Home | History | Annotate | Download | only in Sparc
      1 //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Sparc instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // Instruction format superclass
     16 //===----------------------------------------------------------------------===//
     17 
     18 include "SparcInstrFormats.td"
     19 
     20 //===----------------------------------------------------------------------===//
     21 // Feature predicates.
     22 //===----------------------------------------------------------------------===//
     23 
     24 // True when generating 32-bit code.
     25 def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
     26 
     27 // True when generating 64-bit code. This also implies HasV9.
     28 def Is64Bit : Predicate<"Subtarget.is64Bit()">;
     29 
     30 // HasV9 - This predicate is true when the target processor supports V9
     31 // instructions.  Note that the machine may be running in 32-bit mode.
     32 def HasV9   : Predicate<"Subtarget.isV9()">;
     33 
     34 // HasNoV9 - This predicate is true when the target doesn't have V9
     35 // instructions.  Use of this is just a hack for the isel not having proper
     36 // costs for V8 instructions that are more expensive than their V9 ones.
     37 def HasNoV9 : Predicate<"!Subtarget.isV9()">;
     38 
     39 // HasVIS - This is true when the target processor has VIS extensions.
     40 def HasVIS : Predicate<"Subtarget.isVIS()">;
     41 
     42 // UseDeprecatedInsts - This predicate is true when the target processor is a
     43 // V8, or when it is V9 but the V8 deprecated instructions are efficient enough
     44 // to use when appropriate.  In either of these cases, the instruction selector
     45 // will pick deprecated instructions.
     46 def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
     47 
     48 //===----------------------------------------------------------------------===//
     49 // Instruction Pattern Stuff
     50 //===----------------------------------------------------------------------===//
     51 
     52 def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
     53 
     54 def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
     55 
     56 def LO10 : SDNodeXForm<imm, [{
     57   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
     58                                    MVT::i32);
     59 }]>;
     60 
     61 def HI22 : SDNodeXForm<imm, [{
     62   // Transformation function: shift the immediate value down into the low bits.
     63   return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
     64 }]>;
     65 
     66 def SETHIimm : PatLeaf<(imm), [{
     67   return isShiftedUInt<22, 10>(N->getZExtValue());
     68 }], HI22>;
     69 
     70 // Addressing modes.
     71 def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
     72 def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
     73 
     74 // Address operands
     75 def MEMrr : Operand<iPTR> {
     76   let PrintMethod = "printMemOperand";
     77   let MIOperandInfo = (ops ptr_rc, ptr_rc);
     78 }
     79 def MEMri : Operand<iPTR> {
     80   let PrintMethod = "printMemOperand";
     81   let MIOperandInfo = (ops ptr_rc, i32imm);
     82 }
     83 
     84 // Branch targets have OtherVT type.
     85 def brtarget : Operand<OtherVT>;
     86 def calltarget : Operand<i32>;
     87 
     88 // Operand for printing out a condition code.
     89 let PrintMethod = "printCCOperand" in
     90   def CCOp : Operand<i32>;
     91 
     92 def SDTSPcmpicc :
     93 SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
     94 def SDTSPcmpfcc :
     95 SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
     96 def SDTSPbrcc :
     97 SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
     98 def SDTSPselectcc :
     99 SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
    100 def SDTSPFTOI :
    101 SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
    102 def SDTSPITOF :
    103 SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
    104 
    105 def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
    106 def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
    107 def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    108 def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    109 def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
    110 
    111 def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
    112 def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
    113 
    114 def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
    115 def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
    116 
    117 def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
    118 def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
    119 def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
    120 
    121 //  These are target-independent nodes, but have target-specific formats.
    122 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
    123 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
    124                                         SDTCisVT<1, i32> ]>;
    125 
    126 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
    127                            [SDNPHasChain, SDNPOutGlue]>;
    128 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
    129                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    130 
    131 def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
    132 def call          : SDNode<"SPISD::CALL", SDT_SPCall,
    133                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    134                             SDNPVariadic]>;
    135 
    136 def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
    137 def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
    138                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    139 
    140 def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
    141                            [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
    142 
    143 def getPCX        : Operand<i32> {
    144   let PrintMethod = "printGetPCX";
    145 }
    146 
    147 //===----------------------------------------------------------------------===//
    148 // SPARC Flag Conditions
    149 //===----------------------------------------------------------------------===//
    150 
    151 // Note that these values must be kept in sync with the CCOp::CondCode enum
    152 // values.
