1 //===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ARMMCCodeEmitter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "mccodeemitter" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "MCTargetDesc/ARMAddressingModes.h" 17 #include "MCTargetDesc/ARMBaseInfo.h" 18 #include "MCTargetDesc/ARMFixupKinds.h" 19 #include "MCTargetDesc/ARMMCExpr.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/MC/MCCodeEmitter.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCInst.h" 26 #include "llvm/MC/MCInstrInfo.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSubtargetInfo.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 STATISTIC(MCNumEmitted, "Number of MC instructions emitted."); 34 STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created."); 35 36 namespace { 37 class ARMMCCodeEmitter : public MCCodeEmitter { 38 ARMMCCodeEmitter(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION; 39 void operator=(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION; 40 const MCInstrInfo &MCII; 41 const MCSubtargetInfo &STI; 42 const MCContext &CTX; 43 44 public: 45 ARMMCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti, 46 MCContext &ctx) 47 : MCII(mcii), STI(sti), CTX(ctx) { 48 } 49 50 ~ARMMCCodeEmitter() {} 51 52 bool isThumb() const { 53 // FIXME: Can tablegen auto-generate this? 54 return (STI.getFeatureBits() & ARM::ModeThumb) != 0; 55 } 56 bool isThumb2() const { 57 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) != 0; 58 } 59 bool isTargetDarwin() const { 60 Triple TT(STI.getTargetTriple()); 61 Triple::OSType OS = TT.getOS(); 62 return OS == Triple::Darwin || OS == Triple::MacOSX || OS == Triple::IOS; 63 } 64 65 unsigned getMachineSoImmOpValue(unsigned SoImm) const; 66 67 // getBinaryCodeForInstr - TableGen'erated function for getting the 68 // binary encoding for an instruction. 69 uint64_t getBinaryCodeForInstr(const MCInst &MI, 70 SmallVectorImpl<MCFixup> &Fixups) const; 71 72 /// getMachineOpValue - Return binary encoding of operand. If the machine 73 /// operand requires relocation, record the relocation and return zero. 74 unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO, 75 SmallVectorImpl<MCFixup> &Fixups) const; 76 77 /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of 78 /// the specified operand. This is used for operands with :lower16: and 79 /// :upper16: prefixes. 80 uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, 81 SmallVectorImpl<MCFixup> &Fixups) const; 82 83 bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, 84 unsigned &Reg, unsigned &Imm, 85 SmallVectorImpl<MCFixup> &Fixups) const; 86 87 /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate 88 /// BL branch target. 89 uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 90 SmallVectorImpl<MCFixup> &Fixups) const; 91 92 /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate 93 /// BLX branch target. 94 uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 95 SmallVectorImpl<MCFixup> &Fixups) const; 96 97 /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. 98 uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, 99 SmallVectorImpl<MCFixup> &Fixups) const; 100 101 /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. 102 uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, 103 SmallVectorImpl<MCFixup> &Fixups) const; 104 105 /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. 106 uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, 107 SmallVectorImpl<MCFixup> &Fixups) const; 108 109 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate 110 /// branch target. 111 uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 112 SmallVectorImpl<MCFixup> &Fixups) const; 113 114 /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit 115 /// immediate Thumb2 direct branch target. 116 uint32_t getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 117 SmallVectorImpl<MCFixup> &Fixups) const; 118 119 /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate 120 /// branch target. 121 uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 122 SmallVectorImpl<MCFixup> &Fixups) const; 123 uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 124 SmallVectorImpl<MCFixup> &Fixups) const; 125 uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 126 SmallVectorImpl<MCFixup> &Fixups) const; 127 128 /// getAdrLabelOpValue - Return encoding info for 12-bit immediate 129 /// ADR label target. 130 uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 131 SmallVectorImpl<MCFixup> &Fixups) const; 132 uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 133 SmallVectorImpl<MCFixup> &Fixups) const; 134 uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 135 SmallVectorImpl<MCFixup> &Fixups) const; 136 137 138 /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' 139 /// operand. 140 uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, 141 SmallVectorImpl<MCFixup> &Fixups) const; 142 143 /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand. 144 uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, 145 SmallVectorImpl<MCFixup> &Fixups)const; 146 147 /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2' 148 /// operand. 149 uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, 150 SmallVectorImpl<MCFixup> &Fixups) const; 151 152 /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2' 153 /// operand. 154 uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, 155 SmallVectorImpl<MCFixup> &Fixups) const; 156 157 /// getT2Imm8s4OpValue - Return encoding info for '+/- imm8<<2' 158 /// operand. 159 uint32_t getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx, 160 SmallVectorImpl<MCFixup> &Fixups) const; 161 162 163 /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm' 164 /// operand as needed by load/store instructions. 165 uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, 166 SmallVectorImpl<MCFixup> &Fixups) const; 167 168 /// getLdStmModeOpValue - Return encoding for load/store multiple mode. 169 uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx, 170 SmallVectorImpl<MCFixup> &Fixups) const { 171 ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm(); 172 switch (Mode) { 173 default: llvm_unreachable("Unknown addressing sub-mode!"); 174 case ARM_AM::da: return 0; 175 case ARM_AM::ia: return 1; 176 case ARM_AM::db: return 2; 177 case ARM_AM::ib: return 3; 178 } 179 } 180 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. 