Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
      2 //                     The LLVM Compiler Infrastructure
      3 //
      4 // This file is distributed under the University of Illinois Open Source
      5 // License. See LICENSE.TXT for details.
      6 //
      7 //===----------------------------------------------------------------------===//
      8 
      9 #define DEBUG_TYPE "hexagon_cfg"
     10 #include "Hexagon.h"
     11 #include "HexagonMachineFunctionInfo.h"
     12 #include "HexagonSubtarget.h"
     13 #include "HexagonTargetMachine.h"
     14 #include "llvm/CodeGen/MachineDominators.h"
     15 #include "llvm/CodeGen/MachineFunctionPass.h"
     16 #include "llvm/CodeGen/MachineInstrBuilder.h"
     17 #include "llvm/CodeGen/MachineLoopInfo.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetMachine.h"
     25 #include "llvm/Target/TargetRegisterInfo.h"
     26 
     27 using namespace llvm;
     28 
     29 namespace llvm {
     30   void initializeHexagonCFGOptimizerPass(PassRegistry&);
     31 }
     32 
     33 
     34 namespace {
     35 
     36 class HexagonCFGOptimizer : public MachineFunctionPass {
     37 
     38 private:
     39   const HexagonTargetMachine& QTM;
     40   const HexagonSubtarget &QST;
     41 
     42   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
     43 
     44  public:
     45   static char ID;
     46   HexagonCFGOptimizer(const HexagonTargetMachine& TM)
     47     : MachineFunctionPass(ID), QTM(TM), QST(*TM.getSubtargetImpl()) {
     48     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
     49   }
     50 
     51   const char *getPassName() const {
     52     return "Hexagon CFG Optimizer";
     53   }
     54   bool runOnMachineFunction(MachineFunction &Fn);
     55 };
     56 
     57 
     58 char HexagonCFGOptimizer::ID = 0;
     59 
     60 static bool IsConditionalBranch(int Opc) {
     61   return (Opc == Hexagon::JMP_t) || (Opc == Hexagon::JMP_f)
     62     || (Opc == Hexagon::JMP_tnew_t) || (Opc == Hexagon::JMP_fnew_t);
     63 }
     64 
     65 
     66 static bool IsUnconditionalJump(int Opc) {
     67   return (Opc == Hexagon::JMP);
     68 }
     69 
     70 
     71 void
     72 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
     73                                                MachineBasicBlock* NewTarget) {
     74   const HexagonInstrInfo *QII = QTM.getInstrInfo();
     75   int NewOpcode = 0;
     76   switch(MI->getOpcode()) {
     77   case Hexagon::JMP_t:
     78     NewOpcode = Hexagon::JMP_f;
     79     break;
     80 
     81   case Hexagon::JMP_f:
     82     NewOpcode = Hexagon::JMP_t;
     83     break;
     84 
     85   case Hexagon::JMP_tnew_t:
     86     NewOpcode = Hexagon::JMP_fnew_t;
     87     break;
     88 
     89   case Hexagon::JMP_fnew_t:
     90     NewOpcode = Hexagon::JMP_tnew_t;
     91     break;
     92 
     93   default:
     94     llvm_unreachable("Cannot handle this case");
     95   }
     96 
     97   MI->setDesc(QII->get(NewOpcode));
     98   MI->getOperand(1).setMBB(NewTarget);
     99 }
    100 
    101 
    102 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
    103 
    104   // Loop over all of the basic blocks.
    105   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
    106        MBBb != MBBe; ++MBBb) {
    107     MachineBasicBlock* MBB = MBBb;
    108 
    109     // Traverse the basic block.
    110     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    111     if (MII != MBB->end()) {
    112       MachineInstr *MI = MII;
    113       int Opc = MI->getOpcode();
    114       if (IsConditionalBranch(Opc)) {
    115 
    116         //
    117         // (Case 1) Transform the code if the following condition occurs:
    118         //   BB1: if (p0) jump BB3
    119         //   ...falls-through to BB2 ...
    120         //   BB2: jump BB4
    121         //   ...next block in layout is BB3...
    122         //   BB3: ...
    123         //
    124         //  Transform this to:
    125         //  BB1: if (!p0) jump BB4
    126         //  Remove BB2
    127         //  BB3: ...
    128         //
    129         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
    130         //   BB1: if (p0) jump BB3
    131         //   ...falls-through to BB2 ...
    132         //   BB2: jump BB4
    133         //   ...other basic blocks ...
