Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // The current metadata format is very simple. TBAA MDNodes have up to
     20 // three fields, e.g.:
     21 //   !0 = metadata !{ metadata !"an example type tree" }
     22 //   !1 = metadata !{ metadata !"int", metadata !0 }
     23 //   !2 = metadata !{ metadata !"float", metadata !0 }
     24 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
     25 //
     26 // The first field is an identity field. It can be any value, usually
     27 // an MDString, which uniquely identifies the type. The most important
     28 // name in the tree is the name of the root node. Two trees with
     29 // different root node names are entirely disjoint, even if they
     30 // have leaves with common names.
     31 //
     32 // The second field identifies the type's parent node in the tree, or
     33 // is null or omitted for a root node. A type is considered to alias
     34 // all of its descendants and all of its ancestors in the tree. Also,
     35 // a type is considered to alias all types in other trees, so that
     36 // bitcode produced from multiple front-ends is handled conservatively.
     37 //
     38 // If the third field is present, it's an integer which if equal to 1
     39 // indicates that the type is "constant" (meaning pointsToConstantMemory
     40 // should return true; see
     41 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     42 //
     43 // TODO: The current metadata format doesn't support struct
     44 // fields. For example:
     45 //   struct X {
     46 //     double d;
     47 //     int i;
     48 //   };
     49 //   void foo(struct X *x, struct X *y, double *p) {
     50 //     *x = *y;
     51 //     *p = 0.0;
     52 //   }
     53 // Struct X has a double member, so the store to *x can alias the store to *p.
     54 // Currently it's not possible to precisely describe all the things struct X
     55 // aliases, so struct assignments must use conservative TBAA nodes. There's
     56 // no scheme for attaching metadata to @llvm.memcpy yet either.
     57 //
     58 //===----------------------------------------------------------------------===//
     59 
     60 #include "llvm/Analysis/Passes.h"
     61 #include "llvm/Analysis/AliasAnalysis.h"
     62 #include "llvm/IR/Constants.h"
     63 #include "llvm/IR/LLVMContext.h"
     64 #include "llvm/IR/Metadata.h"
     65 #include "llvm/IR/Module.h"
     66 #include "llvm/Pass.h"
     67 #include "llvm/Support/CommandLine.h"
     68 using namespace llvm;
     69 
     70 // A handy option for disabling TBAA functionality. The same effect can also be
     71 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
     72 // more convenient.
     73 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
     74 static cl::opt<bool> EnableStructPathTBAA("struct-path-tbaa", cl::init(false));
     75 
     76 namespace {
     77   /// TBAANode - This is a simple wrapper around an MDNode which provides a
     78   /// higher-level interface by hiding the details of how alias analysis
     79   /// information is encoded in its operands.
     80   class TBAANode {
     81     const MDNode *Node;
     82 
     83   public:
     84     TBAANode() : Node(0) {}
     85     explicit TBAANode(const MDNode *N) : Node(N) {}
     86 
     87     /// getNode - Get the MDNode for this TBAANode.
     88     const MDNode *getNode() const { return Node; }
     89 
     90     /// getParent - Get this TBAANode's Alias tree parent.
     91     TBAANode getParent() const {
     92       if (Node->getNumOperands() < 2)
     93         return TBAANode();
     94       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
     95       if (!P)
     96         return TBAANode();
     97       // Ok, this node has a valid parent. Return it.
     98       return TBAANode(P);
     99     }
    100 
    101     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
    102     /// which are not modified (by any means) in the context where this
    103     /// AliasAnalysis is relevant.
    104     bool TypeIsImmutable() const {
    105       if (Node->getNumOperands() < 3)
    106         return false;
    107       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
    108       if (!CI)
    109         return false;
    110       return CI->getValue()[0];
    111     }
    112   };
    113 
    114   /// This is a simple wrapper around an MDNode which provides a
    115   /// higher-level interface by hiding the details of how alias analysis
    116   /// information is encoded in its operands.
    117   class TBAAStructTagNode {
    118     /// This node should be created with createTBAAStructTagNode.
    119     const MDNode *Node;
    120 
    121   public:
    122     TBAAStructTagNode() : Node(0) {}
    123     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
    124 
    125     /// Get the MDNode for this TBAAStructTagNode.