    153 class ICC_VAL<int N> : PatLeaf<(i32 N)>;
    154 def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    155 def ICC_E   : ICC_VAL< 1>;  // Equal
    156 def ICC_G   : ICC_VAL<10>;  // Greater
    157 def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
    158 def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
    159 def ICC_L   : ICC_VAL< 3>;  // Less
    160 def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
    161 def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
    162 def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
    163 def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
    164 def ICC_POS : ICC_VAL<14>;  // Positive
    165 def ICC_NEG : ICC_VAL< 6>;  // Negative
    166 def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
    167 def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
    168 
    169 class FCC_VAL<int N> : PatLeaf<(i32 N)>;
    170 def FCC_U   : FCC_VAL<23>;  // Unordered
    171 def FCC_G   : FCC_VAL<22>;  // Greater
    172 def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    173 def FCC_L   : FCC_VAL<20>;  // Less
    174 def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
    175 def FCC_LG  : FCC_VAL<18>;  // Less or Greater
    176 def FCC_NE  : FCC_VAL<17>;  // Not Equal
    177 def FCC_E   : FCC_VAL<25>;  // Equal
    178 def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
    179 def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
    180 def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
    181 def FCC_LE  : FCC_VAL<27>;  // Less or Equal
    182 def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
    183 def FCC_O   : FCC_VAL<29>;  // Ordered
    184 
    185 //===----------------------------------------------------------------------===//
    186 // Instruction Class Templates
    187 //===----------------------------------------------------------------------===//
    188 
    189 /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
    190 multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    191   def rr  : F3_1<2, Op3Val,
    192                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    193                  !strconcat(OpcStr, " $b, $c, $dst"),
    194                  [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
    195   def ri  : F3_2<2, Op3Val,
    196                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    197                  !strconcat(OpcStr, " $b, $c, $dst"),
    198                  [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
    199 }
    200 
    201 /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
    202 /// pattern.
    203 multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
    204   def rr  : F3_1<2, Op3Val,
    205                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    206                  !strconcat(OpcStr, " $b, $c, $dst"), []>;
    207   def ri  : F3_2<2, Op3Val,
    208                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    209                  !strconcat(OpcStr, " $b, $c, $dst"), []>;
    210 }
    211 
    212 //===----------------------------------------------------------------------===//
    213 // Instructions
    214 //===----------------------------------------------------------------------===//
    215 
    216 // Pseudo instructions.
    217 class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
    218    : InstSP<outs, ins, asmstr, pattern>;
    219 
    220 // GETPCX for PIC
    221 let Defs = [O7] in {
    222   def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
    223 }
    224 
    225 let Defs = [O6], Uses = [O6] in {
    226 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    227                                "!ADJCALLSTACKDOWN $amt",
    228                                [(callseq_start timm:$amt)]>;
    229 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    230                             "!ADJCALLSTACKUP $amt1",
    231                             [(callseq_end timm:$amt1, timm:$amt2)]>;
    232 }
    233 
    234 let hasSideEffects = 1, mayStore = 1 in {
    235   let rd = 0, rs1 = 0, rs2 = 0 in
    236     def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
    237                       "flushw",
    238                       [(flushw)]>, Requires<[HasV9]>;
    239   let rd = 0, rs1 = 1, simm13 = 3 in
    240     def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
    241                    "ta 3",
    242                    [(flushw)]>;
    243 }
    244 
    245 def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
    246                 "unimp $val", []>;
    247 
    248 // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
    249 // instruction selection into a branch sequence.  This has to handle all
    250 // permutations of selection between i32/f32/f64 on ICC and FCC.
    251 // Expanded after instruction selection.
