || isBinaryOp());
    212     return Name[Name.size()-1];
    213   }
    214 
    215   unsigned getBinaryPrecedence() const { return Precedence; }
    216 
    217   Function *Codegen();
    218 
    219   void CreateArgumentAllocas(Function *F);
    220 };
    221 
    222 /// FunctionAST - This class represents a function definition itself.
    223 class FunctionAST {
    224   PrototypeAST *Proto;
    225   ExprAST *Body;
    226 public:
    227   FunctionAST(PrototypeAST *proto, ExprAST *body)
    228     : Proto(proto), Body(body) {}
    229 
    230   Function *Codegen();
    231 };
    232 
    233 //===----------------------------------------------------------------------===//
    234 // Parser
    235 //===----------------------------------------------------------------------===//
    236 
    237 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    238 /// token the parser is looking at.  getNextToken reads another token from the
    239 /// lexer and updates CurTok with its results.
    240 static int CurTok;
    241 static int getNextToken() {
    242   return CurTok = gettok();
    243 }
    244 
    245 /// BinopPrecedence - This holds the precedence for each binary operator that is
    246 /// defined.
    247 static std::map<char, int> BinopPrecedence;
    248 
    249 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    250 static int GetTokPrecedence() {
    251   if (!isascii(CurTok))
    252     return -1;
    253 
    254   // Make sure it's a declared binop.
    255   int TokPrec = BinopPrecedence[CurTok];
    256   if (TokPrec <= 0) return -1;
    257   return TokPrec;
    258 }
    259 
    260 /// Error* - These are little helper functions for error handling.
    261 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    262 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    263 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    264 
    265 static ExprAST *ParseExpression();
    266 
    267 /// identifierexpr
    268 ///   ::= identifier
    269 ///   ::= identifier '(' expression* ')'
    270 static ExprAST *ParseIdentifierExpr() {
    271   std::string IdName = IdentifierStr;
    272 
    273   getNextToken();  // eat identifier.
    274 
    275   if (CurTok != '(') // Simple variable ref.
    276     return new VariableExprAST(IdName);
    277 
    278   // Call.
    279   getNextToken();  // eat (
    280   std::vector<ExprAST*> Args;
    281   if (CurTok != ')') {
    282     while (1) {
    283       ExprAST *Arg = ParseExpression();
    284       if (!Arg) return 0;
    285       Args.push_back(Arg);
    286 
    287       if (CurTok == ')') break;
    288 
    289       if (CurTok != ',')
    290         return Error("Expected ')' or ',' in argument list");
    291       getNextToken();
    292     }
    293   }
    294 
    295   // Eat the ')'.
    296   getNextToken();
    297 
    298   return new CallExprAST(IdName, Args);
    299 }
    300 
    301 /// numberexpr ::= number
    302 static ExprAST *ParseNumberExpr() {
    303   ExprAST *Result = new NumberExprAST(NumVal);
    304   getNextToken(); // consume the number
    305   return Result;
    306 }
    307 
    308 /// parenexpr ::= '(' expression ')'
    309 static ExprAST *ParseParenExpr() {
    310   getNextToken();  // eat (.
    311   ExprAST *V = ParseExpression();
    312   if (!V) return 0;
    313 
    314   if (CurTok != ')')
    315     return Error("expected ')'");
    316   getNextToken();  // eat ).
    317   return V;
    318 }
    319 
    320 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    321 static ExprAST *ParseIfExpr() {
    322   getNextToken();  // eat the if.
    323 
    324   // condition.
    325   ExprAST *Cond = ParseExpression();
    326   if (!Cond) return 0;
    327 
    328   if (CurTok != tok_then)
    329     return Error("expected then");
    330   getNextToken();  // eat the then
    331 
    332   ExprAST *Then = ParseExpression();
    333   if (Then == 0) return 0;
    334 
    335   if (CurTok != tok_else)
    336     return Error("expected else");
    337 
    338   getNextToken();
    339 
    340   ExprAST *Else = ParseExpression();
    341   if (!Else) return 0;
    342 
    343   return new IfExprAST(Cond, Then, Else);
    344 }
    345 
    346 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    347 static ExprAST *ParseForExpr() {
    348   getNextToken();  // eat the for.
    349 
    350   if (CurTok != tok_identifier)
    351     return Error("expected identifier after for");
    352 
    353   std::string IdName = IdentifierStr;
    354   getNextToken();  // eat identifier.
    355 
    356   if (CurTok != '=')
    357     return Error("expected '=' after for");
    358   getNextToken();  // eat '='.
    359 
    360 
    361   ExprAST *Start = ParseExpression();
    362   if (Start == 0) return 0;
    363   if (CurTok != ',')
    364     return Error("expected ',' after for start value");
    365   getNextToken();
    366 
    367   ExprAST *End = ParseExpression();
    368   if (End == 0) return 0;
    369 
    370   // The step value is optional.