181 /// 182 unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const { 183 switch (ShOpc) { 184 case ARM_AM::no_shift: 185 case ARM_AM::lsl: return 0; 186 case ARM_AM::lsr: return 1; 187 case ARM_AM::asr: return 2; 188 case ARM_AM::ror: 189 case ARM_AM::rrx: return 3; 190 } 191 llvm_unreachable("Invalid ShiftOpc!"); 192 } 193 194 /// getAddrMode2OpValue - Return encoding for addrmode2 operands. 195 uint32_t getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx, 196 SmallVectorImpl<MCFixup> &Fixups) const; 197 198 /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands. 199 uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, 200 SmallVectorImpl<MCFixup> &Fixups) const; 201 202 /// getPostIdxRegOpValue - Return encoding for postidx_reg operands. 203 uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, 204 SmallVectorImpl<MCFixup> &Fixups) const; 205 206 /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands. 207 uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, 208 SmallVectorImpl<MCFixup> &Fixups) const; 209 210 /// getAddrMode3OpValue - Return encoding for addrmode3 operands. 211 uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, 212 SmallVectorImpl<MCFixup> &Fixups) const; 213 214 /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12' 215 /// operand. 216 uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, 217 SmallVectorImpl<MCFixup> &Fixups) const; 218 219 /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. 220 uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, 221 SmallVectorImpl<MCFixup> &Fixups) const; 222 223 /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. 224 uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, 225 SmallVectorImpl<MCFixup> &Fixups) const; 226 227 /// getAddrMode5OpValue - Return encoding info for 'reg +/- imm8' operand. 228 uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, 229 SmallVectorImpl<MCFixup> &Fixups) const; 230 231 /// getCCOutOpValue - Return encoding of the 's' bit. 232 unsigned getCCOutOpValue(const MCInst &MI, unsigned Op, 233 SmallVectorImpl<MCFixup> &Fixups) const { 234 // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or 235 // '1' respectively. 236 return MI.getOperand(Op).getReg() == ARM::CPSR; 237 } 238 239 /// getSOImmOpValue - Return an encoded 12-bit shifted-immediate value. 240 unsigned getSOImmOpValue(const MCInst &MI, unsigned Op, 241 SmallVectorImpl<MCFixup> &Fixups) const { 242 unsigned SoImm = MI.getOperand(Op).getImm(); 243 int SoImmVal = ARM_AM::getSOImmVal(SoImm); 244 assert(SoImmVal != -1 && "Not a valid so_imm value!"); 245 246 // Encode rotate_imm. 247 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) 248 << ARMII::SoRotImmShift; 249 250 // Encode immed_8. 251 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); 252 return Binary; 253 } 254 255 /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value. 256 unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op, 257 SmallVectorImpl<MCFixup> &Fixups) const { 258 unsigned SoImm = MI.getOperand(Op).getImm(); 259 unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm); 260 assert(Encoded != ~0U && "Not a Thumb2 so_imm value?"); 261 return Encoded; 262 } 263 264 unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, 265 SmallVectorImpl<MCFixup> &Fixups) const; 266 unsigned getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum, 267 SmallVectorImpl<MCFixup> &Fixups) const; 268 unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, 269 SmallVectorImpl<MCFixup> &Fixups) const; 270 unsigned getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum, 271 SmallVectorImpl<MCFixup> &Fixups) const; 272 273 /// getSORegOpValue - Return an encoded so_reg shifted register value. 274 unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op, 275 SmallVectorImpl<MCFixup> &Fixups) const; 276 unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op, 277 SmallVectorImpl<MCFixup> &Fixups) const; 278 unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op, 279 SmallVectorImpl<MCFixup> &Fixups) const; 280 281 unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op, 282 SmallVectorImpl<MCFixup> &Fixups) const { 283 return 64 - MI.getOperand(Op).getImm(); 284 } 285 286 unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, 287 SmallVectorImpl<MCFixup> &Fixups) const; 288 289 unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op, 290 SmallVectorImpl<MCFixup> &Fixups) const; 291 unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, 292 SmallVectorImpl<MCFixup> &Fixups) const; 293 unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, 294 SmallVectorImpl<MCFixup> &Fixups) const; 295 unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, 296 SmallVectorImpl<MCFixup> &Fixups) const; 297 unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, 298 SmallVectorImpl<MCFixup> &Fixups) const; 299 300 unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op, 301 SmallVectorImpl<MCFixup> &Fixups) const; 302 unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op, 303 SmallVectorImpl<MCFixup> &Fixups) const; 304 unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op, 305 SmallVectorImpl<MCFixup> &Fixups) const; 306 unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op, 307 SmallVectorImpl<MCFixup> &Fixups) const; 308 309 unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op, 310 SmallVectorImpl<MCFixup> &Fixups) const; 311 312 unsigned NEONThumb2DataIPostEncoder(const MCInst &MI, 313 unsigned EncodedValue) const; 314 unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI, 315 unsigned EncodedValue) const; 316 unsigned NEONThumb2DupPostEncoder(const MCInst &MI, 317 unsigned EncodedValue) const; 318 unsigned NEONThumb2V8PostEncoder(const MCInst &MI, 319 unsigned EncodedValue) const; 320 321 unsigned VFPThumb2PostEncoder(const MCInst &MI, 322 unsigned EncodedValue) const; 323 324 void EmitByte(unsigned char C, raw_ostream &OS) const { 325 OS << (char)C; 326 } 327 328 void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { 329 // Output the constant in little endian byte order. 330 for (unsigned i = 0; i != Size; ++i) { 331 EmitByte(Val & 255, OS); 332 Val >>= 8; 333 } 334 } 335 336 void EncodeInstruction(const MCInst &MI, raw_ostream &OS, 337 SmallVectorImpl<MCFixup> &Fixups) const; 338 }; 339 340 } // end anonymous namespace 341 342 MCCodeEmitter *llvm::createARMMCCodeEmitter(const MCInstrInfo &MCII, 343 const MCRegisterInfo &MRI, 344 const MCSubtargetInfo &STI, 345 MCContext &Ctx) { 346 return new ARMMCCodeEmitter(MCII, STI, Ctx); 347 } 348 349 /// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing 350 /// instructions, and rewrite them to their Thumb2 form if we are currently in 351 /// Thumb2 mode. 352 unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI, 353 unsigned EncodedValue) const { 354 if (isThumb2()) { 355 // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved 356 // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are 357 // set to 1111. 