    126     const MDNode *getNode() const { return Node; }
    127 
    128     const MDNode *getBaseType() const {
    129       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    130     }
    131     const MDNode *getAccessType() const {
    132       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    133     }
    134     uint64_t getOffset() const {
    135       return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
    136     }
    137     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
    138     /// objects which are not modified (by any means) in the context where this
    139     /// AliasAnalysis is relevant.
    140     bool TypeIsImmutable() const {
    141       if (Node->getNumOperands() < 4)
    142         return false;
    143       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
    144       if (!CI)
    145         return false;
    146       return CI->getValue()[0];
    147     }
    148   };
    149 
    150   /// This is a simple wrapper around an MDNode which provides a
    151   /// higher-level interface by hiding the details of how alias analysis
    152   /// information is encoded in its operands.
    153   class TBAAStructTypeNode {
    154     /// This node should be created with createTBAAStructTypeNode.
    155     const MDNode *Node;
    156 
    157   public:
    158     TBAAStructTypeNode() : Node(0) {}
    159     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    160 
    161     /// Get the MDNode for this TBAAStructTypeNode.
    162     const MDNode *getNode() const { return Node; }
    163 
    164     /// Get this TBAAStructTypeNode's field in the type DAG with
    165     /// given offset. Update the offset to be relative to the field type.
    166     TBAAStructTypeNode getParent(uint64_t &Offset) const {
    167       // Parent can be omitted for the root node.
    168       if (Node->getNumOperands() < 2)
    169         return TBAAStructTypeNode();
    170 
    171       // Special handling for a scalar type node.
    172       if (Node->getNumOperands() <= 3) {
    173         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    174         if (!P)
    175           return TBAAStructTypeNode();
    176         return TBAAStructTypeNode(P);
    177       }
    178 
    179       // Assume the offsets are in order. We return the previous field if
    180       // the current offset is bigger than the given offset.
    181       unsigned TheIdx = 0;
    182       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
    183         uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
    184                          getZExtValue();
    185         if (Cur > Offset) {
    186           assert(Idx >= 3 &&
    187                  "TBAAStructTypeNode::getParent should have an offset match!");
    188           TheIdx = Idx - 2;
    189           break;
    190         }
    191       }
    192       // Move along the last field.
    193       if (TheIdx == 0)
    194         TheIdx = Node->getNumOperands() - 2;
    195       uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
    196                        getZExtValue();
    197       Offset -= Cur;
    198       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    199       if (!P)
    200         return TBAAStructTypeNode();
    201       return TBAAStructTypeNode(P);
    202     }
    203   };
    204 }
    205 
    206 namespace {
    207   /// TypeBasedAliasAnalysis - This is a simple alias analysis
    208   /// implementation that uses TypeBased to answer queries.
    209   class TypeBasedAliasAnalysis : public ImmutablePass,
    210                                  public AliasAnalysis {
    211   public:
    212     static char ID; // Class identification, replacement for typeinfo
    213     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
    214       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
    215     }
    216 
    217     virtual void initializePass() {
    218       InitializeAliasAnalysis(this);
    219     }
    220 
    221     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    222     /// an analysis interface through multiple inheritance.  If needed, it
    223     /// should override this to adjust the this pointer as needed for the
    224     /// specified pass info.
    225     virtual void *getAdjustedAnalysisPointer(const void *PI) {
    226       if (PI == &AliasAnalysis::ID)
    227         return (AliasAnalysis*)this;
    228       return this;
    229     }
    230 
    231     bool Aliases(const MDNode *A, const MDNode *B) const;
    232     bool PathAliases(const MDNode *A, const MDNode *B) const;
    233 
    234   private:
    235     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    236     virtual AliasResult alias(const Location &LocA, const Location &LocB);
    237     virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
    238     virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
    239     virtual ModRefBehavior getModRefBehavior(const Function *F);
    240     virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
    241                                        const Location &Loc);
    242     virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
    243                                        ImmutableCallSite CS2);
    244   };
    245 }  // End of anonymous namespace
    246 
    247 // Register this pass...
    248 char TypeBasedAliasAnalysis::ID = 0;
    249 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
    250                    "Type-Based Alias Analysis", false, true, false)
    251 
    252 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
    253   return new TypeBasedAliasAnalysis();
    254 }
    255 
    256 void
    257 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    258   AU.setPreservesAll();
    259   AliasAnalysis::getAnalysisUsage(AU);
    260 }
    261 
    262 /// Aliases - Test whether the type represented by A may alias the
    263 /// type represented by B.