    252 let Uses = [ICC], usesCustomInserter = 1 in {
    253   def SELECT_CC_Int_ICC
    254    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    255             "; SELECT_CC_Int_ICC PSEUDO!",
    256             [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
    257   def SELECT_CC_FP_ICC
    258    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    259             "; SELECT_CC_FP_ICC PSEUDO!",
    260             [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
    261 
    262   def SELECT_CC_DFP_ICC
    263    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    264             "; SELECT_CC_DFP_ICC PSEUDO!",
    265             [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
    266 }
    267 
    268 let usesCustomInserter = 1, Uses = [FCC] in {
    269 
    270   def SELECT_CC_Int_FCC
    271    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
    272             "; SELECT_CC_Int_FCC PSEUDO!",
    273             [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
    274 
    275   def SELECT_CC_FP_FCC
    276    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
    277             "; SELECT_CC_FP_FCC PSEUDO!",
    278             [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
    279   def SELECT_CC_DFP_FCC
    280    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
    281             "; SELECT_CC_DFP_FCC PSEUDO!",
    282             [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
    283 }
    284 
    285 
    286 // Section A.3 - Synthetic Instructions, p. 85
    287 // special cases of JMPL:
    288 let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
    289   let rd = O7.Num, rs1 = G0.Num in
    290     def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    291                    "jmp %o7+$val", [(retflag simm13:$val)]>;
    292 
    293   let rd = I7.Num, rs1 = G0.Num in
    294     def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
    295                   "jmp %i7+$val", []>;
    296 }
    297 
    298 // Section B.1 - Load Integer Instructions, p. 90
    299 def LDSBrr : F3_1<3, 0b001001,
    300                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    301                   "ldsb [$addr], $dst",
    302                   [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
    303 def LDSBri : F3_2<3, 0b001001,
    304                   (outs IntRegs:$dst), (ins MEMri:$addr),
    305                   "ldsb [$addr], $dst",
    306                   [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
    307 def LDSHrr : F3_1<3, 0b001010,
    308                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    309                   "ldsh [$addr], $dst",
    310                   [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
    311 def LDSHri : F3_2<3, 0b001010,
    312                   (outs IntRegs:$dst), (ins MEMri:$addr),
    313                   "ldsh [$addr], $dst",
    314                   [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
    315 def LDUBrr : F3_1<3, 0b000001,
    316                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    317                   "ldub [$addr], $dst",
    318                   [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
    319 def LDUBri : F3_2<3, 0b000001,
    320                   (outs IntRegs:$dst), (ins MEMri:$addr),
    321                   "ldub [$addr], $dst",
    322                   [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
    323 def LDUHrr : F3_1<3, 0b000010,
    324                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    325                   "lduh [$addr], $dst",
    326                   [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
    327 def LDUHri : F3_2<3, 0b000010,
    328                   (outs IntRegs:$dst), (ins MEMri:$addr),
    329                   "lduh [$addr], $dst",
    330                   [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
    331 def LDrr   : F3_1<3, 0b000000,
    332                   (outs IntRegs:$dst), (ins MEMrr:$addr),
    333                   "ld [$addr], $dst",
    334                   [(set i32:$dst, (load ADDRrr:$addr))]>;
    335 def LDri   : F3_2<3, 0b000000,
    336                   (outs IntRegs:$dst), (ins MEMri:$addr),
    337                   "ld [$addr], $dst",
    338                   [(set i32:$dst, (load ADDRri:$addr))]>;