    371   ExprAST *Step = 0;
    372   if (CurTok == ',') {
    373     getNextToken();
    374     Step = ParseExpression();
    375     if (Step == 0) return 0;
    376   }
    377 
    378   if (CurTok != tok_in)
    379     return Error("expected 'in' after for");
    380   getNextToken();  // eat 'in'.
    381 
    382   ExprAST *Body = ParseExpression();
    383   if (Body == 0) return 0;
    384 
    385   return new ForExprAST(IdName, Start, End, Step, Body);
    386 }
    387 
    388 /// varexpr ::= 'var' identifier ('=' expression)?
    389 //                    (',' identifier ('=' expression)?)* 'in' expression
    390 static ExprAST *ParseVarExpr() {
    391   getNextToken();  // eat the var.
    392 
    393   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    394 
    395   // At least one variable name is required.
    396   if (CurTok != tok_identifier)
    397     return Error("expected identifier after var");
    398 
    399   while (1) {
    400     std::string Name = IdentifierStr;
    401     getNextToken();  // eat identifier.
    402 
    403     // Read the optional initializer.
    404     ExprAST *Init = 0;
    405     if (CurTok == '=') {
    406       getNextToken(); // eat the '='.
    407 
    408       Init = ParseExpression();
    409       if (Init == 0) return 0;
    410     }
    411 
    412     VarNames.push_back(std::make_pair(Name, Init));
    413 
    414     // End of var list, exit loop.
    415     if (CurTok != ',') break;
    416     getNextToken(); // eat the ','.
    417 
    418     if (CurTok != tok_identifier)
    419       return Error("expected identifier list after var");
    420   }
    421 
    422   // At this point, we have to have 'in'.
    423   if (CurTok != tok_in)
    424     return Error("expected 'in' keyword after 'var'");
    425   getNextToken();  // eat 'in'.
    426 
    427   ExprAST *Body = ParseExpression();
    428   if (Body == 0) return 0;
    429 
    430   return new VarExprAST(VarNames, Body);
    431 }
    432 
    433 /// primary
    434 ///   ::= identifierexpr
    435 ///   ::= numberexpr
    436 ///   ::= parenexpr
    437 ///   ::= ifexpr
    438 ///   ::= forexpr
    439 ///   ::= varexpr
    440 static ExprAST *ParsePrimary() {
    441   switch (CurTok) {
    442   default: return Error("unknown token when expecting an expression");
    443   case tok_identifier: return ParseIdentifierExpr();
    444   case tok_number:     return ParseNumberExpr();
    445   case '(':            return ParseParenExpr();
    446   case tok_if:         return ParseIfExpr();
    447   case tok_for:        return ParseForExpr();
    448   case tok_var:        return ParseVarExpr();
    449   }
    450 }
    451 
    452 /// unary
    453 ///   ::= primary
    454 ///   ::= '!' unary
    455 static ExprAST *ParseUnary() {
    456   // If the current token is not an operator, it must be a primary expr.
    457   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    458     return ParsePrimary();
    459 
    460   // If this is a unary operator, read it.
    461   int Opc = CurTok;
    462   getNextToken();
    463   if (ExprAST *Operand = ParseUnary())
    464     return new UnaryExprAST(Opc, Operand);
    465   return 0;
    466 }
    467 
    468 /// binoprhs
    469 ///   ::= ('+' unary)*
    470 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    471   // If this is a binop, find its precedence.
    472   while (1) {
    473     int TokPrec = GetTokPrecedence();
    474 
    475     // If this is a binop that binds at least as tightly as the current binop,
    476     // consume it, otherwise we are done.
    477     if (TokPrec < ExprPrec)
    478       return LHS;
    479 
    480     // Okay, we know this is a binop.
    481     int BinOp = CurTok;
    482     getNextToken();  // eat binop
    483 
    484     // Parse the unary expression after the binary operator.
    485     ExprAST *RHS = ParseUnary();
    486     if (!RHS) return 0;
    487 
    488     // If BinOp binds less tightly with RHS than the operator after RHS, let
    489     // the pending operator take RHS as its LHS.
    490     int NextPrec = GetTokPrecedence();
    491     if (TokPrec < NextPrec) {
    492       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    493       if (RHS == 0) return 0;
    494     }
    495 
    496     // Merge LHS/RHS.
    497     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    498   }
    499 }
    500 
    501 /// expression
    502 ///   ::= unary binoprhs
    503 ///
    504 static ExprAST *ParseExpression() {
    505   ExprAST *LHS = ParseUnary();
    506   if (!LHS) return 0;
    507 
    508   return ParseBinOpRHS(0, LHS);
    509 }
    510 
    511 /// prototype
    512 ///   ::= id '(' id* ')'
    513 ///   ::= binary LETTER number? (id, id)
    514 ///   ::= unary LETTER (id)
    515 static PrototypeAST *ParsePrototype() {
    516   std::string FnName;
    517 
    518   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    519   unsigned BinaryPrecedence = 30;
    520 
    521   switch (CurTok) {
    522   default:
    523     return ErrorP("Expected function name in prototype");
    524   case tok_identifier:
    525     FnName = IdentifierStr;
    526     Kind = 0;
    527     getNextToken();
    528     break;
    529   case tok_unary:
    530     getNextToken();
    531     if (!isascii(CurTok))
    532       return ErrorP("Expected unary operator");
    533     FnName = "unary";
    534     FnName += (char)CurTok;
    535     Kind = 1;
    536     getNextToken();
    537     break;
    538   case tok_binary:
    539     getNextToken();
    540     if (!isascii(CurTok))
    541       return ErrorP("Expected binary operator");
    542     FnName = "binary";
    543     FnName += (char)CurTok;
    544     Kind = 2;
    545     getNextToken();
    546 
    547     // Read the precedence if present.