    264 bool
    265 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
    266                                 const MDNode *B) const {
    267   if (EnableStructPathTBAA)
    268     return PathAliases(A, B);
    269 
    270   // Keep track of the root node for A and B.
    271   TBAANode RootA, RootB;
    272 
    273   // Climb the tree from A to see if we reach B.
    274   for (TBAANode T(A); ; ) {
    275     if (T.getNode() == B)
    276       // B is an ancestor of A.
    277       return true;
    278 
    279     RootA = T;
    280     T = T.getParent();
    281     if (!T.getNode())
    282       break;
    283   }
    284 
    285   // Climb the tree from B to see if we reach A.
    286   for (TBAANode T(B); ; ) {
    287     if (T.getNode() == A)
    288       // A is an ancestor of B.
    289       return true;
    290 
    291     RootB = T;
    292     T = T.getParent();
    293     if (!T.getNode())
    294       break;
    295   }
    296 
    297   // Neither node is an ancestor of the other.
    298 
    299   // If they have different roots, they're part of different potentially
    300   // unrelated type systems, so we must be conservative.
    301   if (RootA.getNode() != RootB.getNode())
    302     return true;
    303 
    304   // If they have the same root, then we've proved there's no alias.
    305   return false;
    306 }
    307 
    308 /// Test whether the struct-path tag represented by A may alias the
    309 /// struct-path tag represented by B.
    310 bool
    311 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
    312                                     const MDNode *B) const {
    313   // Keep track of the root node for A and B.
    314   TBAAStructTypeNode RootA, RootB;
    315   TBAAStructTagNode TagA(A), TagB(B);
    316 
    317   // TODO: We need to check if AccessType of TagA encloses AccessType of
    318   // TagB to support aggregate AccessType. If yes, return true.
    319 
    320   // Start from the base type of A, follow the edge with the correct offset in
    321   // the type DAG and adjust the offset until we reach the base type of B or
    322   // until we reach the Root node.
    323   // Compare the adjusted offset once we have the same base.
    324 
    325   // Climb the type DAG from base type of A to see if we reach base type of B.
    326   const MDNode *BaseA = TagA.getBaseType();
    327   const MDNode *BaseB = TagB.getBaseType();
    328   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
    329   for (TBAAStructTypeNode T(BaseA); ; ) {
    330     if (T.getNode() == BaseB)
    331       // Base type of A encloses base type of B, check if the offsets match.
    332       return OffsetA == OffsetB;
    333 
    334     RootA = T;
    335     // Follow the edge with the correct offset, OffsetA will be adjusted to
    336     // be relative to the field type.
    337     T = T.getParent(OffsetA);
    338     if (!T.getNode())
    339       break;
    340   }
    341 
    342   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
    343   // base type of A.
    344   OffsetA = TagA.getOffset();
    345   for (TBAAStructTypeNode T(BaseB); ; ) {
    346     if (T.getNode() == BaseA)
    347       // Base type of B encloses base type of A, check if the offsets match.
    348       return OffsetA == OffsetB;
    349 
    350     RootB = T;
    351     // Follow the edge with the correct offset, OffsetB will be adjusted to
    352     // be relative to the field type.
    353     T = T.getParent(OffsetB);
    354     if (!T.getNode())
    355       break;
    356   }
    357 
    358   // Neither node is an ancestor of the other.
    359 
    360   // If they have different roots, they're part of different potentially
    361   // unrelated type systems, so we must be conservative.
    362   if (RootA.getNode() != RootB.getNode())
    363     return true;
    364 
    365   // If they have the same root, then we've proved there's no alias.
    366   return false;
    367 }
    368 
    369 AliasAnalysis::AliasResult
    370 TypeBasedAliasAnalysis::alias(const Location &LocA,
    371                               const Location &LocB) {
    372   if (!EnableTBAA)
    373     return AliasAnalysis::alias(LocA, LocB);
    374 
    375   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
    376   // be conservative.
    377   const MDNode *AM = LocA.TBAATag;
    378   if (!AM) return AliasAnalysis::alias(LocA, LocB);
    379   const MDNode *BM = LocB.TBAATag;
    380   if (!BM) return AliasAnalysis::alias(LocA, LocB);
    381 
    382   // If they may alias, chain to the next AliasAnalysis.