    339 
    340 // Section B.2 - Load Floating-point Instructions, p. 92
    341 def LDFrr  : F3_1<3, 0b100000,
    342                   (outs FPRegs:$dst), (ins MEMrr:$addr),
    343                   "ld [$addr], $dst",
    344                   [(set f32:$dst, (load ADDRrr:$addr))]>;
    345 def LDFri  : F3_2<3, 0b100000,
    346                   (outs FPRegs:$dst), (ins MEMri:$addr),
    347                   "ld [$addr], $dst",
    348                   [(set f32:$dst, (load ADDRri:$addr))]>;
    349 def LDDFrr : F3_1<3, 0b100011,
    350                   (outs DFPRegs:$dst), (ins MEMrr:$addr),
    351                   "ldd [$addr], $dst",
    352                   [(set f64:$dst, (load ADDRrr:$addr))]>;
    353 def LDDFri : F3_2<3, 0b100011,
    354                   (outs DFPRegs:$dst), (ins MEMri:$addr),
    355                   "ldd [$addr], $dst",
    356                   [(set f64:$dst, (load ADDRri:$addr))]>;
    357 
    358 // Section B.4 - Store Integer Instructions, p. 95
    359 def STBrr : F3_1<3, 0b000101,
    360                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    361                  "stb $src, [$addr]",
    362                  [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
    363 def STBri : F3_2<3, 0b000101,
    364                  (outs), (ins MEMri:$addr, IntRegs:$src),
    365                  "stb $src, [$addr]",
    366                  [(truncstorei8 i32:$src, ADDRri:$addr)]>;
    367 def STHrr : F3_1<3, 0b000110,
    368                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    369                  "sth $src, [$addr]",
    370                  [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
    371 def STHri : F3_2<3, 0b000110,
    372                  (outs), (ins MEMri:$addr, IntRegs:$src),
    373                  "sth $src, [$addr]",
    374                  [(truncstorei16 i32:$src, ADDRri:$addr)]>;
    375 def STrr  : F3_1<3, 0b000100,
    376                  (outs), (ins MEMrr:$addr, IntRegs:$src),
    377                  "st $src, [$addr]",
    378                  [(store i32:$src, ADDRrr:$addr)]>;
    379 def STri  : F3_2<3, 0b000100,
    380                  (outs), (ins MEMri:$addr, IntRegs:$src),
    381                  "st $src, [$addr]",
    382                  [(store i32:$src, ADDRri:$addr)]>;
    383 
    384 // Section B.5 - Store Floating-point Instructions, p. 97
    385 def STFrr   : F3_1<3, 0b100100,
    386                    (outs), (ins MEMrr:$addr, FPRegs:$src),
    387                    "st $src, [$addr]",
    388                    [(store f32:$src, ADDRrr:$addr)]>;
    389 def STFri   : F3_2<3, 0b100100,
    390                    (outs), (ins MEMri:$addr, FPRegs:$src),
    391                    "st $src, [$addr]",
    392                    [(store f32:$src, ADDRri:$addr)]>;
    393 def STDFrr  : F3_1<3, 0b100111,
    394                    (outs), (ins MEMrr:$addr, DFPRegs:$src),
    395                    "std  $src, [$addr]",
    396                    [(store f64:$src, ADDRrr:$addr)]>;
    397 def STDFri  : F3_2<3, 0b100111,
    398                    (outs), (ins MEMri:$addr, DFPRegs:$src),
    399                    "std $src, [$addr]",
    400                    [(store f64:$src, ADDRri:$addr)]>;
    401 
    402 // Section B.9 - SETHI Instruction, p. 104
    403 def SETHIi: F2_1<0b100,
    404                  (outs IntRegs:$dst), (ins i32imm:$src),
    405                  "sethi $src, $dst",
    406                  [(set i32:$dst, SETHIimm:$src)]>;
    407 
    408 // Section B.10 - NOP Instruction, p. 105
    409 // (It's a special case of SETHI)
    410 let rd = 0, imm22 = 0 in
    411   def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
    412 
    413 // Section B.11 - Logical Instructions, p. 106
    414 defm AND    : F3_12<"and", 0b000001, and>;
    415 
    416 def ANDNrr  : F3_1<2, 0b000101,
    417                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    418                    "andn $b, $c, $dst",
    419                    [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
    420 def ANDNri  : F3_2<2, 0b000101,
    421                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    422                    "andn $b, $c, $dst", []>;
    423 
    424 defm OR     : F3_12<"or", 0b000010, or>;
    425 
    426 def ORNrr   : F3_1<2, 0b000110,