    548     if (CurTok == tok_number) {
    549       if (NumVal < 1 || NumVal > 100)
    550         return ErrorP("Invalid precedecnce: must be 1..100");
    551       BinaryPrecedence = (unsigned)NumVal;
    552       getNextToken();
    553     }
    554     break;
    555   }
    556 
    557   if (CurTok != '(')
    558     return ErrorP("Expected '(' in prototype");
    559 
    560   std::vector<std::string> ArgNames;
    561   while (getNextToken() == tok_identifier)
    562     ArgNames.push_back(IdentifierStr);
    563   if (CurTok != ')')
    564     return ErrorP("Expected ')' in prototype");
    565 
    566   // success.
    567   getNextToken();  // eat ')'.
    568 
    569   // Verify right number of names for operator.
    570   if (Kind && ArgNames.size() != Kind)
    571     return ErrorP("Invalid number of operands for operator");
    572 
    573   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    574 }
    575 
    576 /// definition ::= 'def' prototype expression
    577 static FunctionAST *ParseDefinition() {
    578   getNextToken();  // eat def.
    579   PrototypeAST *Proto = ParsePrototype();
    580   if (Proto == 0) return 0;
    581 
    582   if (ExprAST *E = ParseExpression())
    583     return new FunctionAST(Proto, E);
    584   return 0;
    585 }
    586 
    587 /// toplevelexpr ::= expression
    588 static FunctionAST *ParseTopLevelExpr() {
    589   if (ExprAST *E = ParseExpression()) {
    590     // Make an anonymous proto.
    591     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    592     return new FunctionAST(Proto, E);
    593   }
    594   return 0;
    595 }
    596 
    597 /// external ::= 'extern' prototype
    598 static PrototypeAST *ParseExtern() {
    599   getNextToken();  // eat extern.
    600   return ParsePrototype();
    601 }
    602 
    603 //===----------------------------------------------------------------------===//
    604 // Quick and dirty hack
    605 //===----------------------------------------------------------------------===//
    606 
    607 // FIXME: Obviously we can do better than this
    608 std::string GenerateUniqueName(const char *root)
    609 {
    610   static int i = 0;
    611   char s[16];
    612   sprintf(s, "%s%d", root, i++);
    613   std::string S = s;
    614   return S;
    615 }
    616 
    617 std::string MakeLegalFunctionName(std::string Name)
    618 {
    619   std::string NewName;
    620   if (!Name.length())
    621       return GenerateUniqueName("anon_func_");
    622 
    623   // Start with what we have
    624   NewName = Name;
    625 
    626   // Look for a numberic first character
    627   if (NewName.find_first_of("0123456789") == 0) {
    628     NewName.insert(0, 1, 'n');
    629   }
    630 
    631   // Replace illegal characters with their ASCII equivalent
    632   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
    633   size_t pos;
    634   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
    635     char old_c = NewName.at(pos);
    636     char new_str[16];
    637     sprintf(new_str, "%d", (int)old_c);
    638     NewName = NewName.replace(pos, 1, new_str);
    639   }
    640 
    641   return NewName;
    642 }
    643 
    644 //===----------------------------------------------------------------------===//
    645 // MCJIT helper class
    646 //===----------------------------------------------------------------------===//
    647 
    648 class MCJITHelper
    649 {
    650 public:
    651   MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {}
    652   ~MCJITHelper();
    653 
    654   Function *getFunction(const std::string FnName);
    655   Module *getModuleForNewFunction();
    656   void *getPointerToFunction(Function* F);
    657   void *getPointerToNamedFunction(const std::string &Name);
    658   void dump();
    659 
    660 private:
    661   typedef std::vector<Module*> ModuleVector;
    662   typedef std::vector<ExecutionEngine*> EngineVector;
    663 
    664   LLVMContext  &Context;
    665   Module       *OpenModule;
    666   ModuleVector  Modules;
    667   EngineVector  Engines;
    668 };
    669 
    670 class HelpingMemoryManager : public SectionMemoryManager
    671 {
    672   HelpingMemoryManager(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    673   void operator=(const HelpingMemoryManager&) LLVM_DELETED_FUNCTION;
    674 
    675 public:
    676   HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {}
    677   virtual ~HelpingMemoryManager() {}
    678 
    679   /// This method returns the address of the specified function.
