Home | History | Annotate | Download | only in NVPTX
      1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Convert generic global variables into either .global or .const access based
     11 // on the variable's "constant" qualifier.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "NVPTX.h"
     16 #include "NVPTXUtilities.h"
     17 #include "MCTargetDesc/NVPTXBaseInfo.h"
     18 
     19 #include "llvm/PassManager.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/Intrinsics.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/IR/Operator.h"
     26 #include "llvm/ADT/ValueMap.h"
     27 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     28 #include "llvm/CodeGen/ValueTypes.h"
     29 #include "llvm/IR/IRBuilder.h"
     30 
     31 using namespace llvm;
     32 
     33 namespace llvm {
     34 void initializeGenericToNVVMPass(PassRegistry &);
     35 }
     36 
     37 namespace {
     38 class GenericToNVVM : public ModulePass {
     39 public:
     40   static char ID;
     41 
     42   GenericToNVVM() : ModulePass(ID) {}
     43 
     44   virtual bool runOnModule(Module &M);
     45 
     46   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     47   }
     48 
     49 private:
     50   Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
     51                          IRBuilder<> &Builder);
     52   Value *remapConstant(Module *M, Function *F, Constant *C,
     53                        IRBuilder<> &Builder);
     54   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
     55                                                 Constant *C,
     56                                                 IRBuilder<> &Builder);
     57   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
     58                            IRBuilder<> &Builder);
     59   void remapNamedMDNode(Module *M, NamedMDNode *N);
     60   MDNode *remapMDNode(Module *M, MDNode *N);
     61 
     62   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
     63   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
     64   GVMapTy GVMap;
     65   ConstantToValueMapTy ConstantToValueMap;
     66 };
     67 }
     68 
     69 char GenericToNVVM::ID = 0;
     70 
     71 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
     72 
     73 INITIALIZE_PASS(
     74     GenericToNVVM, "generic-to-nvvm",
     75     "Ensure that the global variables are in the global address space", false,
     76     false)
     77 
     78 bool GenericToNVVM::runOnModule(Module &M) {
     79   // Create a clone of each global variable that has the default address space.
     80   // The clone is created with the global address space  specifier, and the pair
     81   // of original global variable and its clone is placed in the GVMap for later
     82   // use.
     83 
     84   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
     85        I != E;) {
     86     GlobalVariable *GV = I++;
     87     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
     88         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
     89         !GV->getName().startswith("llvm.")) {
     90       GlobalVariable *NewGV = new GlobalVariable(
     91           M, GV->getType()->getElementType(), GV->isConstant(),
     92           GV->getLinkage(), GV->hasInitializer() ? GV->getInitializer() : NULL,
     93           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
     94       NewGV->copyAttributesFrom(GV);
     95       GVMap[GV] = NewGV;
     96     }
     97   }
     98 
     99   // Return immediately, if every global variable has a specific address space
    100   // specifier.
    101   if (GVMap.empty()) {
    102     return false;
    103   }
    104 
    105   // Walk through the instructions in function defitinions, and replace any use
    106   // of original global variables in GVMap with a use of the corresponding
    107   // copies in GVMap.  If necessary, promote constants to instructions.
    108   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    109     if (I->isDeclaration()) {
    110       continue;
    111     }
    112     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
    113     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
    114          ++BBI) {
    115       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
    116            ++II) {
    117         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
    118           Value *Operand = II->getOperand(i);
    119           if (isa<Constant>(Operand)) {
    120             II->setOperand(
    121                 i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
    122           }
    123         }
    124       }
    125     }
    126     ConstantToValueMap.clear();
    127   }
    128 
    129   // Walk through the metadata section and update the debug information
    130   // associated with the global variables in the default address space.
    131   for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    132                                        E = M.named_metadata_end();
    133        I != E; I++) {
    134     remapNamedMDNode(&M, I);
    135   }
    136 
    137   // Walk through the global variable  initializers, and replace any use of
    138   // original global variables in GVMap with a use of the corresponding copies
    139   // in GVMap.  The copies need to be bitcast to the original global variable
    140   // types, as we cannot use cvta in global variable initializers.
    141   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
    142     GlobalVariable *GV = I->first;
    143     GlobalVariable *NewGV = I->second;
    144     ++I;
    145     Constant *BitCastNewGV = ConstantExpr::getBitCast(NewGV, GV->getType());
    146     // At this point, the remaining uses of GV should be found only in global
    147     // variable initializers, as other uses have been already been removed
    148     // while walking through the instructions in function definitions.
    149     for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
    150          UI != UE;) {
    151       Use &U = (UI++).getUse();
    152       U.set(BitCastNewGV);
    153     }
    154     std::string Name = GV->getName();
    155     GV->removeDeadConstantUsers();
    156     GV->eraseFromParent();
    157     NewGV->setName(Name);
    158   }
    159   GVMap.clear();
    160 
    161   return true;
    162 }
    163 
    164 Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
    165                                       GlobalVariable *GV,
    166                                       IRBuilder<> &Builder) {
    167   PointerType *GVType = GV->getType();
    168   Value *CVTA = NULL;
    169 
    170   // See if the address space conversion requires the operand to be bitcast
    171   // to i8 addrspace(n)* first.