358 unsigned Bit24 = EncodedValue & 0x01000000; 359 unsigned Bit28 = Bit24 << 4; 360 EncodedValue &= 0xEFFFFFFF; 361 EncodedValue |= Bit28; 362 EncodedValue |= 0x0F000000; 363 } 364 365 return EncodedValue; 366 } 367 368 /// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store 369 /// instructions, and rewrite them to their Thumb2 form if we are currently in 370 /// Thumb2 mode. 371 unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI, 372 unsigned EncodedValue) const { 373 if (isThumb2()) { 374 EncodedValue &= 0xF0FFFFFF; 375 EncodedValue |= 0x09000000; 376 } 377 378 return EncodedValue; 379 } 380 381 /// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup 382 /// instructions, and rewrite them to their Thumb2 form if we are currently in 383 /// Thumb2 mode. 384 unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI, 385 unsigned EncodedValue) const { 386 if (isThumb2()) { 387 EncodedValue &= 0x00FFFFFF; 388 EncodedValue |= 0xEE000000; 389 } 390 391 return EncodedValue; 392 } 393 394 /// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form 395 /// if we are in Thumb2. 396 unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI, 397 unsigned EncodedValue) const { 398 if (isThumb2()) { 399 EncodedValue |= 0xC000000; // Set bits 27-26 400 } 401 402 return EncodedValue; 403 } 404 405 /// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite 406 /// them to their Thumb2 form if we are currently in Thumb2 mode. 407 unsigned ARMMCCodeEmitter:: 408 VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue) const { 409 if (isThumb2()) { 410 EncodedValue &= 0x0FFFFFFF; 411 EncodedValue |= 0xE0000000; 412 } 413 return EncodedValue; 414 } 415 416 /// getMachineOpValue - Return binary encoding of operand. If the machine 417 /// operand requires relocation, record the relocation and return zero. 418 unsigned ARMMCCodeEmitter:: 419 getMachineOpValue(const MCInst &MI, const MCOperand &MO, 420 SmallVectorImpl<MCFixup> &Fixups) const { 421 if (MO.isReg()) { 422 unsigned Reg = MO.getReg(); 423 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); 424 425 // Q registers are encoded as 2x their register number. 426 switch (Reg) { 427 default: 428 return RegNo; 429 case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3: 430 case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7: 431 case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11: 432 case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15: 433 return 2 * RegNo; 434 } 435 } else if (MO.isImm()) { 436 return static_cast<unsigned>(MO.getImm()); 437 } else if (MO.isFPImm()) { 438 return static_cast<unsigned>(APFloat(MO.getFPImm()) 439 .bitcastToAPInt().getHiBits(32).getLimitedValue()); 440 } 441 442 llvm_unreachable("Unable to encode MCOperand!"); 443 } 444 445 /// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand. 446 bool ARMMCCodeEmitter:: 447 EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg, 448 unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups) const { 449 const MCOperand &MO = MI.getOperand(OpIdx); 450 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 451 452 Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 453 454 int32_t SImm = MO1.getImm(); 455 bool isAdd = true; 456 457 // Special value for #-0 458 if (SImm == INT32_MIN) { 459 SImm = 0; 460 isAdd = false; 461 } 462 463 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 464 if (SImm < 0) { 465 SImm = -SImm; 466 isAdd = false; 467 } 468 469 Imm = SImm; 470 return isAdd; 471 } 472 473 /// getBranchTargetOpValue - Helper function to get the branch target operand, 474 /// which is either an immediate or requires a fixup. 475 static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 476 unsigned FixupKind, 477 SmallVectorImpl<MCFixup> &Fixups) { 478 const MCOperand &MO = MI.getOperand(OpIdx); 479 480 // If the destination is an immediate, we have nothing to do. 481 if (MO.isImm()) return MO.getImm(); 482 assert(MO.isExpr() && "Unexpected branch target type!"); 483 const MCExpr *Expr = MO.getExpr(); 484 MCFixupKind Kind = MCFixupKind(FixupKind); 485 Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); 486 487 // All of the information is in the fixup. 488 return 0; 489 } 490 491 // Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are 492 // determined by negating them and XOR'ing them with bit 23. 493 static int32_t encodeThumbBLOffset(int32_t offset) { 494 offset >>= 1; 495 uint32_t S = (offset & 0x800000) >> 23; 496 uint32_t J1 = (offset & 0x400000) >> 22; 497 uint32_t J2 = (offset & 0x200000) >> 21; 498 J1 = (~J1 & 0x1); 499 J2 = (~J2 & 0x1); 500 J1 ^= S; 501 J2 ^= S; 502 503 offset &= ~0x600000; 504 offset |= J1 << 22; 505 offset |= J2 << 21; 506 507 return offset; 508 } 509 510 /// getThumbBLTargetOpValue - Return encoding info for immediate branch target. 511 uint32_t ARMMCCodeEmitter:: 512 getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 513 SmallVectorImpl<MCFixup> &Fixups) const { 514 const MCOperand MO = MI.getOperand(OpIdx); 515 if (MO.isExpr()) 516 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl, 517 Fixups); 518 return encodeThumbBLOffset(MO.getImm()); 519 } 520 521 /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate 522 /// BLX branch target. 523 uint32_t ARMMCCodeEmitter:: 524 getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 525 SmallVectorImpl<MCFixup> &Fixups) const { 526 const MCOperand MO = MI.getOperand(OpIdx); 527 if (MO.isExpr()) 528 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx, 529 Fixups); 530 return encodeThumbBLOffset(MO.getImm()); 531 } 532 533 /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. 534 uint32_t ARMMCCodeEmitter:: 535 getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, 536 SmallVectorImpl<MCFixup> &Fixups) const { 537 const MCOperand MO = MI.getOperand(OpIdx); 538 if (MO.isExpr()) 539 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br, 540 Fixups); 541 return (MO.getImm() >> 1); 542 } 543 544 /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. 545 uint32_t ARMMCCodeEmitter:: 546 getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, 547 SmallVectorImpl<MCFixup> &Fixups) const { 548 const MCOperand MO = MI.getOperand(OpIdx); 549 if (MO.isExpr()) 550 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc, 551 Fixups); 552 return (MO.getImm() >> 1); 553 } 554 555 /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. 