    680   /// Our implementation will attempt to find functions in other
    681   /// modules associated with the MCJITHelper to cross link functions
    682   /// from one generated module to another.
    683   ///
    684   /// If \p AbortOnFailure is false and no function with the given name is
    685   /// found, this function returns a null pointer. Otherwise, it prints a
    686   /// message to stderr and aborts.
    687   virtual void *getPointerToNamedFunction(const std::string &Name,
    688                                           bool AbortOnFailure = true);
    689 private:
    690   MCJITHelper *MasterHelper;
    691 };
    692 
    693 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name,
    694                                         bool AbortOnFailure)
    695 {
    696   // Try the standard symbol resolution first, but ask it not to abort.
    697   void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false);
    698   if (pfn)
    699     return pfn;
    700 
    701   pfn = MasterHelper->getPointerToNamedFunction(Name);
    702   if (!pfn && AbortOnFailure)
    703     report_fatal_error("Program used external function '" + Name +
    704                         "' which could not be resolved!");
    705   return pfn;
    706 }
    707 
    708 MCJITHelper::~MCJITHelper()
    709 {
    710   if (OpenModule)
    711     delete OpenModule;
    712   EngineVector::iterator begin = Engines.begin();
    713   EngineVector::iterator end = Engines.end();
    714   EngineVector::iterator it;
    715   for (it = begin; it != end; ++it)
    716     delete *it;
    717 }
    718 
    719 Function *MCJITHelper::getFunction(const std::string FnName) {
    720   ModuleVector::iterator begin = Modules.begin();
    721   ModuleVector::iterator end = Modules.end();
    722   ModuleVector::iterator it;
    723   for (it = begin; it != end; ++it) {
    724     Function *F = (*it)->getFunction(FnName);
    725     if (F) {
    726       if (*it == OpenModule)
    727           return F;
    728 
    729       assert(OpenModule != NULL);
    730 
    731       // This function is in a module that has already been JITed.
    732       // We need to generate a new prototype for external linkage.
    733       Function *PF = OpenModule->getFunction(FnName);
    734       if (PF && !PF->empty()) {
    735         ErrorF("redefinition of function across modules");
    736         return 0;
    737       }
    738 
    739       // If we don't have a prototype yet, create one.
    740       if (!PF)
    741         PF = Function::Create(F->getFunctionType(),
    742                                       Function::ExternalLinkage,
    743                                       FnName,
    744                                       OpenModule);
    745       return PF;
    746     }
    747   }
    748   return NULL;
    749 }
    750 
    751 Module *MCJITHelper::getModuleForNewFunction() {
    752   // If we have a Module that hasn't been JITed, use that.
    753   if (OpenModule)
    754     return OpenModule;
    755 
    756   // Otherwise create a new Module.
    757   std::string ModName = GenerateUniqueName("mcjit_module_");
    758   Module *M = new Module(ModName, Context);
    759   Modules.push_back(M);
    760   OpenModule = M;
    761   return M;
    762 }
    763 
    764 void *MCJITHelper::getPointerToFunction(Function* F) {
    765   // See if an existing instance of MCJIT has this function.
    766   EngineVector::iterator begin = Engines.begin();
    767   EngineVector::iterator end = Engines.end();
    768   EngineVector::iterator it;
    769   for (it = begin; it != end; ++it) {
    770     void *P = (*it)->getPointerToFunction(F);
    771     if (P)
    772       return P;
    773   }
    774 
    775   // If we didn't find the function, see if we can generate it.
    776   if (OpenModule) {
    777     std::string ErrStr;
    778     ExecutionEngine *NewEngine = EngineBuilder(OpenModule)
    779                                               .setErrorStr(&ErrStr)
    780                                               .setUseMCJIT(true)
    781                                               .setMCJITMemoryManager(new HelpingMemoryManager(this))
    782                                               .create();
    783     if (!NewEngine) {
    784       fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
    785       exit(1);
    786     }
    787 
    788     // Create a function pass manager for this engine
    789     FunctionPassManager *FPM = new FunctionPassManager(OpenModule);
    790 
    791     // Set up the optimizer pipeline.  Start with registering info about how the
    792     // target lays out data structures.
    793     FPM->add(new DataLayout(*NewEngine->getDataLayout()));
    794     // Provide basic AliasAnalysis support for GVN.
    795     FPM->add(createBasicAliasAnalysisPass());
    796     // Promote allocas to registers.
    797     FPM->add(createPromoteMemoryToRegisterPass());
    798     // Do simple "peephole" optimizations and bit-twiddling optzns.
    799     FPM->add(createInstructionCombiningPass());
    800     // Reassociate expressions.
    801     FPM->add(createReassociatePass());
    802     // Eliminate Common SubExpressions.
    803     FPM->add(createGVNPass());
    804     // Simplify the control flow graph (deleting unreachable blocks, etc).