    172   EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
    173   if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
    174     // A bitcast to i8 addrspace(n)* on the operand is needed.
    175     LLVMContext &Context = M->getContext();
    176     unsigned int AddrSpace = GVType->getAddressSpace();
    177     Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
    178     CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
    179     // Insert the address space conversion.
    180     Type *ResultType =
    181         PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
    182     SmallVector<Type *, 2> ParamTypes;
    183     ParamTypes.push_back(ResultType);
    184     ParamTypes.push_back(DestTy);
    185     Function *CVTAFunction = Intrinsic::getDeclaration(
    186         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    187     CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
    188     // Another bitcast from i8 * to <the element type of GVType> * is
    189     // required.
    190     DestTy =
    191         PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
    192     CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
    193   } else {
    194     // A simple CVTA is enough.
    195     SmallVector<Type *, 2> ParamTypes;
    196     ParamTypes.push_back(PointerType::get(GVType->getElementType(),
    197                                           llvm::ADDRESS_SPACE_GENERIC));
    198     ParamTypes.push_back(GVType);
    199     Function *CVTAFunction = Intrinsic::getDeclaration(
    200         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    201     CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
    202   }
    203 
    204   return CVTA;
    205 }
    206 
    207 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
    208                                     IRBuilder<> &Builder) {
    209   // If the constant C has been converted already in the given function  F, just
    210   // return the converted value.
    211   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
    212   if (CTII != ConstantToValueMap.end()) {
    213     return CTII->second;
    214   }
    215 
    216   Value *NewValue = C;
    217   if (isa<GlobalVariable>(C)) {
    218     // If the constant C is a global variable and is found in  GVMap, generate a
    219     // set set of instructions that convert the clone of C with the global
    220     // address space specifier to a generic pointer.
    221     // The constant C cannot be used here, as it will be erased from the
    222     // module eventually.  And the clone of C with the global address space
    223     // specifier cannot be used here either, as it will affect the types of
    224     // other instructions in the function.  Hence, this address space conversion
    225     // is required.
    226     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
    227     if (I != GVMap.end()) {
    228       NewValue = getOrInsertCVTA(M, F, I->second, Builder);
    229     }
    230   } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
    231              isa<ConstantStruct>(C)) {
    232     // If any element in the constant vector or aggregate C is or uses a global
    233     // variable in GVMap, the constant C needs to be reconstructed, using a set
    234     // of instructions.
    235     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
    236   } else if (isa<ConstantExpr>(C)) {
    237     // If any operand in the constant expression C is or uses a global variable
    238     // in GVMap, the constant expression C needs to be reconstructed, using a
    239     // set of instructions.
    240     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
    241   }
    242 
    243   ConstantToValueMap[C] = NewValue;
    244   return NewValue;
    245 }
    246 
    247 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
    248     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
    249   bool OperandChanged = false;
    250   SmallVector<Value *, 4> NewOperands;
    251   unsigned NumOperands = C->getNumOperands();
    252 
    253   // Check if any element is or uses a global variable in  GVMap, and thus
    254   // converted to another value.
    255   for (unsigned i = 0; i < NumOperands; ++i) {
    256     Value *Operand = C->getOperand(i);
    257     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    258     OperandChanged |= Operand != NewOperand;
    259     NewOperands.push_back(NewOperand);
    260   }
    261 
    262   // If none of the elements has been modified, return C as it is.
    263   if (!OperandChanged) {
    264     return C;
    265   }
    266 
    267   // If any of the elements has been  modified, construct the equivalent
    268   // vector or aggregate value with a set instructions and the converted
    269   // elements.
    270   Value *NewValue = UndefValue::get(C->getType());
    271   if (isa<ConstantVector>(C)) {
    272     for (unsigned i = 0; i < NumOperands; ++i) {
    273       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
    274       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
    275     }
    276   } else {
    277     for (unsigned i = 0; i < NumOperands; ++i) {
    278       NewValue =
    279           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
    280     }
    281   }
    282 
    283   return NewValue;
    284 }
    285 
    286 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
    287                                         IRBuilder<> &Builder) {
    288   bool OperandChanged = false;
    289   SmallVector<Value *, 4> NewOperands;
    290   unsigned NumOperands = C->getNumOperands();
    291 
    292   // Check if any operand is or uses a global variable in  GVMap, and thus
    293   // converted to another value.
    294   for (unsigned i = 0; i < NumOperands; ++i) {
    295     Value *Operand = C->getOperand(i);
    296     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    297     OperandChanged |= Operand != NewOperand;
    298     NewOperands.push_back(NewOperand);
    299   }
    300 
    301   // If none of the operands has been modified, return C as it is.