556 uint32_t ARMMCCodeEmitter:: 557 getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, 558 SmallVectorImpl<MCFixup> &Fixups) const { 559 const MCOperand MO = MI.getOperand(OpIdx); 560 if (MO.isExpr()) 561 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups); 562 return (MO.getImm() >> 1); 563 } 564 565 /// Return true if this branch has a non-always predication 566 static bool HasConditionalBranch(const MCInst &MI) { 567 int NumOp = MI.getNumOperands(); 568 if (NumOp >= 2) { 569 for (int i = 0; i < NumOp-1; ++i) { 570 const MCOperand &MCOp1 = MI.getOperand(i); 571 const MCOperand &MCOp2 = MI.getOperand(i + 1); 572 if (MCOp1.isImm() && MCOp2.isReg() && 573 (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) { 574 if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL) 575 return true; 576 } 577 } 578 } 579 return false; 580 } 581 582 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch 583 /// target. 584 uint32_t ARMMCCodeEmitter:: 585 getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 586 SmallVectorImpl<MCFixup> &Fixups) const { 587 // FIXME: This really, really shouldn't use TargetMachine. We don't want 588 // coupling between MC and TM anywhere we can help it. 589 if (isThumb2()) 590 return 591 ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups); 592 return getARMBranchTargetOpValue(MI, OpIdx, Fixups); 593 } 594 595 /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch 596 /// target. 597 uint32_t ARMMCCodeEmitter:: 598 getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 599 SmallVectorImpl<MCFixup> &Fixups) const { 600 const MCOperand MO = MI.getOperand(OpIdx); 601 if (MO.isExpr()) { 602 if (HasConditionalBranch(MI)) 603 return ::getBranchTargetOpValue(MI, OpIdx, 604 ARM::fixup_arm_condbranch, Fixups); 605 return ::getBranchTargetOpValue(MI, OpIdx, 606 ARM::fixup_arm_uncondbranch, Fixups); 607 } 608 609 return MO.getImm() >> 2; 610 } 611 612 uint32_t ARMMCCodeEmitter:: 613 getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, 614 SmallVectorImpl<MCFixup> &Fixups) const { 615 const MCOperand MO = MI.getOperand(OpIdx); 616 if (MO.isExpr()) { 617 if (HasConditionalBranch(MI)) 618 return ::getBranchTargetOpValue(MI, OpIdx, 619 ARM::fixup_arm_condbl, Fixups); 620 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups); 621 } 622 623 return MO.getImm() >> 2; 624 } 625 626 uint32_t ARMMCCodeEmitter:: 627 getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, 628 SmallVectorImpl<MCFixup> &Fixups) const { 629 const MCOperand MO = MI.getOperand(OpIdx); 630 if (MO.isExpr()) 631 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups); 632 633 return MO.getImm() >> 1; 634 } 635 636 /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit 637 /// immediate branch target. 638 uint32_t ARMMCCodeEmitter:: 639 getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, 640 SmallVectorImpl<MCFixup> &Fixups) const { 641 unsigned Val = 642 ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups); 643 bool I = (Val & 0x800000); 644 bool J1 = (Val & 0x400000); 645 bool J2 = (Val & 0x200000); 646 if (I ^ J1) 647 Val &= ~0x400000; 648 else 649 Val |= 0x400000; 650 651 if (I ^ J2) 652 Val &= ~0x200000; 653 else 654 Val |= 0x200000; 655 656 return Val; 657 } 658 659 /// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate 660 /// ADR label target. 661 uint32_t ARMMCCodeEmitter:: 662 getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 663 SmallVectorImpl<MCFixup> &Fixups) const { 664 const MCOperand MO = MI.getOperand(OpIdx); 665 if (MO.isExpr()) 666 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12, 667 Fixups); 668 int32_t offset = MO.getImm(); 669 uint32_t Val = 0x2000; 670 671 int SoImmVal; 672 if (offset == INT32_MIN) { 673 Val = 0x1000; 674 SoImmVal = 0; 675 } else if (offset < 0) { 676 Val = 0x1000; 677 offset *= -1; 678 SoImmVal = ARM_AM::getSOImmVal(offset); 679 if(SoImmVal == -1) { 680 Val = 0x2000; 681 offset *= -1; 682 SoImmVal = ARM_AM::getSOImmVal(offset); 683 } 684 } else { 685 SoImmVal = ARM_AM::getSOImmVal(offset); 686 if(SoImmVal == -1) { 687 Val = 0x1000; 688 offset *= -1; 689 SoImmVal = ARM_AM::getSOImmVal(offset); 690 } 691 } 692 693 assert(SoImmVal != -1 && "Not a valid so_imm value!"); 694 695 Val |= SoImmVal; 696 return Val; 697 } 698 699 /// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label 700 /// target. 701 uint32_t ARMMCCodeEmitter:: 702 getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 703 SmallVectorImpl<MCFixup> &Fixups) const { 704 const MCOperand MO = MI.getOperand(OpIdx); 705 if (MO.isExpr()) 706 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12, 707 Fixups); 708 int32_t Val = MO.getImm(); 709 if (Val == INT32_MIN) 710 Val = 0x1000; 711 else if (Val < 0) { 712 Val *= -1; 713 Val |= 0x1000; 714 } 715 return Val; 716 } 717 718 /// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label 719 /// target. 720 uint32_t ARMMCCodeEmitter:: 721 getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, 722 SmallVectorImpl<MCFixup> &Fixups) const { 723 const MCOperand MO = MI.getOperand(OpIdx); 724 if (MO.isExpr()) 725 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10, 726 Fixups); 727 return MO.getImm(); 728 } 729 730 /// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg' 731 /// operand. 732 uint32_t ARMMCCodeEmitter:: 733 getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, 734 SmallVectorImpl<MCFixup> &) const { 735 // [Rn, Rm] 736 // {5-3} = Rm 737 // {2-0} = Rn 738 const MCOperand &MO1 = MI.getOperand(OpIdx); 739 const MCOperand &MO2 = MI.getOperand(OpIdx + 1); 740 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 741 unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); 742 return (Rm << 3) | Rn; 743 } 744 745 /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand. 746 uint32_t ARMMCCodeEmitter:: 747 getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, 748 SmallVectorImpl<MCFixup> &Fixups) const { 749 // {17-13} = reg 750 // {12} = (U)nsigned (add == '1', sub == '0') 751 // {11-0} = imm12 752 unsigned Reg, Imm12; 753 bool isAdd = true; 754 // If The first operand isn't a register, we have a label reference. 755 const MCOperand &MO = MI.getOperand(OpIdx); 756 if (!MO.isReg()) { 757 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 758 Imm12 = 0; 759 760 if (MO.isExpr()) { 761 const MCExpr *Expr = MO.getExpr(); 762 isAdd = false ; // 'U' bit is set as part of the fixup. 