    427                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    428                    "orn $b, $c, $dst",
    429                    [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
    430 def ORNri   : F3_2<2, 0b000110,
    431                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    432                    "orn $b, $c, $dst", []>;
    433 defm XOR    : F3_12<"xor", 0b000011, xor>;
    434 
    435 def XNORrr  : F3_1<2, 0b000111,
    436                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    437                    "xnor $b, $c, $dst",
    438                    [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
    439 def XNORri  : F3_2<2, 0b000111,
    440                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    441                    "xnor $b, $c, $dst", []>;
    442 
    443 // Section B.12 - Shift Instructions, p. 107
    444 defm SLL : F3_12<"sll", 0b100101, shl>;
    445 defm SRL : F3_12<"srl", 0b100110, srl>;
    446 defm SRA : F3_12<"sra", 0b100111, sra>;
    447 
    448 // Section B.13 - Add Instructions, p. 108
    449 defm ADD   : F3_12<"add", 0b000000, add>;
    450 
    451 // "LEA" forms of add (patterns to make tblgen happy)
    452 def LEA_ADDri   : F3_2<2, 0b000000,
    453                    (outs IntRegs:$dst), (ins MEMri:$addr),
    454                    "add ${addr:arith}, $dst",
    455                    [(set iPTR:$dst, ADDRri:$addr)]>;
    456 
    457 let Defs = [ICC] in
    458   defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
    459 
    460 let Uses = [ICC] in
    461   defm ADDX  : F3_12<"addx", 0b001000, adde>;
    462 
    463 // Section B.15 - Subtract Instructions, p. 110
    464 defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
    465 let Uses = [ICC] in
    466   defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
    467 
    468 let Defs = [ICC] in {
    469   defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
    470 
    471   def CMPrr   : F3_1<2, 0b010100,
    472                      (outs), (ins IntRegs:$b, IntRegs:$c),
    473                      "cmp $b, $c",
    474                      [(SPcmpicc i32:$b, i32:$c)]>;
    475   def CMPri   : F3_1<2, 0b010100,
    476                      (outs), (ins IntRegs:$b, i32imm:$c),
    477                      "cmp $b, $c",
    478                      [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
    479 }
    480 
    481 let Uses = [ICC], Defs = [ICC] in
    482   def SUBXCCrr: F3_1<2, 0b011100,
    483                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    484                 "subxcc $b, $c, $dst", []>;
    485 
    486 
    487 // Section B.18 - Multiply Instructions, p. 113
    488 let Defs = [Y] in {
    489   defm UMUL : F3_12np<"umul", 0b001010>;
    490   defm SMUL : F3_12  <"smul", 0b001011, mul>;
    491 }
    492 
    493 // Section B.19 - Divide Instructions, p. 115
    494 let Defs = [Y] in {
    495   defm UDIV : F3_12np<"udiv", 0b001110>;
    496   defm SDIV : F3_12np<"sdiv", 0b001111>;
    497 }
    498 
    499 // Section B.20 - SAVE and RESTORE, p. 117
    500 defm SAVE    : F3_12np<"save"   , 0b111100>;
    501 defm RESTORE : F3_12np<"restore", 0b111101>;
    502 
    503 // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
    504 
    505 // conditional branch class:
    506 class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
    507  : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
    508   let isBranch = 1;
    509   let isTerminator = 1;
    510   let hasDelaySlot = 1;
    511 }
    512 
    513 let isBarrier = 1 in
    514   def BA   : BranchSP<0b1000, (ins brtarget:$dst),
    515                       "ba $dst",
    516                       [(br bb:$dst)]>;
    517 
    518 // Indirect branch instructions.
    519 let isTerminator = 1, isBarrier = 1,
    520      hasDelaySlot = 1, isBranch =1,
    521      isIndirectBranch = 1 in {
    522   def BINDrr  : F3_1<2, 0b111000,
    523                    (outs), (ins MEMrr:$ptr),
    524                    "jmp $ptr",
    525                    [(brind ADDRrr:$ptr)]>;
    526   def BINDri  : F3_2<2, 0b111000,
    527                    (outs), (ins MEMri:$ptr),
    528                    "jmp $ptr",
    529                    [(brind ADDRri:$ptr)]>;
    530 }
    531 
    532 // FIXME: the encoding for the JIT should look at the condition field.