    383   if (Aliases(AM, BM))
    384     return AliasAnalysis::alias(LocA, LocB);
    385 
    386   // Otherwise return a definitive result.
    387   return NoAlias;
    388 }
    389 
    390 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
    391                                                     bool OrLocal) {
    392   if (!EnableTBAA)
    393     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    394 
    395   const MDNode *M = Loc.TBAATag;
    396   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    397 
    398   // If this is an "immutable" type, we can assume the pointer is pointing
    399   // to constant memory.
    400   if ((!EnableStructPathTBAA && TBAANode(M).TypeIsImmutable()) ||
    401       (EnableStructPathTBAA && TBAAStructTagNode(M).TypeIsImmutable()))
    402     return true;
    403 
    404   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    405 }
    406 
    407 AliasAnalysis::ModRefBehavior
    408 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    409   if (!EnableTBAA)
    410     return AliasAnalysis::getModRefBehavior(CS);
    411 
    412   ModRefBehavior Min = UnknownModRefBehavior;
    413 
    414   // If this is an "immutable" type, we can assume the call doesn't write
    415   // to memory.
    416   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    417     if ((!EnableStructPathTBAA && TBAANode(M).TypeIsImmutable()) ||
    418         (EnableStructPathTBAA && TBAAStructTagNode(M).TypeIsImmutable()))
    419       Min = OnlyReadsMemory;
    420 
    421   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    422 }
    423 
    424 AliasAnalysis::ModRefBehavior
    425 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
    426   // Functions don't have metadata. Just chain to the next implementation.
    427   return AliasAnalysis::getModRefBehavior(F);
    428 }
    429 
    430 AliasAnalysis::ModRefResult
    431 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    432                                       const Location &Loc) {
    433   if (!EnableTBAA)
    434     return AliasAnalysis::getModRefInfo(CS, Loc);
    435 
    436   if (const MDNode *L = Loc.TBAATag)
    437     if (const MDNode *M =
    438           CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    439       if (!Aliases(L, M))
    440         return NoModRef;
    441 
    442   return AliasAnalysis::getModRefInfo(CS, Loc);
    443 }
    444 
    445 AliasAnalysis::ModRefResult
    446 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
    447                                       ImmutableCallSite CS2) {
    448   if (!EnableTBAA)
    449     return AliasAnalysis::getModRefInfo(CS1, CS2);
    450 
    451   if (const MDNode *M1 =
    452         CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    453     if (const MDNode *M2 =
    454           CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    455       if (!Aliases(M1, M2))
    456         return NoModRef;
    457 
    458   return AliasAnalysis::getModRefInfo(CS1, CS2);
    459 }
    460 
    461 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    462   if (!A || !B)
    463     return NULL;
    464 
    465   if (A == B)
    466     return A;
    467 
    468   // For struct-path aware TBAA, we use the access type of the tag.
    469   if (EnableStructPathTBAA) {
    470     A = cast_or_null<MDNode>(A->getOperand(1));
    471     if (!A) return 0;
    472     B = cast_or_null<MDNode>(B->getOperand(1));
    473     if (!B) return 0;
    474   }
    475 
    476   SmallVector<MDNode *, 4> PathA;
    477   MDNode *T = A;
    478   while (T) {
    479     PathA.push_back(T);
    480     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
    481   }
    482 
    483   SmallVector<MDNode *, 4> PathB;
    484   T = B;
    485   while (T) {
    486     PathB.push_back(T);
    487     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
    488   }
    489 
    490   int IA = PathA.size() - 1;
    491   int IB = PathB.size() - 1;
    492 
    493   MDNode *Ret = 0;
    494   while (IA >= 0 && IB >=0) {
    495     if (PathA[IA] == PathB[IB])
    496       Ret = PathA[IA];
    497     else
    498       break;
    499     --IA;
    500     --IB;
    501   }
    502   if (!EnableStructPathTBAA)
    503     return Ret;
    504 
    505   if (!Ret)
    506     return 0;
    507   // We need to convert from a type node to a tag node.
    508   Type *Int64 = IntegerType::get(A->getContext(), 64);
    509   Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
    510   return MDNode::get(A->getContext(), Ops);
    511 }
    512