763 764 MCFixupKind Kind; 765 if (isThumb2()) 766 Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12); 767 else 768 Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12); 769 Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); 770 771 ++MCNumCPRelocations; 772 } else { 773 Reg = ARM::PC; 774 int32_t Offset = MO.getImm(); 775 // FIXME: Handle #-0. 776 if (Offset < 0) { 777 Offset *= -1; 778 isAdd = false; 779 } 780 Imm12 = Offset; 781 } 782 } else 783 isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups); 784 785 uint32_t Binary = Imm12 & 0xfff; 786 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 787 if (isAdd) 788 Binary |= (1 << 12); 789 Binary |= (Reg << 13); 790 return Binary; 791 } 792 793 /// getT2Imm8s4OpValue - Return encoding info for 794 /// '+/- imm8<<2' operand. 795 uint32_t ARMMCCodeEmitter:: 796 getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx, 797 SmallVectorImpl<MCFixup> &Fixups) const { 798 // FIXME: The immediate operand should have already been encoded like this 799 // before ever getting here. The encoder method should just need to combine 800 // the MI operands for the register and the offset into a single 801 // representation for the complex operand in the .td file. This isn't just 802 // style, unfortunately. As-is, we can't represent the distinct encoding 803 // for #-0. 804 805 // {8} = (U)nsigned (add == '1', sub == '0') 806 // {7-0} = imm8 807 int32_t Imm8 = MI.getOperand(OpIdx).getImm(); 808 bool isAdd = Imm8 >= 0; 809 810 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 811 if (Imm8 < 0) 812 Imm8 = -(uint32_t)Imm8; 813 814 // Scaled by 4. 815 Imm8 /= 4; 816 817 uint32_t Binary = Imm8 & 0xff; 818 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 819 if (isAdd) 820 Binary |= (1 << 8); 821 return Binary; 822 } 823 824 /// getT2AddrModeImm8s4OpValue - Return encoding info for 825 /// 'reg +/- imm8<<2' operand. 826 uint32_t ARMMCCodeEmitter:: 827 getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, 828 SmallVectorImpl<MCFixup> &Fixups) const { 829 // {12-9} = reg 830 // {8} = (U)nsigned (add == '1', sub == '0') 831 // {7-0} = imm8 832 unsigned Reg, Imm8; 833 bool isAdd = true; 834 // If The first operand isn't a register, we have a label reference. 835 const MCOperand &MO = MI.getOperand(OpIdx); 836 if (!MO.isReg()) { 837 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 838 Imm8 = 0; 839 isAdd = false ; // 'U' bit is set as part of the fixup. 840 841 assert(MO.isExpr() && "Unexpected machine operand type!"); 842 const MCExpr *Expr = MO.getExpr(); 843 MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); 844 Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); 845 846 ++MCNumCPRelocations; 847 } else 848 isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups); 849 850 // FIXME: The immediate operand should have already been encoded like this 851 // before ever getting here. The encoder method should just need to combine 852 // the MI operands for the register and the offset into a single 853 // representation for the complex operand in the .td file. This isn't just 854 // style, unfortunately. As-is, we can't represent the distinct encoding 855 // for #-0. 856 uint32_t Binary = (Imm8 >> 2) & 0xff; 857 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 858 if (isAdd) 859 Binary |= (1 << 8); 860 Binary |= (Reg << 9); 861 return Binary; 862 } 863 864 /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 865 /// 'reg + imm8<<2' operand. 866 uint32_t ARMMCCodeEmitter:: 867 getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, 868 SmallVectorImpl<MCFixup> &Fixups) const { 869 // {11-8} = reg 870 // {7-0} = imm8 871 const MCOperand &MO = MI.getOperand(OpIdx); 872 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 873 unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 874 unsigned Imm8 = MO1.getImm(); 875 return (Reg << 8) | Imm8; 876 } 877 878 // FIXME: This routine assumes that a binary 879 // expression will always result in a PCRel expression 880 // In reality, its only true if one or more subexpressions 881 // is itself a PCRel (i.e. "." in asm or some other pcrel construct) 882 // but this is good enough for now. 883 static bool EvaluateAsPCRel(const MCExpr *Expr) { 884 switch (Expr->getKind()) { 885 default: llvm_unreachable("Unexpected expression type"); 886 case MCExpr::SymbolRef: return false; 887 case MCExpr::Binary: return true; 888 } 889 } 890 891 uint32_t 892 ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, 893 SmallVectorImpl<MCFixup> &Fixups) const { 894 // {20-16} = imm{15-12} 895 // {11-0} = imm{11-0} 896 const MCOperand &MO = MI.getOperand(OpIdx); 897 if (MO.isImm()) 898 // Hi / lo 16 bits already extracted during earlier passes. 899 return static_cast<unsigned>(MO.getImm()); 900 901 // Handle :upper16: and :lower16: assembly prefixes. 902 const MCExpr *E = MO.getExpr(); 903 MCFixupKind Kind; 904 if (E->getKind() == MCExpr::Target) { 905 const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E); 906 E = ARM16Expr->getSubExpr(); 907 908 switch (ARM16Expr->getKind()) { 909 default: llvm_unreachable("Unsupported ARMFixup"); 910 case ARMMCExpr::VK_ARM_HI16: 911 if (!isTargetDarwin() && EvaluateAsPCRel(E)) 912 Kind = MCFixupKind(isThumb2() 913 ? ARM::fixup_t2_movt_hi16_pcrel 914 : ARM::fixup_arm_movt_hi16_pcrel); 915 else 916 Kind = MCFixupKind(isThumb2() 917 ? ARM::fixup_t2_movt_hi16 918 : ARM::fixup_arm_movt_hi16); 919 break; 920 case ARMMCExpr::VK_ARM_LO16: 921 if (!isTargetDarwin() && EvaluateAsPCRel(E)) 922 Kind = MCFixupKind(isThumb2() 923 ? ARM::fixup_t2_movw_lo16_pcrel 924 : ARM::fixup_arm_movw_lo16_pcrel); 925 else 926 Kind = MCFixupKind(isThumb2() 927 ? ARM::fixup_t2_movw_lo16 928 : ARM::fixup_arm_movw_lo16); 929 break; 930 } 931 Fixups.push_back(MCFixup::Create(0, E, Kind, MI.getLoc())); 932 return 0; 933 } 934 // If the expression doesn't have :upper16: or :lower16: on it, 935 // it's just a plain immediate expression, and those evaluate to 936 // the lower 16 bits of the expression regardless of whether 937 // we have a movt or a movw. 938 if (!isTargetDarwin() && EvaluateAsPCRel(E)) 939 Kind = MCFixupKind(isThumb2() 940 ? ARM::fixup_t2_movw_lo16_pcrel 941 : ARM::fixup_arm_movw_lo16_pcrel); 942 else 943 Kind = MCFixupKind(isThumb2() 944 ? ARM::fixup_t2_movw_lo16 945 : ARM::fixup_arm_movw_lo16); 946 Fixups.push_back(MCFixup::Create(0, E, Kind, MI.getLoc())); 947 return 0; 948 } 949 950 uint32_t ARMMCCodeEmitter:: 951 getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, 952 SmallVectorImpl<MCFixup> &Fixups) const { 953 const MCOperand &MO = MI.getOperand(OpIdx); 954 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 955 