    805     FPM->add(createCFGSimplificationPass());
    806     FPM->doInitialization();
    807 
    808     // For each function in the module
    809     Module::iterator it;
    810     Module::iterator end = OpenModule->end();
    811     for (it = OpenModule->begin(); it != end; ++it) {
    812       // Run the FPM on this function
    813       FPM->run(*it);
    814     }
    815 
    816     // We don't need this anymore
    817     delete FPM;
    818 
    819     OpenModule = NULL;
    820     Engines.push_back(NewEngine);
    821     NewEngine->finalizeObject();
    822     return NewEngine->getPointerToFunction(F);
    823   }
    824   return NULL;
    825 }
    826 
    827 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name)
    828 {
    829   // Look for the function in each of our execution engines.
    830   EngineVector::iterator begin = Engines.begin();
    831   EngineVector::iterator end = Engines.end();
    832   EngineVector::iterator it;
    833   for (it = begin; it != end; ++it) {
    834     if (Function *F = (*it)->FindFunctionNamed(Name.c_str()))
    835         return (*it)->getPointerToFunction(F);
    836   }
    837 
    838   return NULL;
    839 }
    840 
    841 void MCJITHelper::dump()
    842 {
    843   ModuleVector::iterator begin = Modules.begin();
    844   ModuleVector::iterator end = Modules.end();
    845   ModuleVector::iterator it;
    846   for (it = begin; it != end; ++it)
    847     (*it)->dump();
    848 }
    849 
    850 //===----------------------------------------------------------------------===//
    851 // Code Generation
    852 //===----------------------------------------------------------------------===//
    853 
    854 static MCJITHelper *TheHelper;
    855 static IRBuilder<> Builder(getGlobalContext());
    856 static std::map<std::string, AllocaInst*> NamedValues;
    857 
    858 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    859 
    860 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
    861 /// the function.  This is used for mutable variables etc.
    862 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
    863                                           const std::string &VarName) {
    864   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
    865                  TheFunction->getEntryBlock().begin());
    866   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
    867                            VarName.c_str());
    868 }
    869 
    870 Value *NumberExprAST::Codegen() {
    871   return ConstantFP::get(getGlobalContext(), APFloat(Val));
    872 }
    873 
    874 Value *VariableExprAST::Codegen() {
    875   // Look this variable up in the function.
    876   Value *V = NamedValues[Name];
    877   char ErrStr[256];
    878   sprintf(ErrStr, "Unknown variable name %s", Name.c_str());
    879   if (V == 0) return ErrorV(ErrStr);
    880 
    881   // Load the value.
    882   return Builder.CreateLoad(V, Name.c_str());
    883 }
    884 
    885 Value *UnaryExprAST::Codegen() {
    886   Value *OperandV = Operand->Codegen();
    887   if (OperandV == 0) return 0;
    888 
    889   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
    890   if (F == 0)
    891     return ErrorV("Unknown unary operator");
    892 
    893   return Builder.CreateCall(F, OperandV, "unop");
    894 }
    895 
    896 Value *BinaryExprAST::Codegen() {
    897   // Special case '=' because we don't want to emit the LHS as an expression.
    898   if (Op == '=') {
    899     // Assignment requires the LHS to be an identifier.
    900     VariableExprAST *LHSE = reinterpret_cast<VariableExprAST*>(LHS);
    901     if (!LHSE)
    902       return ErrorV("destination of '=' must be a variable");
    903     // Codegen the RHS.
    904     Value *Val = RHS->Codegen();
    905     if (Val == 0) return 0;
    906 
    907     // Look up the name.
    908     Value *Variable = NamedValues[LHSE->getName()];
    909     if (Variable == 0) return ErrorV("Unknown variable name");
    910 
    911     Builder.CreateStore(Val, Variable);
    912     return Val;
    913   }
    914 
    915   Value *L = LHS->Codegen();
    916   Value *R = RHS->Codegen();
    917   if (L == 0 || R == 0) return 0;
    918 
    919   switch (Op) {
    920   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    921   case '-': return Builder.CreateFSub(L, R, "subtmp");
    922   case '*': return Builder.CreateFMul(L, R, "multmp");
    923   case '/': return Builder.CreateFDiv(L, R, "divtmp");
    924   case '<':
    925     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    926     // Convert bool 0/1 to double 0.0 or 1.0
    927     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
    928                                 "booltmp");
    929   default: break;
    930   }
    931 
    932   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
    933   // a call to it.
    934   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op));
    935   assert(F && "binary operator not found!");
    936 
    937   Value *Ops[] = { L, R };
    938   return Builder.CreateCall(F, Ops, "binop");
    939 }
    940 
    941 Value *CallExprAST::Codegen() {
    942   // Look up the name in the global module table.
    943   Function *CalleeF = TheHelper->getFunction(Callee);
    944   if (CalleeF == 0)
    945     return ErrorV("Unknown function referenced");
    946 
    947   // If argument mismatch error.
