Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains instruction definitions and patterns needed for 64-bit
     11 // code generation on SPARC v9.
     12 //
     13 // Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
     14 // also be used in 32-bit code running on a SPARC v9 CPU.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 let Predicates = [Is64Bit] in {
     19 // The same integer registers are used for i32 and i64 values.
     20 // When registers hold i32 values, the high bits are don't care.
     21 // This give us free trunc and anyext.
     22 def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
     23 def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
     24 
     25 } // Predicates = [Is64Bit]
     26 
     27 
     28 //===----------------------------------------------------------------------===//
     29 // 64-bit Shift Instructions.
     30 //===----------------------------------------------------------------------===//
     31 //
     32 // The 32-bit shift instructions are still available. The left shift srl
     33 // instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
     34 //
     35 // The srl instructions only shift the low 32 bits and clear the high 32 bits.
     36 // Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
     37 
     38 let Predicates = [Is64Bit] in {
     39 
     40 def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
     41 def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
     42 
     43 def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
     44 def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
     45 
     46 defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
     47 defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
     48 defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
     49 
     50 } // Predicates = [Is64Bit]
     51 
     52 
     53 //===----------------------------------------------------------------------===//
     54 // 64-bit Immediates.
     55 //===----------------------------------------------------------------------===//
     56 //
     57 // All 32-bit immediates can be materialized with sethi+or, but 64-bit
     58 // immediates may require more code. There may be a point where it is
     59 // preferable to use a constant pool load instead, depending on the
     60 // microarchitecture.
     61 
     62 // Single-instruction patterns.
     63 
     64 // The ALU instructions want their simm13 operands as i32 immediates.
     65 def as_i32imm : SDNodeXForm<imm, [{
     66   return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
     67 }]>;
     68 def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
     69 def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
     70 
     71 // Double-instruction patterns.
     72 
     73 // All unsigned i32 immediates can be handled by sethi+or.
     74 def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
     75 def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
     76       Requires<[Is64Bit]>;
     77 
     78 // All negative i33 immediates can be handled by sethi+xor.
     79 def nimm33 : PatLeaf<(imm), [{
     80   int64_t Imm = N->getSExtValue();
     81   return Imm < 0 && isInt<33>(Imm);
     82 }]>;
     83 // Bits 10-31 inverted. Same as assembler's %hix.
     84 def HIX22 : SDNodeXForm<imm, [{
     85   uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
     86   return CurDAG->getTargetConstant(Val, MVT::i32);
     87 }]>;
     88 // Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
     89 def LOX10 : SDNodeXForm<imm, [{
     90   return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
     91 }]>;
     92 def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
     93       Requires<[Is64Bit]>;
     94 
     95 // More possible patterns:
     96 //
     97 //   (sllx sethi, n)
     98 //   (sllx simm13, n)
     99 //
    100 // 3 instrs:
    101 //
    102 //   (xor (sllx sethi), simm13)
    103 //   (sllx (xor sethi, simm13))
    104 //
    105 // 4 instrs:
    106 //
    107 //   (or sethi, (sllx sethi))
    108 //   (xnor sethi, (sllx sethi))
    109 //
    110 // 5 instrs:
    111 //
    112 //   (or (sllx sethi), (or sethi, simm13))
    113 //   (xnor (sllx sethi), (or sethi, simm13))
    114 //   (or (sllx sethi), (sllx sethi))
    115 //   (xnor (sllx sethi), (sllx sethi))
    116 //
    117 // Worst case is 6 instrs:
    118 //
    119 //   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
    120 
    121 // Bits 42-63, same as assembler's %hh.
    122 def HH22 : SDNodeXForm<imm, [{
    123   uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
    124   return CurDAG->getTargetConstant(Val, MVT::i32);
    125 }]>;
    126 // Bits 32-41, same as assembler's %hm.
    127 def HM10 : SDNodeXForm<imm, [{
    128   uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
    129   return CurDAG->getTargetConstant(Val, MVT::i32);
    130 }]>;
    131 def : Pat<(i64 imm:$val),
    132           (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
    133                 (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
    134       Requires<[Is64Bit]>;
    135 
    136 
    137 //===----------------------------------------------------------------------===//
    138 // 64-bit Integer Arithmetic and Logic.
    139 //===----------------------------------------------------------------------===//
    140 
    141 let Predicates = [Is64Bit] in {
    142 
    143 // Register-register instructions.
    144 
    145 def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
    146 def : Pat<(or  i64:$a, i64:$b), (ORrr  $a, $b)>;
    147 def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
    148 
    149 def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
    150 def : Pat<(or  i64:$a, (not i64:$b)), (ORNrr  $a, $b)>;
    151 def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
    152 
    153 def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
    154 def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
    155 
    156 // Add/sub with carry were renamed to addc/subc in SPARC v9.
    157 def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
    158 def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
    159 
    160 def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
    161 def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
    162 
    163 def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
    164 
    165 // Register-immediate instructions.
    166 
    167 def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
    168 def : Pat<(or  i64:$a, (i64 simm13:$b)), (ORri  $a, (as_i32imm $b))>;
    169 def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
    170 
    171 def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
    172 def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
    173 
    174 def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
    175 
    176 } // Predicates = [Is64Bit]
    177 
    178 
    179 //===----------------------------------------------------------------------===//
    180 // 64-bit Integer Multiply and Divide.
    181 //===----------------------------------------------------------------------===//
    182 
    183 let Predicates = [Is64Bit] in {
    184 
    185 def MULXrr : F3_1<2, 0b001001,
    186                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
    187                   "mulx $rs1, $rs2, $rd",
    188                   [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
    189 def MULXri : F3_2<2, 0b001001,
    190                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
    191                   "mulx $rs1, $i, $rd",
    192                   [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
    193 
    194 // Division can trap.