const MCOperand &MO2 = MI.getOperand(OpIdx+2); 956 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 957 unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 958 unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()); 959 bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add; 960 ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm()); 961 unsigned SBits = getShiftOp(ShOp); 962 963 // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift 964 // amount. However, it would be an easy mistake to make so check here. 965 assert((ShImm & ~0x1f) == 0 && "Out of range shift amount"); 966 967 // {16-13} = Rn 968 // {12} = isAdd 969 // {11-0} = shifter 970 // {3-0} = Rm 971 // {4} = 0 972 // {6-5} = type 973 // {11-7} = imm 974 uint32_t Binary = Rm; 975 Binary |= Rn << 13; 976 Binary |= SBits << 5; 977 Binary |= ShImm << 7; 978 if (isAdd) 979 Binary |= 1 << 12; 980 return Binary; 981 } 982 983 uint32_t ARMMCCodeEmitter:: 984 getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx, 985 SmallVectorImpl<MCFixup> &Fixups) const { 986 // {17-14} Rn 987 // {13} 1 == imm12, 0 == Rm 988 // {12} isAdd 989 // {11-0} imm12/Rm 990 const MCOperand &MO = MI.getOperand(OpIdx); 991 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 992 uint32_t Binary = getAddrMode2OffsetOpValue(MI, OpIdx + 1, Fixups); 993 Binary |= Rn << 14; 994 return Binary; 995 } 996 997 uint32_t ARMMCCodeEmitter:: 998 getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, 999 SmallVectorImpl<MCFixup> &Fixups) const { 1000 // {13} 1 == imm12, 0 == Rm 1001 // {12} isAdd 1002 // {11-0} imm12/Rm 1003 const MCOperand &MO = MI.getOperand(OpIdx); 1004 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1005 unsigned Imm = MO1.getImm(); 1006 bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add; 1007 bool isReg = MO.getReg() != 0; 1008 uint32_t Binary = ARM_AM::getAM2Offset(Imm); 1009 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12 1010 if (isReg) { 1011 ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm); 1012 Binary <<= 7; // Shift amount is bits [11:7] 1013 Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5] 1014 Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0] 1015 } 1016 return Binary | (isAdd << 12) | (isReg << 13); 1017 } 1018 1019 uint32_t ARMMCCodeEmitter:: 1020 getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, 1021 SmallVectorImpl<MCFixup> &Fixups) const { 1022 // {4} isAdd 1023 // {3-0} Rm 1024 const MCOperand &MO = MI.getOperand(OpIdx); 1025 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1026 bool isAdd = MO1.getImm() != 0; 1027 return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4); 1028 } 1029 1030 uint32_t ARMMCCodeEmitter:: 1031 getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, 1032 SmallVectorImpl<MCFixup> &Fixups) const { 1033 // {9} 1 == imm8, 0 == Rm 1034 // {8} isAdd 1035 // {7-4} imm7_4/zero 1036 // {3-0} imm3_0/Rm 1037 const MCOperand &MO = MI.getOperand(OpIdx); 1038 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1039 unsigned Imm = MO1.getImm(); 1040 bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; 1041 bool isImm = MO.getReg() == 0; 1042 uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); 1043 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 1044 if (!isImm) 1045 Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1046 return Imm8 | (isAdd << 8) | (isImm << 9); 1047 } 1048 1049 uint32_t ARMMCCodeEmitter:: 1050 getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, 1051 SmallVectorImpl<MCFixup> &Fixups) const { 1052 // {13} 1 == imm8, 0 == Rm 1053 // {12-9} Rn 1054 // {8} isAdd 1055 // {7-4} imm7_4/zero 1056 // {3-0} imm3_0/Rm 1057 const MCOperand &MO = MI.getOperand(OpIdx); 1058 const MCOperand &MO1 = MI.getOperand(OpIdx+1); 1059 const MCOperand &MO2 = MI.getOperand(OpIdx+2); 1060 1061 // If The first operand isn't a register, we have a label reference. 1062 if (!MO.isReg()) { 1063 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1064 1065 assert(MO.isExpr() && "Unexpected machine operand type!"); 1066 const MCExpr *Expr = MO.getExpr(); 1067 MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled); 1068 Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); 1069 1070 ++MCNumCPRelocations; 1071 return (Rn << 9) | (1 << 13); 1072 } 1073 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1074 unsigned Imm = MO2.getImm(); 1075 bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; 1076 bool isImm = MO1.getReg() == 0; 1077 uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); 1078 // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 1079 if (!isImm) 1080 Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1081 return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13); 1082 } 1083 1084 /// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands. 1085 uint32_t ARMMCCodeEmitter:: 1086 getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, 1087 SmallVectorImpl<MCFixup> &Fixups) const { 1088 // [SP, #imm] 1089 // {7-0} = imm8 1090 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1091 assert(MI.getOperand(OpIdx).getReg() == ARM::SP && 1092 "Unexpected base register!"); 1093 1094 // The immediate is already shifted for the implicit zeroes, so no change 1095 // here. 1096 return MO1.getImm() & 0xff; 1097 } 1098 1099 /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. 1100 uint32_t ARMMCCodeEmitter:: 1101 getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, 1102 SmallVectorImpl<MCFixup> &Fixups) const { 1103 // [Rn, #imm] 1104 // {7-3} = imm5 1105 // {2-0} = Rn 1106 const MCOperand &MO = MI.getOperand(OpIdx); 1107 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1108 unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1109 unsigned Imm5 = MO1.getImm(); 1110 return ((Imm5 & 0x1f) << 3) | Rn; 1111 } 1112 1113 /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. 1114 uint32_t ARMMCCodeEmitter:: 1115 getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, 1116 SmallVectorImpl<MCFixup> &Fixups) const { 1117 const MCOperand MO = MI.getOperand(OpIdx); 1118 if (MO.isExpr()) 1119 return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups); 1120 return (MO.getImm() >> 2); 1121 } 1122 1123 /// getAddrMode5OpValue - Return encoding info for 'reg +/- imm10' operand. 1124 uint32_t ARMMCCodeEmitter:: 1125 getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, 1126 SmallVectorImpl<MCFixup> &Fixups) const { 1127 // {12-9} = reg 1128 // {8} = (U)nsigned (add == '1', sub == '0') 1129 // {7-0} = imm8 1130 unsigned Reg, Imm8; 1131 bool isAdd; 1132 // If The first operand isn't a register, we have a label reference. 