    948   if (CalleeF->arg_size() != Args.size())
    949     return ErrorV("Incorrect # arguments passed");
    950 
    951   std::vector<Value*> ArgsV;
    952   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    953     ArgsV.push_back(Args[i]->Codegen());
    954     if (ArgsV.back() == 0) return 0;
    955   }
    956 
    957   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    958 }
    959 
    960 Value *IfExprAST::Codegen() {
    961   Value *CondV = Cond->Codegen();
    962   if (CondV == 0) return 0;
    963 
    964   // Convert condition to a bool by comparing equal to 0.0.
    965   CondV = Builder.CreateFCmpONE(CondV,
    966                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
    967                                 "ifcond");
    968 
    969   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    970 
    971   // Create blocks for the then and else cases.  Insert the 'then' block at the
    972   // end of the function.
    973   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
    974   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
    975   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
    976 
    977   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    978 
    979   // Emit then value.
    980   Builder.SetInsertPoint(ThenBB);
    981 
    982   Value *ThenV = Then->Codegen();
    983   if (ThenV == 0) return 0;
    984 
    985   Builder.CreateBr(MergeBB);
    986   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    987   ThenBB = Builder.GetInsertBlock();
    988 
    989   // Emit else block.
    990   TheFunction->getBasicBlockList().push_back(ElseBB);
    991   Builder.SetInsertPoint(ElseBB);
    992 
    993   Value *ElseV = Else->Codegen();
    994   if (ElseV == 0) return 0;
    995 
    996   Builder.CreateBr(MergeBB);
    997   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    998   ElseBB = Builder.GetInsertBlock();
    999 
   1000   // Emit merge block.
   1001   TheFunction->getBasicBlockList().push_back(MergeBB);
   1002   Builder.SetInsertPoint(MergeBB);
   1003   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
   1004                                   "iftmp");
   1005 
   1006   PN->addIncoming(ThenV, ThenBB);
   1007   PN->addIncoming(ElseV, ElseBB);
   1008   return PN;
   1009 }
   1010 
   1011 Value *ForExprAST::Codegen() {
   1012   // Output this as:
   1013   //   var = alloca double
   1014   //   ...
   1015   //   start = startexpr
   1016   //   store start -> var
   1017   //   goto loop
   1018   // loop:
   1019   //   ...
   1020   //   bodyexpr
   1021   //   ...
   1022   // loopend:
   1023   //   step = stepexpr
   1024   //   endcond = endexpr
   1025   //
   1026   //   curvar = load var
   1027   //   nextvar = curvar + step
   1028   //   store nextvar -> var
   1029   //   br endcond, loop, endloop
   1030   // outloop:
   1031 
   1032   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1033 
   1034   // Create an alloca for the variable in the entry block.
   1035   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1036 
   1037   // Emit the start code first, without 'variable' in scope.
   1038   Value *StartVal = Start->Codegen();
   1039   if (StartVal == 0) return 0;
   1040 
   1041   // Store the value into the alloca.
   1042   Builder.CreateStore(StartVal, Alloca);
   1043 
   1044   // Make the new basic block for the loop header, inserting after current
   1045   // block.
   1046   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
   1047 
   1048   // Insert an explicit fall through from the current block to the LoopBB.
   1049   Builder.CreateBr(LoopBB);
   1050 
   1051   // Start insertion in LoopBB.
   1052   Builder.SetInsertPoint(LoopBB);
   1053 
   1054   // Within the loop, the variable is defined equal to the PHI node.  If it
   1055   // shadows an existing variable, we have to restore it, so save it now.
   1056   AllocaInst *OldVal = NamedValues[VarName];
   1057   NamedValues[VarName] = Alloca;
   1058 
   1059   // Emit the body of the loop.  This, like any other expr, can change the
   1060   // current BB.  Note that we ignore the value computed by the body, but don't
   1061   // allow an error.
   1062   if (Body->Codegen() == 0)
   1063     return 0;
   1064 
   1065   // Emit the step value.
   1066   Value *StepVal;
   1067   if (Step) {
   1068     StepVal = Step->Codegen();
   1069     if (StepVal == 0) return 0;
   1070   } else {
   1071     // If not specified, use 1.0.
   1072     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
   1073   }
   1074 
   1075   // Compute the end condition.
   1076   Value *EndCond = End->Codegen();
   1077   if (EndCond == 0) return EndCond;
   1078 
   1079   // Reload, increment, and restore the alloca.  This handles the case where
   1080   // the body of the loop mutates the variable.
   1081   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
   1082   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
   1083   Builder.CreateStore(NextVar, Alloca);
   1084 
   1085   // Convert condition to a bool by comparing equal to 0.0.
   1086   EndCond = Builder.CreateFCmpONE(EndCond,
   1087                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
   1088                                   "loopcond");
   1089 
   1090   // Create the "after loop" block and insert it.
   1091   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
   1092 
   1093   // Insert the conditional branch into the end of LoopEndBB.
   1094   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
   1095 
   1096   // Any new code will be inserted in AfterBB.
   1097   Builder.SetInsertPoint(AfterBB);
   1098 
   1099   // Restore the unshadowed variable.