    195 let hasSideEffects = 1 in {
    196 def SDIVXrr : F3_1<2, 0b101101,
    197                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
    198                    "sdivx $rs1, $rs2, $rd",
    199                    [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
    200 def SDIVXri : F3_2<2, 0b101101,
    201                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
    202                    "sdivx $rs1, $i, $rd",
    203                    [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
    204 
    205 def UDIVXrr : F3_1<2, 0b001101,
    206                    (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
    207                    "udivx $rs1, $rs2, $rd",
    208                    [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
    209 def UDIVXri : F3_2<2, 0b001101,
    210                    (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
    211                    "udivx $rs1, $i, $rd",
    212                    [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
    213 } // hasSideEffects = 1
    214 
    215 } // Predicates = [Is64Bit]
    216 
    217 
    218 //===----------------------------------------------------------------------===//
    219 // 64-bit Loads and Stores.
    220 //===----------------------------------------------------------------------===//
    221 //
    222 // All the 32-bit loads and stores are available. The extending loads are sign
    223 // or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
    224 // zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
    225 // Word).
    226 //
    227 // SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
    228 
    229 let Predicates = [Is64Bit] in {
    230 
    231 // 64-bit loads.
    232 def LDXrr  : F3_1<3, 0b001011,
    233                   (outs I64Regs:$dst), (ins MEMrr:$addr),
    234                   "ldx [$addr], $dst",
    235                   [(set i64:$dst, (load ADDRrr:$addr))]>;
    236 def LDXri  : F3_2<3, 0b001011,
    237                   (outs I64Regs:$dst), (ins MEMri:$addr),
    238                   "ldx [$addr], $dst",
    239                   [(set i64:$dst, (load ADDRri:$addr))]>;
    240 
    241 // Extending loads to i64.
    242 def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
    243 def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
    244 def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
    245 def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
    246 
    247 def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
    248 def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
    249 def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
    250 def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
    251 def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
    252 def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
    253 
    254 def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
    255 def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
    256 def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
    257 def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
    258 def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
    259 def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
    260 
    261 def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
    262 def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
    263 def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
    264 def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
    265 
    266 // Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
    267 def LDSWrr : F3_1<3, 0b001011,
    268                  (outs I64Regs:$dst), (ins MEMrr:$addr),
    269                  "ldsw [$addr], $dst",
    270                  [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
    271 def LDSWri : F3_2<3, 0b001011,
    272                  (outs I64Regs:$dst), (ins MEMri:$addr),
    273                  "ldsw [$addr], $dst",
    274                  [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
    275 
    276 // 64-bit stores.
    277 def STXrr  : F3_1<3, 0b001110,
    278                  (outs), (ins MEMrr:$addr, I64Regs:$src),
    279                  "stx $src, [$addr]",
    280                  [(store i64:$src, ADDRrr:$addr)]>;
    281 def STXri  : F3_2<3, 0b001110,
    282                  (outs), (ins MEMri:$addr, I64Regs:$src),
    283                  "stx $src, [$addr]",
    284                  [(store i64:$src, ADDRri:$addr)]>;
    285 
    286 // Truncating stores from i64 are identical to the i32 stores.
    287 def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
    288 def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
    289 def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
    290 def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
    291 def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
    292 def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
    293 
    294 // store 0, addr -> store %g0, addr
    295 def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
    296 def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
    297 
    298 } // Predicates = [Is64Bit]
    299 
    300 
    301 //===----------------------------------------------------------------------===//
    302 // 64-bit Conditionals.
    303 //===----------------------------------------------------------------------===//
    304 //
    305 // Flag-setting instructions like subcc and addcc set both icc and xcc flags.
    306 // The icc flags correspond to the 32-bit result, and the xcc are for the
    307 // full 64-bit result.
    308 //
    309 // We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
    310 // 64-bit compares. See LowerBR_CC.
    311 
    312 let Predicates = [Is64Bit] in {
    313 
    314 let Uses = [ICC] in
    315 def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
    316                      "b$cc %xcc, $dst",
    317                      [(SPbrxcc bb:$dst, imm:$cc)]>;
    318 
    319 // Conditional moves on %xcc.
    320 let Uses = [ICC], Constraints = "$f = $rd" in {
    321 def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
    322                       (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
    323                       "mov$cond %xcc, $rs2, $rd",
    324                       [(set i32:$rd,
    325                        (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
    326 def MOVXCCri : Pseudo<(outs IntRegs:$rd),
    327                       (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
    328                       "mov$cond %xcc, $i, $rd",
    329                       [(set i32:$rd,
    330                        (SPselectxcc simm11:$i, i32:$f, imm:$cond))]>;
    331 def FMOVS_XCC : Pseudo<(outs FPRegs:$rd),
    332                       (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
    333                       "fmovs$cond %xcc, $rs2, $rd",
    334                       [(set f32:$rd,
    335                        (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
    336 def FMOVD_XCC : Pseudo<(outs DFPRegs:$rd),
    337                       (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
    338                       "fmovd$cond %xcc, $rs2, $rd",
    339                       [(set f64:$rd,
    340                        (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
    341 } // Uses, Constraints
    342 
    343 def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
    344           (MOVXCCrr $t, $f, imm:$cond)>;
    345 def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
    346           (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
    347 
    348 def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
    349           (MOVICCrr $t, $f, imm:$cond)>;
    350 def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
    351           (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
    352 
    353 def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
    354           (MOVFCCrr $t, $f, imm:$cond)>;
    355 def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
    356           (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
    357 
    358 } // Predicates = [Is64Bit]
    359