1133 const MCOperand &MO = MI.getOperand(OpIdx); 1134 if (!MO.isReg()) { 1135 Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. 1136 Imm8 = 0; 1137 isAdd = false; // 'U' bit is handled as part of the fixup. 1138 1139 assert(MO.isExpr() && "Unexpected machine operand type!"); 1140 const MCExpr *Expr = MO.getExpr(); 1141 MCFixupKind Kind; 1142 if (isThumb2()) 1143 Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); 1144 else 1145 Kind = MCFixupKind(ARM::fixup_arm_pcrel_10); 1146 Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); 1147 1148 ++MCNumCPRelocations; 1149 } else { 1150 EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups); 1151 isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add; 1152 } 1153 1154 uint32_t Binary = ARM_AM::getAM5Offset(Imm8); 1155 // Immediate is always encoded as positive. The 'U' bit controls add vs sub. 1156 if (isAdd) 1157 Binary |= (1 << 8); 1158 Binary |= (Reg << 9); 1159 return Binary; 1160 } 1161 1162 unsigned ARMMCCodeEmitter:: 1163 getSORegRegOpValue(const MCInst &MI, unsigned OpIdx, 1164 SmallVectorImpl<MCFixup> &Fixups) const { 1165 // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be 1166 // shifted. The second is Rs, the amount to shift by, and the third specifies 1167 // the type of the shift. 1168 // 1169 // {3-0} = Rm. 1170 // {4} = 1 1171 // {6-5} = type 1172 // {11-8} = Rs 1173 // {7} = 0 1174 1175 const MCOperand &MO = MI.getOperand(OpIdx); 1176 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1177 const MCOperand &MO2 = MI.getOperand(OpIdx + 2); 1178 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); 1179 1180 // Encode Rm. 1181 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1182 1183 // Encode the shift opcode. 1184 unsigned SBits = 0; 1185 unsigned Rs = MO1.getReg(); 1186 if (Rs) { 1187 // Set shift operand (bit[7:4]). 1188 // LSL - 0001 1189 // LSR - 0011 1190 // ASR - 0101 1191 // ROR - 0111 1192 switch (SOpc) { 1193 default: llvm_unreachable("Unknown shift opc!"); 1194 case ARM_AM::lsl: SBits = 0x1; break; 1195 case ARM_AM::lsr: SBits = 0x3; break; 1196 case ARM_AM::asr: SBits = 0x5; break; 1197 case ARM_AM::ror: SBits = 0x7; break; 1198 } 1199 } 1200 1201 Binary |= SBits << 4; 1202 1203 // Encode the shift operation Rs. 1204 // Encode Rs bit[11:8]. 1205 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); 1206 return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift); 1207 } 1208 1209 unsigned ARMMCCodeEmitter:: 1210 getSORegImmOpValue(const MCInst &MI, unsigned OpIdx, 1211 SmallVectorImpl<MCFixup> &Fixups) const { 1212 // Sub-operands are [reg, imm]. The first register is Rm, the reg to be 1213 // shifted. The second is the amount to shift by. 1214 // 1215 // {3-0} = Rm. 1216 // {4} = 0 1217 // {6-5} = type 1218 // {11-7} = imm 1219 1220 const MCOperand &MO = MI.getOperand(OpIdx); 1221 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1222 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); 1223 1224 // Encode Rm. 1225 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1226 1227 // Encode the shift opcode. 1228 unsigned SBits = 0; 1229 1230 // Set shift operand (bit[6:4]). 1231 // LSL - 000 1232 // LSR - 010 1233 // ASR - 100 1234 // ROR - 110 1235 // RRX - 110 and bit[11:8] clear. 1236 switch (SOpc) { 1237 default: llvm_unreachable("Unknown shift opc!"); 1238 case ARM_AM::lsl: SBits = 0x0; break; 1239 case ARM_AM::lsr: SBits = 0x2; break; 1240 case ARM_AM::asr: SBits = 0x4; break; 1241 case ARM_AM::ror: SBits = 0x6; break; 1242 case ARM_AM::rrx: 1243 Binary |= 0x60; 1244 return Binary; 1245 } 1246 1247 // Encode shift_imm bit[11:7]. 1248 Binary |= SBits << 4; 1249 unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm()); 1250 assert(Offset < 32 && "Offset must be in range 0-31!"); 1251 return Binary | (Offset << 7); 1252 } 1253 1254 1255 unsigned ARMMCCodeEmitter:: 1256 getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, 1257 SmallVectorImpl<MCFixup> &Fixups) const { 1258 const MCOperand &MO1 = MI.getOperand(OpNum); 1259 const MCOperand &MO2 = MI.getOperand(OpNum+1); 1260 const MCOperand &MO3 = MI.getOperand(OpNum+2); 1261 1262 // Encoded as [Rn, Rm, imm]. 1263 // FIXME: Needs fixup support. 1264 unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1265 Value <<= 4; 1266 Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); 1267 Value <<= 2; 1268 Value |= MO3.getImm(); 1269 1270 return Value; 1271 } 1272 1273 unsigned ARMMCCodeEmitter:: 1274 getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum, 1275 SmallVectorImpl<MCFixup> &Fixups) const { 1276 const MCOperand &MO1 = MI.getOperand(OpNum); 1277 const MCOperand &MO2 = MI.getOperand(OpNum+1); 1278 1279 // FIXME: Needs fixup support. 1280 unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); 1281 1282 // Even though the immediate is 8 bits long, we need 9 bits in order 1283 // to represent the (inverse of the) sign bit. 1284 Value <<= 9; 1285 int32_t tmp = (int32_t)MO2.getImm(); 1286 if (tmp < 0) 1287 tmp = abs(tmp); 1288 else 1289 Value |= 256; // Set the ADD bit 1290 Value |= tmp & 255; 1291 return Value; 1292 } 1293 1294 unsigned ARMMCCodeEmitter:: 1295 getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, 1296 SmallVectorImpl<MCFixup> &Fixups) const { 1297 const MCOperand &MO1 = MI.getOperand(OpNum); 1298 1299 // FIXME: Needs fixup support. 1300 unsigned Value = 0; 1301 int32_t tmp = (int32_t)MO1.getImm(); 1302 if (tmp < 0) 1303 tmp = abs(tmp); 1304 else 1305 Value |= 256; // Set the ADD bit 1306 Value |= tmp & 255; 1307 return Value; 1308 } 1309 1310 unsigned ARMMCCodeEmitter:: 1311 getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum, 1312 SmallVectorImpl<MCFixup> &Fixups) const { 1313 const MCOperand &MO1 = MI.getOperand(OpNum); 1314 1315 // FIXME: Needs fixup support. 1316 unsigned Value = 0; 1317 int32_t tmp = (int32_t)MO1.getImm(); 1318 if (tmp < 0) 1319 tmp = abs(tmp); 1320 else 1321 Value |= 4096; // Set the ADD bit 1322 Value |= tmp & 4095; 1323 return Value; 1324 } 1325 1326 unsigned ARMMCCodeEmitter:: 1327 getT2SORegOpValue(const MCInst &MI, unsigned OpIdx, 1328 SmallVectorImpl<MCFixup> &Fixups) const { 1329 // Sub-operands are [reg, imm]. The first register is Rm, the reg to be 1330 // shifted. The second is the amount to shift by. 1331 // 1332 // {3-0} = Rm. 1333 // {4} = 0 1334 // {6-5} = type 1335 // {11-7} = imm 1336 1337 const MCOperand &MO = MI.getOperand(OpIdx); 1338 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); 1339 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); 1340 1341 // Encode Rm. 1342 unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1343 1344 // Encode the shift opcode. 