   1100   if (OldVal)
   1101     NamedValues[VarName] = OldVal;
   1102   else
   1103     NamedValues.erase(VarName);
   1104 
   1105 
   1106   // for expr always returns 0.0.
   1107   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
   1108 }
   1109 
   1110 Value *VarExprAST::Codegen() {
   1111   std::vector<AllocaInst *> OldBindings;
   1112 
   1113   Function *TheFunction = Builder.GetInsertBlock()->getParent();
   1114 
   1115   // Register all variables and emit their initializer.
   1116   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
   1117     const std::string &VarName = VarNames[i].first;
   1118     ExprAST *Init = VarNames[i].second;
   1119 
   1120     // Emit the initializer before adding the variable to scope, this prevents
   1121     // the initializer from referencing the variable itself, and permits stuff
   1122     // like this:
   1123     //  var a = 1 in
   1124     //    var a = a in ...   # refers to outer 'a'.
   1125     Value *InitVal;
   1126     if (Init) {
   1127       InitVal = Init->Codegen();
   1128       if (InitVal == 0) return 0;
   1129     } else { // If not specified, use 0.0.
   1130       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
   1131     }
   1132 
   1133     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
   1134     Builder.CreateStore(InitVal, Alloca);
   1135 
   1136     // Remember the old variable binding so that we can restore the binding when
   1137     // we unrecurse.
   1138     OldBindings.push_back(NamedValues[VarName]);
   1139 
   1140     // Remember this binding.
   1141     NamedValues[VarName] = Alloca;
   1142   }
   1143 
   1144   // Codegen the body, now that all vars are in scope.
   1145   Value *BodyVal = Body->Codegen();
   1146   if (BodyVal == 0) return 0;
   1147 
   1148   // Pop all our variables from scope.
   1149   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
   1150     NamedValues[VarNames[i].first] = OldBindings[i];
   1151 
   1152   // Return the body computation.
   1153   return BodyVal;
   1154 }
   1155 
   1156 Function *PrototypeAST::Codegen() {
   1157   // Make the function type:  double(double,double) etc.
   1158   std::vector<Type*> Doubles(Args.size(),
   1159                              Type::getDoubleTy(getGlobalContext()));
   1160   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
   1161                                        Doubles, false);
   1162 
   1163   std::string FnName = MakeLegalFunctionName(Name);
   1164 
   1165   Module* M = TheHelper->getModuleForNewFunction();
   1166 
   1167   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M);
   1168 
   1169   // If F conflicted, there was already something named 'FnName'.  If it has a
   1170   // body, don't allow redefinition or reextern.
   1171   if (F->getName() != FnName) {
   1172     // Delete the one we just made and get the existing one.
   1173     F->eraseFromParent();
   1174     F = M->getFunction(Name);
   1175 
   1176     // If F already has a body, reject this.
   1177     if (!F->empty()) {
   1178       ErrorF("redefinition of function");
   1179       return 0;
   1180     }
   1181 
   1182     // If F took a different number of args, reject.
   1183     if (F->arg_size() != Args.size()) {
   1184       ErrorF("redefinition of function with different # args");
   1185       return 0;
   1186     }
   1187   }
   1188 
   1189   // Set names for all arguments.
   1190   unsigned Idx = 0;
   1191   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
   1192        ++AI, ++Idx)
   1193     AI->setName(Args[Idx]);
   1194 
   1195   return F;
   1196 }
   1197 
   1198 /// CreateArgumentAllocas - Create an alloca for each argument and register the
   1199 /// argument in the symbol table so that references to it will succeed.
   1200 void PrototypeAST::CreateArgumentAllocas(Function *F) {
   1201   Function::arg_iterator AI = F->arg_begin();
   1202   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
   1203     // Create an alloca for this variable.
   1204     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
   1205 
   1206     // Store the initial value into the alloca.
   1207     Builder.CreateStore(AI, Alloca);
   1208 
   1209     // Add arguments to variable symbol table.
   1210     NamedValues[Args[Idx]] = Alloca;
   1211   }
   1212 }
   1213 
   1214 Function *FunctionAST::Codegen() {
   1215   NamedValues.clear();
   1216 
   1217   Function *TheFunction = Proto->Codegen();
   1218   if (TheFunction == 0)
   1219     return 0;
   1220 
   1221   // If this is an operator, install it.
   1222   if (Proto->isBinaryOp())
   1223     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
   1224 
   1225   // Create a new basic block to start insertion into.
   1226   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
   1227   Builder.SetInsertPoint(BB);
   1228 
   1229   // Add all arguments to the symbol table and create their allocas.
   1230   Proto->CreateArgumentAllocas(TheFunction);
   1231 
   1232   if (Value *RetVal = Body->Codegen()) {
   1233     // Finish off the function.
   1234     Builder.CreateRet(RetVal);
   1235 
   1236     // Validate the generated code, checking for consistency.