    533 let Uses = [ICC] in
    534   def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
    535                          "b$cc $dst",
    536                         [(SPbricc bb:$dst, imm:$cc)]>;
    537 
    538 
    539 // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
    540 
    541 // floating-point conditional branch class:
    542 class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
    543  : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
    544   let isBranch = 1;
    545   let isTerminator = 1;
    546   let hasDelaySlot = 1;
    547 }
    548 
    549 // FIXME: the encoding for the JIT should look at the condition field.
    550 let Uses = [FCC] in
    551   def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
    552                               "fb$cc $dst",
    553                               [(SPbrfcc bb:$dst, imm:$cc)]>;
    554 
    555 
    556 // Section B.24 - Call and Link Instruction, p. 125
    557 // This is the only Format 1 instruction
    558 let Uses = [O6],
    559     hasDelaySlot = 1, isCall = 1,
    560     Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
    561     D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
    562         ICC, FCC, Y] in {
    563   def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
    564                     "call $dst", []> {
    565     bits<30> disp;
    566     let op = 1;
    567     let Inst{29-0} = disp;
    568   }
    569 
    570   // indirect calls
    571   def JMPLrr : F3_1<2, 0b111000,
    572                     (outs), (ins MEMrr:$ptr, variable_ops),
    573                     "call $ptr",
    574                     [(call ADDRrr:$ptr)]>;
    575   def JMPLri : F3_2<2, 0b111000,
    576                     (outs), (ins MEMri:$ptr, variable_ops),
    577                     "call $ptr",
    578                     [(call ADDRri:$ptr)]>;
    579 }
    580 
    581 // Section B.28 - Read State Register Instructions
    582 let Uses = [Y] in
    583   def RDY : F3_1<2, 0b101000,
    584                  (outs IntRegs:$dst), (ins),
    585                  "rd %y, $dst", []>;
    586 
    587 // Section B.29 - Write State Register Instructions
    588 let Defs = [Y] in {
    589   def WRYrr : F3_1<2, 0b110000,
    590                    (outs), (ins IntRegs:$b, IntRegs:$c),
    591                    "wr $b, $c, %y", []>;
    592   def WRYri : F3_2<2, 0b110000,
    593                    (outs), (ins IntRegs:$b, i32imm:$c),
    594                    "wr $b, $c, %y", []>;
    595 }
    596 // Convert Integer to Floating-point Instructions, p. 141
    597 def FITOS : F3_3<2, 0b110100, 0b011000100,
    598                  (outs FPRegs:$dst), (ins FPRegs:$src),
    599                  "fitos $src, $dst",
    600                  [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
    601 def FITOD : F3_3<2, 0b110100, 0b011001000,
    602                  (outs DFPRegs:$dst), (ins FPRegs:$src),
    603                  "fitod $src, $dst",
    604                  [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
    605 
    606 // Convert Floating-point to Integer Instructions, p. 142
    607 def FSTOI : F3_3<2, 0b110100, 0b011010001,
    608                  (outs FPRegs:$dst), (ins FPRegs:$src),
    609                  "fstoi $src, $dst",
    610                  [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
    611 def FDTOI : F3_3<2, 0b110100, 0b011010010,
    612                  (outs FPRegs:$dst), (ins DFPRegs:$src),
    613                  "fdtoi $src, $dst",
    614                  [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
    615 
    616 // Convert between Floating-point Formats Instructions, p. 143
    617 def FSTOD : F3_3<2, 0b110100, 0b011001001,
    618                  (outs DFPRegs:$dst), (ins FPRegs:$src),
    619                  "fstod $src, $dst",
    620                  [(set f64:$dst, (fextend f32:$src))]>;
    621 def FDTOS : F3_3<2, 0b110100, 0b011000110,
    622                  (outs FPRegs:$dst), (ins DFPRegs:$src),
    623                  "fdtos $src, $dst",
    624                  [(set f32:$dst, (fround f64:$src))]>;
    625 
    626 // Floating-point Move Instructions, p. 144
    627 def FMOVS : F3_3<2, 0b110100, 0b000000001,
    628                  (outs FPRegs:$dst), (ins FPRegs:$src),
    629                  "fmovs $src, $dst", []>;
    630 def FNEGS : F3_3<2, 0b110100, 0b000000101,
    631                  (outs FPRegs:$dst), (ins FPRegs:$src),
    632                  "fnegs $src, $dst",
    633                  [(set f32:$dst, (fneg f32:$src))]>;
    634 def FABSS : F3_3<2, 0b110100, 0b000001001,