1345 unsigned SBits = 0; 1346 // Set shift operand (bit[6:4]). 1347 // LSL - 000 1348 // LSR - 010 1349 // ASR - 100 1350 // ROR - 110 1351 switch (SOpc) { 1352 default: llvm_unreachable("Unknown shift opc!"); 1353 case ARM_AM::lsl: SBits = 0x0; break; 1354 case ARM_AM::lsr: SBits = 0x2; break; 1355 case ARM_AM::asr: SBits = 0x4; break; 1356 case ARM_AM::rrx: // FALLTHROUGH 1357 case ARM_AM::ror: SBits = 0x6; break; 1358 } 1359 1360 Binary |= SBits << 4; 1361 if (SOpc == ARM_AM::rrx) 1362 return Binary; 1363 1364 // Encode shift_imm bit[11:7]. 1365 return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7; 1366 } 1367 1368 unsigned ARMMCCodeEmitter:: 1369 getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, 1370 SmallVectorImpl<MCFixup> &Fixups) const { 1371 // 10 bits. lower 5 bits are are the lsb of the mask, high five bits are the 1372 // msb of the mask. 1373 const MCOperand &MO = MI.getOperand(Op); 1374 uint32_t v = ~MO.getImm(); 1375 uint32_t lsb = countTrailingZeros(v); 1376 uint32_t msb = (32 - countLeadingZeros (v)) - 1; 1377 assert (v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!"); 1378 return lsb | (msb << 5); 1379 } 1380 1381 unsigned ARMMCCodeEmitter:: 1382 getRegisterListOpValue(const MCInst &MI, unsigned Op, 1383 SmallVectorImpl<MCFixup> &Fixups) const { 1384 // VLDM/VSTM: 1385 // {12-8} = Vd 1386 // {7-0} = Number of registers 1387 // 1388 // LDM/STM: 1389 // {15-0} = Bitfield of GPRs. 1390 unsigned Reg = MI.getOperand(Op).getReg(); 1391 bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg); 1392 bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg); 1393 1394 unsigned Binary = 0; 1395 1396 if (SPRRegs || DPRRegs) { 1397 // VLDM/VSTM 1398 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); 1399 unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff; 1400 Binary |= (RegNo & 0x1f) << 8; 1401 if (SPRRegs) 1402 Binary |= NumRegs; 1403 else 1404 Binary |= NumRegs * 2; 1405 } else { 1406 for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) { 1407 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(MI.getOperand(I).getReg()); 1408 Binary |= 1 << RegNo; 1409 } 1410 } 1411 1412 return Binary; 1413 } 1414 1415 /// getAddrMode6AddressOpValue - Encode an addrmode6 register number along 1416 /// with the alignment operand. 1417 unsigned ARMMCCodeEmitter:: 1418 getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, 1419 SmallVectorImpl<MCFixup> &Fixups) const { 1420 const MCOperand &Reg = MI.getOperand(Op); 1421 const MCOperand &Imm = MI.getOperand(Op + 1); 1422 1423 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1424 unsigned Align = 0; 1425 1426 switch (Imm.getImm()) { 1427 default: break; 1428 case 2: 1429 case 4: 1430 case 8: Align = 0x01; break; 1431 case 16: Align = 0x02; break; 1432 case 32: Align = 0x03; break; 1433 } 1434 1435 return RegNo | (Align << 4); 1436 } 1437 1438 /// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number 1439 /// along with the alignment operand for use in VST1 and VLD1 with size 32. 1440 unsigned ARMMCCodeEmitter:: 1441 getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, 1442 SmallVectorImpl<MCFixup> &Fixups) const { 1443 const MCOperand &Reg = MI.getOperand(Op); 1444 const MCOperand &Imm = MI.getOperand(Op + 1); 1445 1446 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1447 unsigned Align = 0; 1448 1449 switch (Imm.getImm()) { 1450 default: break; 1451 case 8: 1452 case 16: 1453 case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes. 1454 case 2: Align = 0x00; break; 1455 case 4: Align = 0x03; break; 1456 } 1457 1458 return RegNo | (Align << 4); 1459 } 1460 1461 1462 /// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and 1463 /// alignment operand for use in VLD-dup instructions. This is the same as 1464 /// getAddrMode6AddressOpValue except for the alignment encoding, which is 1465 /// different for VLD4-dup. 1466 unsigned ARMMCCodeEmitter:: 1467 getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, 1468 SmallVectorImpl<MCFixup> &Fixups) const { 1469 const MCOperand &Reg = MI.getOperand(Op); 1470 const MCOperand &Imm = MI.getOperand(Op + 1); 1471 1472 unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); 1473 unsigned Align = 0; 1474 1475 switch (Imm.getImm()) { 1476 default: break; 1477 case 2: 1478 case 4: 1479 case 8: Align = 0x01; break; 1480 case 16: Align = 0x03; break; 1481 } 1482 1483 return RegNo | (Align << 4); 1484 } 1485 1486 unsigned ARMMCCodeEmitter:: 1487 getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, 1488 SmallVectorImpl<MCFixup> &Fixups) const { 1489 const MCOperand &MO = MI.getOperand(Op); 1490 if (MO.getReg() == 0) return 0x0D; 1491 return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); 1492 } 1493 1494 unsigned ARMMCCodeEmitter:: 1495 getShiftRight8Imm(const MCInst &MI, unsigned Op, 1496 SmallVectorImpl<MCFixup> &Fixups) const { 1497 return 8 - MI.getOperand(Op).getImm(); 1498 } 1499 1500 unsigned ARMMCCodeEmitter:: 1501 getShiftRight16Imm(const MCInst &MI, unsigned Op, 1502 SmallVectorImpl<MCFixup> &Fixups) const { 1503 return 16 - MI.getOperand(Op).getImm(); 1504 } 1505 1506 unsigned ARMMCCodeEmitter:: 1507 getShiftRight32Imm(const MCInst &MI, unsigned Op, 1508 SmallVectorImpl<MCFixup> &Fixups) const { 1509 return 32 - MI.getOperand(Op).getImm(); 1510 } 1511 1512 unsigned ARMMCCodeEmitter:: 1513 getShiftRight64Imm(const MCInst &MI, unsigned Op, 1514 SmallVectorImpl<MCFixup> &Fixups) const { 1515 return 64 - MI.getOperand(Op).getImm(); 1516 } 1517 1518 void ARMMCCodeEmitter:: 1519 EncodeInstruction(const MCInst &MI, raw_ostream &OS, 1520 SmallVectorImpl<MCFixup> &Fixups) const { 1521 // Pseudo instructions don't get encoded. 1522 const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); 1523 uint64_t TSFlags = Desc.TSFlags; 1524 if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo) 1525 return; 1526 1527 int Size; 1528 if (Desc.getSize() == 2 || Desc.getSize() == 4) 1529 Size = Desc.getSize(); 1530 else 1531 llvm_unreachable("Unexpected instruction size!"); 1532 1533 uint32_t Binary = getBinaryCodeForInstr(MI, Fixups); 1534 // Thumb 32-bit wide instructions need to emit the high order halfword 1535 // first. 1536 if (isThumb() && Size == 4) { 1537 EmitConstant(Binary >> 16, 2, OS); 1538 EmitConstant(Binary & 0xffff, 2, OS); 1539 } else 1540 EmitConstant(Binary, Size, OS); 1541 ++MCNumEmitted; // Keep track of the # of mi's emitted. 1542 } 1543 1544 #include "ARMGenMCCodeEmitter.inc" 1545