   1237     verifyFunction(*TheFunction);
   1238 
   1239     return TheFunction;
   1240   }
   1241 
   1242   // Error reading body, remove function.
   1243   TheFunction->eraseFromParent();
   1244 
   1245   if (Proto->isBinaryOp())
   1246     BinopPrecedence.erase(Proto->getOperatorName());
   1247   return 0;
   1248 }
   1249 
   1250 //===----------------------------------------------------------------------===//
   1251 // Top-Level parsing and JIT Driver
   1252 //===----------------------------------------------------------------------===//
   1253 
   1254 static void HandleDefinition() {
   1255   if (FunctionAST *F = ParseDefinition()) {
   1256     if (Function *LF = F->Codegen()) {
   1257 #ifndef MINIMAL_STDERR_OUTPUT
   1258       fprintf(stderr, "Read function definition:");
   1259       LF->dump();
   1260 #endif
   1261     }
   1262   } else {
   1263     // Skip token for error recovery.
   1264     getNextToken();
   1265   }
   1266 }
   1267 
   1268 static void HandleExtern() {
   1269   if (PrototypeAST *P = ParseExtern()) {
   1270     if (Function *F = P->Codegen()) {
   1271 #ifndef MINIMAL_STDERR_OUTPUT
   1272       fprintf(stderr, "Read extern: ");
   1273       F->dump();
   1274 #endif
   1275     }
   1276   } else {
   1277     // Skip token for error recovery.
   1278     getNextToken();
   1279   }
   1280 }
   1281 
   1282 static void HandleTopLevelExpression() {
   1283   // Evaluate a top-level expression into an anonymous function.
   1284   if (FunctionAST *F = ParseTopLevelExpr()) {
   1285     if (Function *LF = F->Codegen()) {
   1286       // JIT the function, returning a function pointer.
   1287       void *FPtr = TheHelper->getPointerToFunction(LF);
   1288 
   1289       // Cast it to the right type (takes no arguments, returns a double) so we
   1290       // can call it as a native function.
   1291       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1292 #ifdef MINIMAL_STDERR_OUTPUT
   1293       FP();
   1294 #else
   1295       fprintf(stderr, "Evaluated to %f\n", FP());
   1296 #endif
   1297     }
   1298   } else {
   1299     // Skip token for error recovery.
   1300     getNextToken();
   1301   }
   1302 }
   1303 
   1304 /// top ::= definition | external | expression | ';'
   1305 static void MainLoop() {
   1306   while (1) {
   1307 #ifndef MINIMAL_STDERR_OUTPUT
   1308     fprintf(stderr, "ready> ");
   1309 #endif
   1310     switch (CurTok) {
   1311     case tok_eof:    return;
   1312     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1313     case tok_def:    HandleDefinition(); break;
   1314     case tok_extern: HandleExtern(); break;
   1315     default:         HandleTopLevelExpression(); break;
   1316     }
   1317   }
   1318 }
   1319 
   1320 //===----------------------------------------------------------------------===//
   1321 // "Library" functions that can be "extern'd" from user code.
   1322 //===----------------------------------------------------------------------===//
   1323 
   1324 /// putchard - putchar that takes a double and returns 0.
   1325 extern "C"
   1326 double putchard(double X) {
   1327   putchar((char)X);
   1328   return 0;
   1329 }
   1330 
   1331 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1332 extern "C"
   1333 double printd(double X) {
   1334   printf("%f", X);
   1335   return 0;
   1336 }
   1337 
   1338 extern "C"
   1339 double printlf() {
   1340   printf("\n");
   1341   return 0;
   1342 }
   1343 
   1344 //===----------------------------------------------------------------------===//
   1345 // Main driver code.
   1346 //===----------------------------------------------------------------------===//
   1347 
   1348 int main() {
   1349   InitializeNativeTarget();
   1350   InitializeNativeTargetAsmPrinter();
   1351   InitializeNativeTargetAsmParser();
   1352   LLVMContext &Context = getGlobalContext();
   1353 
   1354   // Install standard binary operators.
   1355   // 1 is lowest precedence.
   1356   BinopPrecedence['='] = 2;
   1357   BinopPrecedence['<'] = 10;
   1358   BinopPrecedence['+'] = 20;
   1359   BinopPrecedence['-'] = 20;
   1360   BinopPrecedence['/'] = 40;
   1361   BinopPrecedence['*'] = 40;  // highest.
   1362 
   1363   // Prime the first token.
   1364 #ifndef MINIMAL_STDERR_OUTPUT
   1365   fprintf(stderr, "ready> ");
   1366 #endif
   1367   getNextToken();
   1368 
   1369   // Make the helper, which holds all the code.
   1370   TheHelper = new MCJITHelper(Context);
   1371 
   1372   // Run the main "interpreter loop" now.
   1373   MainLoop();
   1374 
   1375 #ifndef MINIMAL_STDERR_OUTPUT
   1376   // Print out all of the generated code.
   1377   TheHelper->dump();
   1378 #endif
   1379 
   1380   return 0;
   1381 }
   1382