    635                  (outs FPRegs:$dst), (ins FPRegs:$src),
    636                  "fabss $src, $dst",
    637                  [(set f32:$dst, (fabs f32:$src))]>;
    638 
    639 
    640 // Floating-point Square Root Instructions, p.145
    641 def FSQRTS : F3_3<2, 0b110100, 0b000101001,
    642                   (outs FPRegs:$dst), (ins FPRegs:$src),
    643                   "fsqrts $src, $dst",
    644                   [(set f32:$dst, (fsqrt f32:$src))]>;
    645 def FSQRTD : F3_3<2, 0b110100, 0b000101010,
    646                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
    647                   "fsqrtd $src, $dst",
    648                   [(set f64:$dst, (fsqrt f64:$src))]>;
    649 
    650 
    651 
    652 // Floating-point Add and Subtract Instructions, p. 146
    653 def FADDS  : F3_3<2, 0b110100, 0b001000001,
    654                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    655                   "fadds $src1, $src2, $dst",
    656                   [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
    657 def FADDD  : F3_3<2, 0b110100, 0b001000010,
    658                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    659                   "faddd $src1, $src2, $dst",
    660                   [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
    661 def FSUBS  : F3_3<2, 0b110100, 0b001000101,
    662                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    663                   "fsubs $src1, $src2, $dst",
    664                   [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
    665 def FSUBD  : F3_3<2, 0b110100, 0b001000110,
    666                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    667                   "fsubd $src1, $src2, $dst",
    668                   [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
    669 
    670 // Floating-point Multiply and Divide Instructions, p. 147
    671 def FMULS  : F3_3<2, 0b110100, 0b001001001,
    672                   (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    673                   "fmuls $src1, $src2, $dst",
    674                   [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
    675 def FMULD  : F3_3<2, 0b110100, 0b001001010,
    676                   (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    677                   "fmuld $src1, $src2, $dst",
    678                   [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
    679 def FSMULD : F3_3<2, 0b110100, 0b001101001,
    680                   (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    681                   "fsmuld $src1, $src2, $dst",
    682                   [(set f64:$dst, (fmul (fextend f32:$src1),
    683                                         (fextend f32:$src2)))]>;
    684 def FDIVS  : F3_3<2, 0b110100, 0b001001101,
    685                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
    686                  "fdivs $src1, $src2, $dst",
    687                  [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
    688 def FDIVD  : F3_3<2, 0b110100, 0b001001110,
    689                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
    690                  "fdivd $src1, $src2, $dst",
    691                  [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
    692 
    693 // Floating-point Compare Instructions, p. 148
    694 // Note: the 2nd template arg is different for these guys.
    695 // Note 2: the result of a FCMP is not available until the 2nd cycle
    696 // after the instr is retired, but there is no interlock. This behavior
    697 // is modelled with a forced noop after the instruction.
    698 let Defs = [FCC] in {
    699   def FCMPS  : F3_3<2, 0b110101, 0b001010001,
    700                    (outs), (ins FPRegs:$src1, FPRegs:$src2),
    701                    "fcmps $src1, $src2\n\tnop",
    702                    [(SPcmpfcc f32:$src1, f32:$src2)]>;
    703   def FCMPD  : F3_3<2, 0b110101, 0b001010010,
    704                    (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
    705                    "fcmpd $src1, $src2\n\tnop",
    706                    [(SPcmpfcc f64:$src1, f64:$src2)]>;
    707 }
    708 
    709 //===----------------------------------------------------------------------===//
    710 // V9 Instructions
    711 //===----------------------------------------------------------------------===//
    712 
    713 // V9 Conditional Moves.
    714 let Predicates = [HasV9], Constraints = "$f = $rd" in {
    715   // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
    716   // FIXME: Add instruction encodings for the JIT some day.