    302   if (!OperandChanged) {
    303     return C;
    304   }
    305 
    306   // If any of the operands has been modified, construct the instruction with
    307   // the converted operands.
    308   unsigned Opcode = C->getOpcode();
    309   switch (Opcode) {
    310   case Instruction::ICmp:
    311     // CompareConstantExpr (icmp)
    312     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
    313                               NewOperands[0], NewOperands[1]);
    314   case Instruction::FCmp:
    315     // CompareConstantExpr (fcmp)
    316     assert(false && "Address space conversion should have no effect "
    317                     "on float point CompareConstantExpr (fcmp)!");
    318     return C;
    319   case Instruction::ExtractElement:
    320     // ExtractElementConstantExpr
    321     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
    322   case Instruction::InsertElement:
    323     // InsertElementConstantExpr
    324     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
    325                                        NewOperands[2]);
    326   case Instruction::ShuffleVector:
    327     // ShuffleVector
    328     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
    329                                        NewOperands[2]);
    330   case Instruction::ExtractValue:
    331     // ExtractValueConstantExpr
    332     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
    333   case Instruction::InsertValue:
    334     // InsertValueConstantExpr
    335     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
    336                                      C->getIndices());
    337   case Instruction::GetElementPtr:
    338     // GetElementPtrConstantExpr
    339     return cast<GEPOperator>(C)->isInBounds()
    340                ? Builder.CreateGEP(
    341                      NewOperands[0],
    342                      makeArrayRef(&NewOperands[1], NumOperands - 1))
    343                : Builder.CreateInBoundsGEP(
    344                      NewOperands[0],
    345                      makeArrayRef(&NewOperands[1], NumOperands - 1));
    346   case Instruction::Select:
    347     // SelectConstantExpr
    348     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
    349   default:
    350     // BinaryConstantExpr
    351     if (Instruction::isBinaryOp(Opcode)) {
    352       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
    353                                  NewOperands[0], NewOperands[1]);
    354     }
    355     // UnaryConstantExpr
    356     if (Instruction::isCast(Opcode)) {
    357       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
    358                                 NewOperands[0], C->getType());
    359     }
    360     assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
    361     return C;
    362   }
    363 }
    364 
    365 void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
    366 
    367   bool OperandChanged = false;
    368   SmallVector<MDNode *, 16> NewOperands;
    369   unsigned NumOperands = N->getNumOperands();
    370 
    371   // Check if any operand is or contains a global variable in  GVMap, and thus
    372   // converted to another value.
    373   for (unsigned i = 0; i < NumOperands; ++i) {
    374     MDNode *Operand = N->getOperand(i);
    375     MDNode *NewOperand = remapMDNode(M, Operand);
    376     OperandChanged |= Operand != NewOperand;
    377     NewOperands.push_back(NewOperand);
    378   }
    379 
    380   // If none of the operands has been modified, return immediately.
    381   if (!OperandChanged) {
    382     return;
    383   }
    384 
    385   // Replace the old operands with the new operands.
    386   N->dropAllReferences();
    387   for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
    388                                            E = NewOperands.end();
    389        I != E; ++I) {
    390     N->addOperand(*I);
    391   }
    392 }
    393 
    394 MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
    395 
    396   bool OperandChanged = false;
    397   SmallVector<Value *, 8> NewOperands;
    398   unsigned NumOperands = N->getNumOperands();
    399 
    400   // Check if any operand is or contains a global variable in  GVMap, and thus
    401   // converted to another value.
    402   for (unsigned i = 0; i < NumOperands; ++i) {
    403     Value *Operand = N->getOperand(i);
    404     Value *NewOperand = Operand;
    405     if (Operand) {
    406       if (isa<GlobalVariable>(Operand)) {
    407         GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
    408         if (I != GVMap.end()) {
    409           NewOperand = I->second;
    410           if (++i < NumOperands) {
    411             NewOperands.push_back(NewOperand);
    412             // Address space of the global variable follows the global variable
    413             // in the global variable debug info (see createGlobalVariable in
    414             // lib/Analysis/DIBuilder.cpp).
    415             NewOperand =
    416                 ConstantInt::get(Type::getInt32Ty(M->getContext()),
    417                                  I->second->getType()->getAddressSpace());
    418           }
    419         }
    420       } else if (isa<MDNode>(Operand)) {
    421         NewOperand = remapMDNode(M, cast<MDNode>(Operand));
    422       }
    423     }
    424     OperandChanged |= Operand != NewOperand;
    425     NewOperands.push_back(NewOperand);
    426   }
    427 
    428   // If none of the operands has been modified, return N as it is.
    429   if (!OperandChanged) {
    430     return N;
    431   }
    432 
    433   // If any of the operands has been modified, create a new MDNode with the new
    434   // operands.
    435   return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
    436 }
    437