    134         //   BB4:
    135         //   ...not a fall-thru
    136         //   BB3: ...
    137         //     jump BB4
    138         //
    139         // Transform this to:
    140         //   BB1: if (!p0) jump BB4
    141         //   Remove BB2
    142         //   BB3: ...
    143         //   BB4: ...
    144         //
    145         unsigned NumSuccs = MBB->succ_size();
    146         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
    147         MachineBasicBlock* FirstSucc = *SI;
    148         MachineBasicBlock* SecondSucc = *(++SI);
    149         MachineBasicBlock* LayoutSucc = NULL;
    150         MachineBasicBlock* JumpAroundTarget = NULL;
    151 
    152         if (MBB->isLayoutSuccessor(FirstSucc)) {
    153           LayoutSucc = FirstSucc;
    154           JumpAroundTarget = SecondSucc;
    155         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
    156           LayoutSucc = SecondSucc;
    157           JumpAroundTarget = FirstSucc;
    158         } else {
    159           // Odd case...cannot handle.
    160         }
    161 
    162         // The target of the unconditional branch must be JumpAroundTarget.
    163         // TODO: If not, we should not invert the unconditional branch.
    164         MachineBasicBlock* CondBranchTarget = NULL;
    165         if ((MI->getOpcode() == Hexagon::JMP_t) ||
    166             (MI->getOpcode() == Hexagon::JMP_f)) {
    167           CondBranchTarget = MI->getOperand(1).getMBB();
    168         }
    169 
    170         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
    171           continue;
    172         }
    173 
    174         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
    175 
    176           // Ensure that BB2 has one instruction -- an unconditional jump.
    177           if ((LayoutSucc->size() == 1) &&
    178               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
    179             MachineBasicBlock* UncondTarget =
    180               LayoutSucc->front().getOperand(0).getMBB();
    181             // Check if the layout successor of BB2 is BB3.
    182             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
    183             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
    184               JumpAroundTarget->size() >= 1 &&
    185               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
    186               JumpAroundTarget->pred_size() == 1 &&
    187               JumpAroundTarget->succ_size() == 1;
    188 
    189             if (case1 || case2) {
    190               InvertAndChangeJumpTarget(MI, UncondTarget);
    191               MBB->removeSuccessor(JumpAroundTarget);
    192               MBB->addSuccessor(UncondTarget);
    193 
    194               // Remove the unconditional branch in LayoutSucc.
    195               LayoutSucc->erase(LayoutSucc->begin());
    196               LayoutSucc->removeSuccessor(UncondTarget);
    197               LayoutSucc->addSuccessor(JumpAroundTarget);
    198 
    199               // This code performs the conversion for case 2, which moves
    200               // the block to the fall-thru case (BB3 in the code above).
    201               if (case2 && !case1) {
    202                 JumpAroundTarget->moveAfter(LayoutSucc);
    203                 // only move a block if it doesn't have a fall-thru. otherwise
    204                 // the CFG will be incorrect.
    205                 if (!UncondTarget->canFallThrough()) {
    206                   UncondTarget->moveAfter(JumpAroundTarget);
    207                 }
    208               }
    209 
    210               //
    211               // Correct live-in information. Is used by post-RA scheduler
    212               // The live-in to LayoutSucc is now all values live-in to
    213               // JumpAroundTarget.
    214               //
    215               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
    216                                                LayoutSucc->livein_end());
    217               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
    218                                               JumpAroundTarget->livein_end());
    219               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
    220                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
    221               }
    222               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
    223                 LayoutSucc->addLiveIn(NewLiveIn[i]);
    224               }
    225             }
    226           }
    227         }
    228       }
    229     }
    230   }
    231   return true;
    232 }
    233 }
    234 
    235 
    236 //===----------------------------------------------------------------------===//
    237 //                         Public Constructor Functions
    238 //===----------------------------------------------------------------------===//
    239 
    240 static void initializePassOnce(PassRegistry &Registry) {
    241   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
    242                               &HexagonCFGOptimizer::ID, 0, false, false);
    243   Registry.registerPass(*PI, true);
    244 }
    245 
    246 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
    247   CALL_ONCE_INITIALIZATION(initializePassOnce)
    248 }
    249 
    250 FunctionPass *llvm::createHexagonCFGOptimizer(const HexagonTargetMachine &TM) {
    251   return new HexagonCFGOptimizer(TM);
    252 }
    253