    717   let Uses = [ICC] in {
    718     def MOVICCrr
    719       : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
    720                "mov$cc %icc, $rs2, $rd",
    721                [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cc))]>;
    722     def MOVICCri
    723       : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
    724                "mov$cc %icc, $i, $rd",
    725                [(set i32:$rd, (SPselecticc simm11:$i, i32:$f, imm:$cc))]>;
    726   }
    727 
    728   let Uses = [FCC] in {
    729     def MOVFCCrr
    730       : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
    731                "mov$cc %fcc0, $rs2, $rd",
    732                [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cc))]>;
    733     def MOVFCCri
    734       : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
    735                "mov$cc %fcc0, $i, $rd",
    736                [(set i32:$rd, (SPselectfcc simm11:$i, i32:$f, imm:$cc))]>;
    737   }
    738 
    739   let Uses = [ICC] in {
    740     def FMOVS_ICC
    741       : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
    742                "fmovs$cc %icc, $rs2, $rd",
    743                [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cc))]>;
    744     def FMOVD_ICC
    745       : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
    746                "fmovd$cc %icc, $rs2, $rd",
    747                [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cc))]>;
    748   }
    749 
    750   let Uses = [FCC] in {
    751     def FMOVS_FCC
    752       : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
    753                "fmovs$cc %fcc0, $rs2, $rd",
    754                [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cc))]>;
    755     def FMOVD_FCC
    756       : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
    757                "fmovd$cc %fcc0, $rs2, $rd",
    758                [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cc))]>;
    759   }
    760 
    761 }
    762 
    763 // Floating-Point Move Instructions, p. 164 of the V9 manual.
    764 let Predicates = [HasV9] in {
    765   def FMOVD : F3_3<2, 0b110100, 0b000000010,
    766                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    767                    "fmovd $src, $dst", []>;
    768   def FNEGD : F3_3<2, 0b110100, 0b000000110,
    769                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    770                    "fnegd $src, $dst",
    771                    [(set f64:$dst, (fneg f64:$src))]>;
    772   def FABSD : F3_3<2, 0b110100, 0b000001010,
    773                    (outs DFPRegs:$dst), (ins DFPRegs:$src),
    774                    "fabsd $src, $dst",
    775                    [(set f64:$dst, (fabs f64:$src))]>;
    776 }
    777 
    778 // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
    779 // the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
    780 def POPCrr : F3_1<2, 0b101110,
    781                   (outs IntRegs:$dst), (ins IntRegs:$src),
    782                   "popc $src, $dst", []>, Requires<[HasV9]>;
    783 def : Pat<(ctpop i32:$src),
    784           (POPCrr (SLLri $src, 0))>;
    785 
    786 //===----------------------------------------------------------------------===//
    787 // Non-Instruction Patterns
    788 //===----------------------------------------------------------------------===//
    789 
    790 // Small immediates.
    791 def : Pat<(i32 simm13:$val),
    792           (ORri (i32 G0), imm:$val)>;
    793 // Arbitrary immediates.
    794 def : Pat<(i32 imm:$val),
    795           (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
    796 
    797 
    798 // Global addresses, constant pool entries
    799 def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
    800 def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
    801 def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
    802 def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
    803 
    804 // Blockaddress
    805 def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
    806 def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
    807 
    808 // Add reg, lo.  This is used when taking the addr of a global/constpool entry.
    809 def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
    810 def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
    811 def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
    812                         (ADDri $r, tblockaddress:$in)>;
    813 
    814 // Calls:
    815 def : Pat<(call tglobaladdr:$dst),
    816           (CALL tglobaladdr:$dst)>;
    817 def : Pat<(call texternalsym:$dst),
    818           (CALL texternalsym:$dst)>;
    819 
    820 // Map integer extload's to zextloads.
    821 def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    822 def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    823 def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    824 def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    825 def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
    826 def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
    827 
    828 // zextload bool -> zextload byte
    829 def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
    830 def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
    831 
    832 // store 0, addr -> store %g0, addr
    833 def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
    834 def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
    835 
    836 include "SparcInstr64Bit.td"
    837